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Abstract

We introduce a novel training principle for probabilistic models that is an al-
ternative to maximum likelihood. The proposed Generative Stochastic Networks
(GSN) framework is based on learning the transition operator of a Markov chain
whose stationary distribution estimates the data distribution. Because the transition
distribution is a conditional distribution generally involving a small move, it has
fewer dominant modes, being unimodal in the limit of small moves. Thus, it is eas-
ier to learn, more like learning to perform supervised function approximation, with
gradients that can be obtained by backprop. The theorems provided here general-
ize recent work on the probabilistic interpretation of denoising autoencoders and
provide an interesting justification for dependency networks and generalized pseu-
dolikelihood (along with defining an appropriate joint distribution and sampling
mechanism, even when the conditionals are not consistent). GSNs can be used
with missing inputs and can be used to sample subsets of variables given the rest.
Successful experiments are conducted, validating these theoretical results, on two
image datasets and with a particular architecture that mimics the Deep Boltzmann
Machine Gibbs sampler but allows training to proceed with backprop, without the
need for layerwise pretraining.

1 Introduction

Research in deep learning (see Bengio (2009) and Bengio et al. (2013a) for reviews)
grew from breakthroughs in unsupervised learning of representations, based mostly on
the Restricted Boltzmann Machine (RBM) (Hinton et al., 2006), auto-encoder vari-
ants (Bengio et al., 2007; Vincent et al., 2008), and sparse coding variants (Lee et al.,
2007; Ranzato et al., 2007). However, the most impressive recent results have been
obtained with purely supervised learning techniques for deep networks, in particular
for speech recognition (Dahl et al., 2010; Deng et al., 2010; Seide et al., 2011) and
object recognition (Krizhevsky et al., 2012). The latest breakthrough in object recog-
nition (Krizhevsky et al., 2012) was achieved with fairly deep convolutional networks
with a form of noise injection in the input and hidden layers during training, called
dropout (Hinton et al., 2012). In all of these cases, the availability of large quantities
of labeled data was critical.
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Figure 1: Top: A denoising auto-encoder defines an estimated Markov chain where
the transition operator first samples a corrupted X̃ from C(X̃|X) and then samples a
reconstruction from Pθ(X|X̃), which is trained to estimate an estimated Pθ(X|X̃) or
the ground truth P(X|X̃). Note how P(X|X̃) is a much simpler (roughly unimodal)
distribution than the ground truth P(X) and is thus easier to learn. Bottom: A GSN
proceeds similarly, but allows the use of arbitrary latent variables H to represent X ,
with the Markov chain state (and mixing) involving both X and H . Here H is the
angle about the origin. The GSN inherits the benefit of a simpler conditional and adds
latent variables, which allow far more powerful deep representations where mixing is
easier (Bengio et al., 2013b).
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On the other hand, progress with deep unsupervised architectures has been slower,
with the best current options being the Deep Belief Network (DBN) (Hinton et al.,
2006) and the Deep Boltzmann Machine (DBM) (Salakhutdinov & Hinton, 2009). Al-
though single-layer unsupervised learners are fairly well developed and used to pre-
train these, jointly training all the layers with respect to a single unsupervised criterion
remains a challenge, with a few techniques arising to reduce that dependency (Mon-
tavon & Muller, 2012; Goodfellow et al., 2013). In contrast to recent progress toward
joint supervised training of models with many layers, joint unsupervised training of
deep models remains a difficult task. Another exciting frontier in machine learning is
the problem of modeling so-called structured outputs, i.e., modeling a conditional dis-
tribution where the output variable is high-dimensional and has a complex multi-modal
joint distribution (given the input variable). Here we hypothesize that a good part of the
difficulties involved in both cases arises from the traditional probabilistic inference and
maximum likelihood training criterion reliance on marginalizing across an intractable
number of configurations of random variables (observed, latent, or both). In particular,
the normalization constant involved in complex multi-modal probabilistic models is
often intractable and this is dealt with using various approximations (discussed below)
whose limitations may be an important part of the difficulty for training and using deep
unsupervised, semi-supervised or structured output models.

Though the goal of training large unsupervised networks has turned out to be more
elusive than its supervised counterpart, the vastly larger available volume of unlabeled
data still beckons for efficient methods to model it. Recent progress in training super-
vised models raises the question: can we take advantage of this progress to improve
our ability to train deep, generative, unsupervised, semi-supervised or structured output
models? This paper lays theoretical foundations for a move in this direction.

This paper takes advantage of recent work on the generative view of denoising
autoencoders Bengio et al. (2013c). We provide a statistically consistent way of esti-
mating the underlying data distribution based on a denoising-like criterion where the
noise can be injected not just in the input but anywhere in the computational graph that
predicts the distribution of the denoised input.

Our approach creates a Markov chain whose transition operator consists of alter-
nately sampling from a noisy representation distribution P (ht+1|X,ht) and a denois-
ing reconstruction distribution P (X|ht+1), where ht are stochastic latent variables.
We show that the denoising component needs only to model a conditional distribution
P (X|h) for some noisy representation h, which is often a far easier task than modeling
the full data distribution P (X) (see Figure 1). We also prove that if the denoising com-
ponent is a consistent (e.g. maximum likelihood) estimator, the stationary distribution
of the resulting chain is a consistent estimator of the data density, P (X).

This approach has several appealing properties:
• The model is general and extends to a wide range of architectures, including any
sampling procedure whose computation can be unrolled as a Markov Chain, i.e., ar-
chitectures that add noise during intermediate computation in order to produce random
samples of a desired distribution.
• The Markov Chain resulting from the model can be defined over a state (X,h) that
includes latent variables, in contrast to the generative view of denoising autoencoders,
whose chain includes only X . Including a latent state affords the dual advantage of
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more powerful models for a given number of parameters and better mixing in the chain
as we add noise to variables representing higher-level information (as first suggested
by the results obtained by Bengio et al. (2013b) and Luo et al. (2013)).
• Most critically, we transform the unsupervised density estimation problem into one
which is more similar to supervised function approximation. This enables training by
(possibly regularized) maximum likelihood and gradient descent computed via sim-
ple back-propagation, avoiding the need to compute intractable partition functions.
Depending on the model, this may allow us to draw from any number of recently
demonstrated supervised training tricks. For example, one could use a convolutional
architecture with max-pooling for parametric parsimony and computational efficiency,
Adagrad Duchi et al. (2011) for quick gradient descent, and dropout (Hinton et al.,
2012) to prevent co-adaptation of hidden representations.
• The model can easily handle missing inputs, sampling conditioned on some of the
inputs, and structured outputs.

In Section 2 we discuss in more detail what we view as basic motivation for study-
ing alternate ways of training unsupervised probabilistic models, and then in Section 3
we present the main proofs and properties of the Generative Stochastic Network (GSN)
model.

Finally, in Section 4 we apply this idea to create a deep GSN whose computational
graph resembles the one followed by Gibbs sampling in deep Boltzmann machines, but
that can be trained efficiently with back-propagated gradients and no need for layerwise
pre-training.

2 Summing over too many major modes

The approach presented in this paper is motivated by a difficulty often encountered with
probabilistic models, especially those containing anonymous latent variables. They are
called anonymous because no a priori semantics are assigned to them, like in Boltz-
mann machines, and unlike in many knowledge-based graphical models. Whereas in-
ference over non-anonymous latent variables is required to make sense of the model,
anonymous variables are only a device to capture the structure of the distribution and
need not have a clear human-readable meaning.

The gist of the issue is the following. Graphical models with latent variables often
require dealing with either or both of the following fundamentally difficult problems in
the inner loop of training, or to actually use the model for making decisions: inference
(estimating the posterior distribution over latent variables h given inputs x) and sam-
pling (from the joint model of h and x). However, if the posterior P (h|x) has a huge
number of modes that matter, then all of the current approaches may be doomed for
such tasks.

All of the graphical models studied for deep learning except the humble RBM
require a non-trivial form of inference, i.e., guessing values of the latent variables h
that are appropriate for the given visible input x. Several forms of inference have been
investigated in the past: MAP inference is formulated like an optimization problem
(looking for h that approximately maximizes P (h | x)); MCMC inference attempts
to sample a sequence of h’s from P (h | x); variational inference looks for a simple
(typically factorial) approximate posterior qx(h) that is close to P (h | x), and usually
involves an iterative optimization procedure. See a recent machine learning textbook
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for more details (Murphy, 2012).
In addition, a challenge related to inference is sampling (not just from P (h | x)

but also from P (h, x) or P (x)), which like inference is often needed in the inner loop
of learning algorithms for probabilistic models with latent variables such as energy-
based models (LeCun et al., 2006) or Markov Random Fields, where P (x) or P (h, x)
is defined in terms of a parametrized energy function whose normalized exponential
gives probabilities. A similarly difficult sampling task may be required in structured
output problems where one wants to sample from P (y, h|x) and both y and h are
high-dimensional and have a complex highly multi-modal joint distribution (given x).
Deep Boltzmann machines (Salakhutdinov & Hinton, 2009) combine the difficulty of
inference (for the “positive phase” where one tries to push the energies associated with
the observed x down) and also that of sampling (for the “negative phase” where one
tries to push up the energies associated with x’s sampled from P (x)). Sampling for
the negative phase is usually done by MCMC, although some unsupervised learning
algorithms (Collobert & Weston, 2008; Gutmann & Hyvarinen, 2010; Bordes et al.,
2013) involve “negative examples” that are sampled through simpler procedures (like
perturbations of the observed input, in a spirit reminiscent of the approach presented
here). In Salakhutdinov & Hinton (2009), inference for the positive phase is achieved
with a mean-field variational approximation.1

2.1 The problem of multi-modality

To evade the problem of highly multimodal joint or posterior distributions, all of the
currently known approaches to inference and sampling make very strong explicit or
implicit assumptions on the form of the distribution of interest (P (h | x) or P (h, x)).

As we argue below, these approaches make sense if this target distribution is ei-
ther approximately unimodal (MAP), (conditionally) factorizes (variational approxi-
mations, i.e., the different factors hi are approximately independent2 of each other
given x), or has only a few modes between which it is easy to mix (MCMC). However,
approximate inference can be potentially hurtful, not just at test time but for train-
ing (Kulesza & Pereira, 2008), because it is often in the inner loop of the learning
procedure. And what about the cases where neither a unimodal assumption (MAP), the
assumption of a few major modes (MCMC), or of fitting a variational approximation
(factorial or tree-structured distribution) are appropriate?

2.2 An illustration of the multi-modal problem

Imagine for example that h represents many explanatory variables of a rich audio-visual
“scene” with a highly ambiguous raw input x, including the presence of several objects
with ambiguous attributes or categories, such that one cannot really disambiguate one
of the objects independently of the others (the so-called “structured output” scenario,
but at the level of latent explanatory variables). Clearly, a factorized or unimodal rep-
resentation would be inadequate (because these variables are not at all independent,

1In the mean-field approximation, computation proceeds as in Gibbs sampling, but with stochastic binary
values replaced by their conditional expected value (probability of being 1), given the outputs of the other
units. This deterministic computation is iterated like in a recurrent network until convergence is approached,
to obtain a marginal (factorized) approximation over all units.

2This can be relaxed by considering tree-structured conditional dependencies (Saul & Jordan, 1996) and
mixtures thereof.
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given x) while the number of modes could grow exponentially with the number of
ambiguous factors present in the scene. For example, consider x being the audio of
speech pronounced in a foreign language that you do not know well, so that you cannot
easily segment and parse each of the words. The number of plausible interpretations
(given your poor knowledge of that foreign language) could be exponentially large (in
the length of the utterance), and the individual factors (words) would certainly not be
conditionally independent (actually having a very rich structure which corresponds to
a language model). Say there are 106 possible segmentations into around 10 word
segments, each associated with 100 different plausible candidates (out of a million,
counting proper nouns), but, due to the language model, only 1 out of 106 of their
combinations are plausible (i.e., the posterior does not factorize or fit a tree structure).
So one really has to consider 1

106 × 10010 × 106 = 1020 plausible configurations of
the latent variables (high-probability modes). Making a decision y based on x, e.g.,
P (y | x) =

∑
h P (y | h)P (h | x), involves summing over a huge number of non-

negligible terms of the posterior P (h | x), which we can consider as important modes.
One way or another, summing explicitly over that many modes seems implausible, and
assuming single mode (MAP) or a factorized distribution (mean-field) would yield very
poor results.

Under some assumptions on the underlying data-generating process, it might well
be possible to do inference that is exact or a provably good approximation, and search-
ing for graphical models with these properties is an interesting avenue to deal with this
problem. Basically, these assumptions work because we assume a specific structure
in the form of the underlying distribution. Also, if we are lucky, a few Monte-Carlo
samples from P (h | x) might suffice to obtain an acceptable approximation for our
y, because somehow, as far as y is concerned, many probable values of h yield the
same answer y and a Monte-Carlo sample will well represent these different “types”
of values of h. That is one form of regularity that could be exploited (if it exists) to
approximately solve that problem. But what if these assumptions are not appropriate
to solve challenging AI problems? We may find that another more general assump-
tion will suffice: the effectiveness of function approximation. As is typical in machine
learning, we postulate a rather large and flexible family of functions (such as deep neu-
ral nets) and then use all manner of tricks to pick a member from that combinatorially
large family (i.e. to train the neural net) that both fits observed data and generalizes to
unseen data well.

The approach proposed here has this property. It avoids the strong assumptions
on the latent variable structure (or the structured outputs) but still has the potential
of capturing very rich distributions, by having only “function approximation” and no
approximate inference. Although it avoids marginalizing over latent variables during
training, it still retains the property of exploiting sampling in the computations as-
sociated with the model in order to answer questions about the variables of interest.
Besides the approach discussed here, there may well be other very different ways of
evading this problem of marginalization, including approaches such as sum-product
networks (Poon & Domingos, 2011), which are based on learning a probability func-
tion that has a tractable form by construction and yet is from a flexible enough family
of distributions.
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3 Generative Stochastic Networks

Assume the problem we face is to construct a model for some unknown data-generating
distribution P(X) given only examples of X drawn from that distribution. In many
cases, the unknown distribution P(X) is complicated, and modeling it directly can be
difficult.

A recently proposed approach using denoising autoencoders transforms the difficult
task of modeling P(X) into a supervised learning problem that may be much easier
to solve. The basic approach is as follows: given a clean example data point X from
P(X), we obtain a corrupted version X̃ by sampling from some corruption distribution
C(X̃|X). For example, we might take a clean image,X , and add random white noise to
produce X̃ . We then use supervised learning methods to train a function to reconstruct,
as accurately as possible, any X from the data set given only a noisy version X̃ . As
shown in Figure 1, the reconstruction distribution P(X|X̃) may often be much easier
to learn that the data distribution P(X), because it P(X|X̃) tends to be dominated
by a single or few major modes (such as the roughly Gaussian shaped density in the
figure).

But how does learning the reconstruction distribution help us solve our original
problem of modeling P(X)? The two problems are clearly related, because if we knew
everything about P(X), then our knowledge of the C(X̃|X) that we chose would allow
us to precisely specify the optimal reconstruction function via Bayes rule: P(X|X̃) =
1
zC(X̃|X)P(X), where z is a normalizing constant that does not depend on X . As one
might hope, the relation is also true in the opposite direction; once we pick a method
of adding noise, C(X̃|X), knowledge of the corresponding reconstruction distribution
P(X|X̃) is sufficient to recover the density of the data P(X).

This intuition was borne out by proofs in two recent papers. Alain & Bengio (2013)
showed that denoising auto-encoders with small Gaussian corruption and squared er-
ror loss estimated the score (derivative of the log-density with respect to the input) of
continuous observed random variables. More recently, Bengio et al. (2013c) general-
ized this to arbitrary variables (discrete, continuous or both), arbitrary corruption (not
necessarily asymptotically small), and arbitrary loss function (so long as they can be
seen as a log-likelihood).

Beyond proving that P(X|X̃) is sufficient to reconstruct the data density, Bengio
et al. (2013c) also demonstrated a method of sampling from a learned, parameterized
model of the density, Pθ(X), by running a Markov chain that alternately adds noise
using C(X̃|X) and denoises by sampling from the learned Pθ(X|X̃), which is trained
to approximate the true P(X|X̃). The most important contribution of that paper was
demonstrating that if a learned, parameterized reconstruction function Pθ(X|X̃) con-
verges to the true P(X|X̃), then under some relatively benign conditions the stationary
distribution π(X) of the resulting Markov chain will exist and will indeed converge to
the data distribution P(X).

3.1 A slight extension of the generative view of denoising autoencoders

More formally, let Pθn(X|X̃) be a denoising auto-encoder that has been trained on
n training examples. Pθn(X|X̃) assigns a probability to X , given X̃ , when X̃ ∼
C(X̃|X). This estimator defines a Markov chain Tn obtained by sampling alternatively
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an X̃ from C(X̃|X) and anX from Pθ(X|X̃). Let πn be the asymptotic distribution of
the chain defined by Tn, if it exists. The following theorem is proven by Bengio et al.
(2013c).

Theorem 1. If Pθn(X|X̃) is a consistent estimator of the true conditional distribution
P(X|X̃) and Tn defines an ergodic Markov chain, then as n → ∞, the asymptotic
distribution πn(X) of the generated samples converges to the data-generating distri-
bution P(X).

In order for Theorem 1 to apply, the chain must be ergodic. One set of conditions
under which this occurs is given in the aforementioned paper. We slightly restate them
here:
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Figure 2: If C(X̃|X) is globally supported as required by Corollary 1 (Bengio et al.,
2013c), then for Pθn(X|X̃) to converge to P(X|X̃), it will eventually have to model
all of the modes in P(X), even though the modes are damped (see “leaky modes” on
the left). However, if we guarantee ergodicity through other means, as in Corollary 2,
we allow Pθn(X|X̃) to model only the local structure of P(X) (see right).

Corollary 1. If both the data-generating distribution and denoising model are con-
tained in and non-zero in a finite-volume region V (i.e., ∀X̃ , ∀X /∈ V, P(X) =
0, Pθ(X|X̃) = 0 and ∀X̃ , ∀X ∈ V, P(X) > 0, Pθ(X|X̃) > 0, C(X̃|X) > 0) and
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these statements remain true in the limit of n → ∞, then the chain defined by Tn will
be ergodic.

If conditions in Corollary 1 apply, then the chain will be ergodic and Theorem 1
will apply. However, these conditions are sufficient, not necessary, and in many cases
they may be artificially restrictive. In particular, Corollary 1 defines a large region V
containing any possible X allowed by the model and requires that we maintain the
probability of jumping between any two points in a single move to be greater than 0.
While this generous condition helps us easily guarantee the ergodicity of the chain, it
also has the unfortunate side effect of requiring that, in order for Pθn(X|X̃) to converge
to the conditional distribution P(X|X̃), it must have the capacity to model every mode
of P(X), exactly the difficulty we were trying to avoid. The left two plots in Figure 2
show this difficulty: because C(X̃|X) > 0 everywhere in V , every mode of P (X) will
leak, perhaps attenuated, into P (X|X̃).

Fortunately, we may seek ergodicity through other means. The following corollary
allows us to choose a C(X̃|X) that only makes small jumps, which in turn only requires
Pθ(X|X̃) to model a small part of the space V around each X̃ .

Corollary 2. If the data-generating distribution is contained in and non-zero in a
finite-volume region V (i.e., ∀X /∈ V, P(X) = 0, and ∀X ∈ V, P(X) > 0) and all
pairs of points in V can be connected by a finite-length path through V and for some
ε > 0, ∀X̃ ∈ V,∀X ∈ V within ε of each other, C(X̃|X) > 0 and Pθ(X|X̃) > 0 and
these statements remain true in the limit of n → ∞, then the chain defined by Tn will
be ergodic.

Proof. Consider any two points Xa and Xb in V . By the assumptions of Corollary 2,
there exists a finite length path between Xa and Xb through V . Pick one such finite
length path P . Chose a finite series of points x = {x1, x2, . . . , xk} along P , with
x1 = Xa and xk = Xb such that the distance between every pair of consecutive points
(xi, xi+1) is less than ε as defined in Corollary 2. Then the probability of sampling
X̃ = xi+1 from C(X̃|xi)) will be positive, because C(X̃|X)) > 0 for all X̃ within
ε of X by the assumptions of Corollary 2. Further, the probability of sampling X =
X̃ = xi+1 from Pθ(X|X̃) will be positive from the same assumption on P . Thus the
probability of jumping along the path from xi to xi+1, Tn(Xt+1 = xi+1|Xt = xi), will
be greater than zero for all jumps on the path. Because there is a positive probability
finite length path between all pairs of points in V , all states commute, and the chain
is irreducible. If we consider Xa = Xb ∈ V , by the same arguments Tn(Xt =
Xa|Xt−1 = Xa) > 0. Because there is a positive probability of remaining in the
same state, the chain will be aperiodic. Because the chain is irreducible and over a
finite state space, it will be positive recurrent as well. Thus, the chain defined by Tn is
ergodic.

Although this is a weaker condition that has the advantage of making the denoising
distribution even easier to model (probably having less modes), we must be careful
to choose the ball size ε large enough to guarantee that one can jump often enough
between the major modes of P(X) when these are separated by zones of tiny proba-
bility. ε must be larger than half the largest distance one would have to travel across
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a desert of low probability separating two nearby modes (which if not connected in
this way would make V not anymore have a single connected component). Practically,
there would be a trade-off between the difficulty of estimating P(X|X̃) and the ease
of mixing between major modes separated by a very low density zone.

The generalization of the above results presented in the next section is meant to help
deal with this mixing problem. It is inspired by the recent work (Bengio et al., 2013b)
showing that mixing between modes can be a serious problem for RBMs and DBNs,
and that well-trained deeper models can greatly alleviate it by allowing the mixing to
happen at a more abstract level of representation (e.g., where some bits can actually
represent which mode / class / manifold is considered).

3.2 Generalizing the denoising autoencoder to GSNs

The denoising auto-encoder Markov chain is defined by X̃t ∼ C(X̃|Xt) and Xt+1 ∼
Pθ(X|X̃t), where Xt alone can serve as the state of the chain. Instead, a GSN is
associated with a Markov chain with bothXt and a latent variableHt as state variables,
of the form

Ht+1 ∼ Pθ1(H|Ht, Xt)

Xt+1 ∼ Pθ2(X|Ht+1)

where we equivalently define Ht+1 = fθ1(Xt, Zt, Ht), for some independent noise
source Zt, with the condition that Xt cannot be recovered exactly from Ht+1.

Denoising auto-encoders are thus a special case of GSNs, and consistency can be
proven in a similar way.

Theorem 2. Let training data X ∼ P(X) and independent noise Z ∼ P(Z) and
introduce a sequence of latent variables H defined iteratively through a function f
with Ht = fθ1(Xt−1, Zt−1, Ht−1) for a given sequence of Xt’s. Consider a model
Pθ2(X|fθ1(X,Zt−1, Ht−1)) trained (over both θ1 and θ2) so that Pθ2(X|H), for a
given θ1, is a consistent estimator of the true P(X|H). Consider the Markov chain
defined above and assume that it converges to a stationary distribution πn over the X
and H and with marginal πn(X), even in the limit as the number of training examples
n→∞. Then πn(X)→ P(X) as n→∞.

Proof. For any fixed value of θ1 that satisfies the ergodicity of the above “model chain”,
consider a “ground truth” chain in which Xt ∼ P(X|Ht = fθ1(Xt−1, Zt−1, Ht−1))
instead of Xt ∼ Pθ2(X|Ht = fθ1(Xt−1, Zt−1, Ht−1)). The stationary distribution
of the ground truth chain (which we have assumed exists since we are assuming that
there exists θ2 which gives rise to the ground truth P(X|H) = Pθ2(X|H)) has P(X)
as marginal distribution over X , since at a fixed point of the chain we must have
P(X) =

∑
H P(X|H)P(H) where P(H) is the marginal over H produced by the

stationary distribution of the ground truth chain. Now we only need to show that as
Pθ2(X|H) approaches the ground truth P(X|H), so do the stationary distributions of
the corresponding chains. Denote Tn the transition operator associated with the esti-
mator with n examples and T the transition operator associated with the ground truth
chain. As Pθ2(X|H) approaches P(X|H) when n increases, the corresponding oper-
ators approach each other, i.e., Tn → T . Let v be the principal eigenvector of T (i.e.
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the stationary distribution of the ground truth chain). For any matrix M and unit vector
v, ||Mv||2 ≤ sup||x||2=1 ||Mx||2 = ||M ||2. Hence ||(T −Tn)v||2 ≤ ||T −Tn||2 → 0,
which implies that Tnv → T v = v, where the last equality comes from the Perron-
Frobenius theorem (the leading eigenvalue is 1). Therefore the estimated stationary
distribution converges to the ground truth stationary distribution, and in particular the
associated marginals over X converge in the same way, i.e., πn(X)→ P(X).

Since we are now considering the case where f is not a fixed function (as in the
denoising autoencoder case) but a learned one, we have to be careful about defining it
in such a way as to guarantee convergence of the Markov chain from which one would
sample according to the estimated distribution. So long as f and θ1 allow the chain to
mix, the theorem remains applicable. It means that the learning procedure should not
have the freedom to choose parameters that simply eliminate the uncertainty injected
with Z or through the form of f . Otherwise, the reconstruction distribution would
simply converge to a dirac at the input X . This is the analogue of the constraint on
auto-encoders that is needed to prevent them from learning the identity function. Here,
we must design the family of reconstruction functions (which produces a distribution
overX , given Z andX) such that when the noise Z is injected, there are always several
possible values of X that could have been the correct original input.

Another extreme case to think about is when f(X,Z,H) is overwhelmed by the
noise and has lost all information aboutX . In that case the theorems are still applicable
while giving uninteresting results: the learner must capture the full distribution of X
in Pθ2(X|H) because the latter is now equivalent to Pθ2(X), since f(X,Z,H) no
longer contains information about X . This illustrates that when the noise is large, the
reconstruction distribution (parametrized by θ2) will need to have the expressive power
to represent multiple modes. Otherwise, the reconstruction will tend to capture an
average output, which would visually look like a fuzzy combination of actual modes.
In the experiments performed here, we have only considered unimodal reconstruction
distributions (with factorized outputs), because we expect that even if P(X|H) is not
unimodal, it would be dominated by a single mode. However, future work should
investigate multimodal alternatives.

A related element to keep in mind is that one should pick the family of conditional
distributions Pθ2(X|H) so that one can sample from them and one can easily train
them when given (X,H) pairs, e.g., by maximum likelihood.

3.3 Handling missing inputs or structured output

In general, a simple way to deal with missing inputs is to clamp the observed inputs
and then apply the Markov chain with the constraint that the observed inputs are fixed
and not resampled at each time step, whereas the unobserved inputs are resampled each
time. One readily proves that this procedure gives rise to sampling from the appropriate
conditional distribution:

Proposition 1. If a subset x(s) of the elements ofX is kept fixed (not resampled) while
the remainder X(−s) is updated stochastically during the Markov chain of Theorem 2,
but using P (Xt|Ht, X

(s)
t = x(s)), then the asymptotic distribution πn of the Markov

chain produces samples of X(−s) from the conditional distribution πn(X(−s)|X(s) =
x(s)).
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Proof. Without constraint, we know that at convergence, the chain produces samples of
πn. A subset of these samples satisfies the condition X = x(s), and these constrained
samples could equally have been produced by samplingXt fromPθ2(Xt|fθ1(Xt−1, Zt−1, Ht−1), X

(s)
t =

X(s)), by definition of conditional distribution. Therefore, at convergence of the chain,
we have that using the constrained distribution P (Xt|f(Xt−1, Zt−1, Ht−1), X

(s)
t =

x(s)) produces a sample from πn under the condition X(s) = x(s).

Practically, it means that we must choose an output (reconstruction) distribution
from which it is not only easy to sample from, but also from which it is easy to sample
a subset of the variables in the vector X conditioned on the rest being known. In the
experiments below, we used a factorial distribution for the reconstruction, from which
it is trivial to sample conditionally a subset of the input variables.

This method of dealing with missing inputs can be immediately applied to struc-
tured outputs. If X(s) is viewed as an “input” and X(−s) as an “output”, then sampling
from X

(−s)
t+1 ∼ P (X(−s)|f((X(s), X

(−s)
t ), Zt, Ht), X

(s)) will converge to estimators
of P(X(−s)|X(s)). This still requires good choices of the parametrization (for f as
well as for the conditional probability P ), but the advantages of this approach are that
there is no approximate inference of latent variables and the learner is trained with re-
spect to simpler conditional probabilities: in the limit of small noise, we conjecture
that these conditional probabilities can be well approximated by unimodal distribu-
tions. Theoretical evidence comes from Alain & Bengio (2013): when the amount of
corruption noise converges to 0 and the input variables have a smooth continuous den-
sity, then a unimodal Gaussian reconstruction density suffices to fully capture the joint
distribution.
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H3	  H2	  H1	   …	  
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Figure 3: Left: Generic GSN Markov chain with state variables Xt and Ht. Right:
GSN Markov chain inspired by the unfolded computational graph of the Deep Boltz-
mann Machine Gibbs sampling process, but with backprop-able stochastic units at each
layer. The training example X = x0 starts the chain. Either odd or even layers are
stochastically updated at each step. Original or sampled xt’s are corrupted by salt-
and-pepper noise before entering the graph (lightning symbol). Each Xt for t > 0 is
obtained by sampling from the reconstruction distribution for this step, and the log-
likelihood of target X = X0 under that distribution is also computed and used as part
of the training objective.

3.4 The special case of Dependency Networks

Dependency networks (Heckerman et al., 2000) are models in which one estimates
conditionals Pi(xi|x−i), where x−i denotes x \ xi, i.e., the set of variables other than
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the i-th one, xi. Note that each Pi may be parametrized separately, thus not guaran-
teeing that there exists a unique joint of which they are the conditionals. Instead of the
ordered pseudo-Gibbs sampler defined in Heckerman et al. (2000), which resamples
each variable xi in the order x1, x2, . . ., we can view dependency networks in the GSN
framework by defining a proper Markov chain in which at each step one randomly
chooses which variable to resample. The corruption process therefore just consists of
H = f(X,Z) = X−s where X−s is the complement of Xs, with s a randomly cho-
sen subset of elements of X (possibly constrained to be of size 1). Furthermore, we
parametrize the reconstruction distribution as Pθ2(X = x|H) = δx−s=X−s

Pθ2,s(Xs =
xs|x−s) where the estimated conditionals Pθ2,s(Xs = xs|x−s) are not constrained to
be consistent conditionals of some joint distribution over all of X .

Proposition 2. If the above GSN Markov chain has a stationary distribution, then the
dependency network defines a joint distribution (which is that stationary distribution),
which does not have to be known in closed form. Furthermore, if the conditionals are
consistent estimators of the ground truth conditionals, then that stationary distribution
is a consistent estimator of the ground truth joint.

The proposition can be proven by immediate application of Theorem 1 with the
above definitions of the GSN. This joint stationary distribution can exist even if the
conditionals are not consistent. To show that, assume that some choice of (possibly in-
consistent) conditionals gives rise to a stationary distribution π. Now let us consider the
set of all conditionals (not necessarily consistent) that could have given rise to that π.
Clearly, the conditionals derived from π is part of that set, but there are infinitely many
others (a simple counting argument shows that the fixed point equation of π introduces
fewer constraints than the number of degrees of freedom that define the conditionals).
To better understand why the ordered pseudo-Gibbs chain does not benefit from the
same properties, we can consider an extended case (using Theorem 2), where we con-
sider a latent variable H consisting of the index of the next variable to resample. In
that case, the Markov chain on X and H would be periodic, thus violating the ergod-
icity assumption of the theorem. However, by introducing randomness in the choice
of which variable(s) to resample next, we obtain aperiodicity and ergodicity, yielding
as stationary distribution a mixture over all possible resampling orders. These results
also show in a novel way (see e.g. Hyvärinen (2006) for earlier results) that training
by pseudolikelihood or generalized pseudolikelihood provides a consistent estimator
of the associated joint, so long as the GSN Markov chain defined above is ergodic.

4 Experimental Example of GSN

The theoretical results on Generative Stochastic Networks (GSNs) open for explo-
ration a large class of possible parametrizations which will share the property that they
can capture the underlying data distribution through the GSN Markov chain. What
parametrizations will work well? Where and how should one inject noise? We present
results of preliminary experiments with specific selections for each of these choices,
but the reader should keep in mind that the space of possibilities is vast.

As a conservative starting point, we propose to explore families of parametrizations
which are similar to existing deep stochastic architectures such as the Deep Boltzmann
Machine (DBM) (Salakhutdinov & Hinton, 2009). Basically, the idea is to construct
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a computational graph that is similar to the computational graph for Gibbs sampling
or variational inference in Deep Boltzmann Machines. However, we have to diverge
a bit from these architectures in order to accommodate the desirable property that it
will be possible to back-propagate the gradient of reconstruction log-likelihood with
respect to the parameters θ1 and θ2. Since the gradient of a binary stochastic unit is
0 almost everywhere, we have to consider related alternatives. An interesting source
of inspiration regarding this question is a recent paper on estimating or propagating
gradients through stochastic neurons (Bengio, 2013). Here we consider the following
stochastic non-linearities: hi = ηout + tanh(ηin + ai) where ai is the linear activation
for unit i (an affine transformation applied to the input of the unit, coming from the
layer below, the layer above, or both) and ηin and ηout are zero-mean Gaussian noises.

To emulate a sampling procedure similar to Boltzmann machines in which the
filled-in missing values can depend on the representations at the top level, the computa-
tional graph allows information to propagate both upwards (from input to higher levels)
and downwards, giving rise to the computational graph structure illustrated in Figure 3,
which is similar to that explored for deterministic recurrent auto-encoders (Seung,
1998; Behnke, 2001; Savard, 2011). Downward weight matrices have been fixed to
the transpose of corresponding upward weight matrices.

The walkback algorithm was proposed in Bengio et al. (2013c) to make training of
generalized denoising auto-encoders (a special case of the models studied here) more
efficient. The basic idea is that the reconstruction is obtained after not one but several
steps of the sampling Markov chain. In this context it simply means that the com-
putational graph from X to a reconstruction probability actually involves generating
intermediate samples as if we were running the Markov chain starting at X . In the
experiments, the graph was unfolded so that 2D sampled reconstructions would be
produced, whereD is the depth (number of hidden layers). The training loss is the sum
of the reconstruction negative log-likelihoods (of target X) over all those reconstruc-
tion steps.

Experiments evaluating the ability of the GSN models to generate good samples
were performed on the MNIST and TFD datasets, following the setup in Bengio et al.
(2013b). Networks with 2 and 3 hidden layers were evaluated and compared to regular
denoising auto-encoders (just 1 hidden layer, i.e., the computational graph separates
into separate ones for each reconstruction step in the walkback algorithm). They all
have tanh hidden units and pre- and post-activation Gaussian noise of standard de-
viation 2, applied to all hidden layers except the first. In addition, at each step in
the chain, the input (or the resampled Xt) is corrupted with salt-and-pepper noise of
40% (i.e., 40% of the pixels are corrupted, and replaced with a 0 or a 1 with prob-
ability 0.5). Training is over 100 to 600 epochs at most, with good results obtained
after around 100 epochs. Hidden layer sizes vary between 1000 and 1500 depending
on the experiments, and a learning rate of 0.25 and momentum of 0.5 were selected
to approximately minimize the reconstruction negative log-likelihood. The learning
rate is reduced multiplicatively by 0.99 after each epoch. Following Breuleux et al.
(2011), the quality of the samples was also estimated quantitatively by measuring
the log-likelihood of the test set under a Parzen density estimator constructed from
10000 consecutively generated samples (using the real-valued mean-field reconstruc-
tions as the training data for the Parzen density estimator). This can be seen as an

14



lower bound on the true log-likelihood, with the bound converging to the true like-
lihood as we consider more samples and appropriately set the smoothing parameter
of the Parzen estimator3 Results are summarized in Table 1. The test set Parzen log-
likelihood bound was not used to select among model architectures, but visual inspec-
tion of samples generated did guide the preliminary search reported here. Optimiza-
tion hyper-parameters (learning rate, momentum, and learning rate reduction schedule)
were selected based on the reconstruction log-likelihood training objective. The Parzen
log-likelihood bound obtained with a two-layer model on MNIST is 214 (± standard
error of 1.1), while the log-likelihood bound obtained by a single-layer model (reg-
ular denoising auto-encoder, DAE in the table) is substantially worse, at -152±2.2.
In comparison, Bengio et al. (2013b) report a log-likelihood bound of -244±54 for
RBMs and 138±2 for a 2-hidden layer DBN, using the same setup. We have also
evaluated a 3-hidden layer DBM (Salakhutdinov & Hinton, 2009), using the weights
provided by the author, and obtained a Parzen log-likelihood bound of 32±2. See
http://www.mit.edu/˜rsalakhu/DBM.html for details. Interestingly, the
GSN and the DBN-2 actually perform slightly better than when using samples directly
coming from the MNIST training set, maybe because they generate more “prototypi-
cal” samples (we are using mean-field outputs). Figure 4 shows a single run of con-
secutive samples from this trained model4, illustrating that it mixes quite well (better
than RBMs) and produces rather sharp digit images. The figure shows that it can also
stochastically complete missing values: the left half of the image was initialized to
random pixels and the right side was clamped to an MNIST image. The Markov chain
explores plausible variations of the completion according to the trained conditional
distribution.

A smaller set of experiments was also run on TFD, yielding a test set Parzen log-
likelihood bound of 1890 ±29. The setup is exactly the same and was not tuned after
the MNIST experiments. A DBN-2 yields a Parzen log-likelihood bound of 1908±66,
which is indistinguishable statistically, while an RBM yields 604 ± 15. One out of
every 2 consecutive samples5 from the GSN-3 model are shown in Figure 5.

5 Conclusion

We have introduced a new approach to training generative models, called Generative
Stochastic Networks (GSN), that is an alternative to maximum likelihood, with the
objective of avoiding the intractable marginalizations and the danger of poor approxi-
mations of these marginalizations. The training procedure is more similar to function
approximation than to unsupervised learning because the reconstruction distribution
is simpler than the data distribution, often unimodal (provably so in the limit of very
small noise). This makes it possible to train unsupervised models that capture the
data-generating distribution simply using back-prop and gradient descent (in a com-
putational graph that includes noise injection). The proposed theoretical results state
that under mild conditions (in particular that the noise injected in the networks pre-

3However, in this paper, to be consistent with the numbers given in Bengio et al. (2013b) we used a Gaus-
sian Parzen density, which makes the numbers not comparable with the AIS log-likelihood upper bounds for
binarized images reported in other papers for the same data.

4See supplementary material for longer runs
5Longer runs without skips are shown in the supplementary material
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Figure 4: Top: two runs of consecutive samples (one row after the other) generated
from 2-layer GSN model, showing fast mixing between classes, nice and sharp im-
ages. Note: only every fourth sample is shown; see the supplemental material for the
samples in between. Bottom: conditional Markov chain, with the right half of the im-
age clamped to one of the MNIST digit images and the left half successively resampled,
illustrating the power of the generative model to stochastically fill-in missing inputs.
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Figure 5: GSN samples from a 3-layer model trained on the TFD dataset. Every second
sample is shown; see the supplemental material for every sample. At the end of each
row, we show the nearest example from the training set to the last sample on that row,
to illustrate that the distribution is not merely copying the training set.
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Table 1: Test set log-likelihood lower bound (LL) obtained by a Parzen density estima-
tor constructed using 10000 generated samples, for different generative models trained
on MNIST. The LL is not directly comparable to AIS likelihood estimates because we
use a Gaussian mixture rather than a Bernouilli mixture to compute the likelihood, but
we can compare with Rifai et al. (2012); Bengio et al. (2013b,c) (from which we took
the last three columns). A DBN-2 has 2 hidden layers, a CAE-1 has 1 hidden layer,
and a CAE-2 has 2. The DAE is basically a GSN-1, with no injection of noise inside
the network. The last column uses 10000 MNIST training examples to train the Parzen
density estimator.

GSN-2 DAE RBM DBM-3 DBN-2 MNIST
LOG-LIKELIHOOD LOWER BOUND 214 -152 -244 32 138 24
STANDARD ERROR 1.1 2.2 54 1.9 2.0 1.6

vents perfect reconstruction), training the model to denoise and reconstruct its obser-
vations (through a powerful family of renconstruction distributions) suffices to capture
the data-generating distribution through a simple Markov chain. Another way to put it
is that we are training the transition operator of a Markov chain whose stationary distri-
bution estimates the data distribution, and it turns out that this is a much easier learning
problem because the normalization constant for this conditional distribution is gen-
erally dominated by fewer modes. These theoretical results are extended to the case
where the corruption is local but still allows the chain to mix and to the case where
some inputs are missing or constrained (thus allowing to sample from a conditional
distribution on a subset of the observed variables or to learned structured output mod-
els). The GSN framework is shown to lend to dependency networks a valid estimator
of the joint distribution of the observed variables even when the learned conditionals
are not consistent, also allowing to prove consistency of generalized pseudolikelihood
training, associated with the stationary distribution of the corresponding GSN (that
randomly chooses a subset of variables and then resamples it). Experiments have been
conducted to validate the theory, in the case where the GSN architecture emulates the
Gibbs sampling process of a Deep Boltzmann Machine, on two datasets. A quantitative
evaluation of the samples confirms that the training procedure works very well (in this
case allowing us to train a deep generative model without layerwise pretraining) and
can be used to perform conditional sampling of a subset of variables given the rest.
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A Supplemental Experimental Results

Experiments evaluating the ability of the GSN models to generate good samples were
performed on the MNIST and TFD datasets, following the setup in Bengio et al.
(2013c). Networks with 2 and 3 hidden layers were evaluated and compared to reg-
ular denoising auto-encoders (just 1 hidden layer, i.e., the computational graph sepa-
rates into separate ones for each reconstruction step in the walkback algorithm). They
all have tanh hidden units and pre- and post-activation Gaussian noise of standard
deviation 2, applied to all hidden layers except the first. In addition, at each step in
the chain, the input (or the resampled Xt) is corrupted with salt-and-pepper noise of
40% (i.e., 40% of the pixels are corrupted, and replaced with a 0 or a 1 with prob-
ability 0.5). Training is over 100 to 600 epochs at most, with good results obtained
after around 100 epochs. Hidden layer sizes vary between 1000 and 1500 depending
on the experiments, and a learning rate of 0.25 and momentum of 0.5 were selected
to approximately minimize the reconstruction negative log-likelihood. The learning
rate is reduced multiplicatively by 0.99 after each epoch. Following Breuleux et al.
(2011), the quality of the samples was also estimated quantitatively by measuring
the log-likelihood of the test set under a Parzen density estimator constructed from
10000 consecutively generated samples (using the real-valued mean-field reconstruc-
tions as the training data for the Parzen density estimator). This can be seen as an
lower bound on the true log-likelihood, with the bound converging to the true likeli-
hood as we consider more samples and appropriately set the smoothing parameter of
the Parzen estimator6. Results are summarized in Table 1. The test set Parzen log-
likelihood bound was not used to select among model architectures, but visual inspec-
tion of samples generated did guide the preliminary search reported here. Optimiza-
tion hyper-parameters (learning rate, momentum, and learning rate reduction schedule)
were selected based on the reconstruction log-likelihood training objective. The Parzen
log-likelihood bound obtained with a two-layer model on MNIST is 214 (± standard
error of 1.1), while the log-likelihood bound obtained by a single-layer model (reg-
ular denoising auto-encoder, DAE in the table) is substantially worse, at -152±2.2.
In comparison, Bengio et al. (2013c) report a log-likelihood bound of -244±54 for
RBMs and 138±2 for a 2-hidden layer DBN, using the same setup. We have also
evaluated a 3-hidden layer DBM (Salakhutdinov & Hinton, 2009), using the weights
provided by the author, and obtained a Parzen log-likelihood bound of 32±2. See
http://www.mit.edu/˜rsalakhu/DBM.html for details. Interestingly, the
GSN and the DBN-2 actually perform slightly better than when using samples directly
coming from the MNIST training set, maybe because they generate more “prototypi-
cal” samples (we are using mean-field outputs). Figure 6 shows two runs of consecutive
samples from this trained model, illustrating that it mixes quite well (better than RBMs)
and produces rather sharp digit images. The figure shows that it can also stochastically
complete missing values: the left half of the image was initialized to random pixels and
the right side was clamped to an MNIST image. The Markov chain explores plausible

6However, in this paper, to be consistent with the numbers given in Bengio et al. (2013c) we used a
Gaussian Parzen density, which (in addition to being lower rather than upper bounds) makes the numbers not
comparable with the AIS log-likelihood upper bounds for binarized images reported in some papers for the
same data.
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variations of the completion according to the trained conditional distribution.
A smaller set of experiments was also run on TFD, yielding for a GSN a test set

Parzen log-likelihood bound of 1890 ±29. The setup is exactly the same and was not
tuned after the MNIST experiments. A DBN-2 yields a Parzen log-likelihood bound
of 1908 ±66, which is undistinguishable statistically, while an RBM yields 604 ± 15.
A run of consecutive samples from the GSN-3 model are shown in Figure 8. Fig-
ure 7 shows consecutive samples obtained early on during training, after only 5 and 25
epochs respectively, illustrating the fast convergence of the training procedure.

Figure 6: These are expanded plots of those in Figure 4. Top: two runs of consec-
utive samples (one row after the other) generated from a 2-layer GSN model, show-
ing that it mixes well between classes and produces nice and sharp images. Figure 4
contained only one in every four samples, whereas here we show every sample. Bot-
tom: conditional Markov chain, with the right half of the image clamped to one of the
MNIST digit images and the left half successively resampled, illustrating the power of
the trained generative model to stochastically fill-in missing inputs. Figure 4 showed
only 13 samples in each chain; here we show 26.
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Figure 7: Left: consecutive GSN samples obtained after 10 training epochs. Right:
GSN samples obtained after 25 training epochs. This shows quick convergence to
a model that samples well. The samples in Figure 6 are obtained after 600 training
epochs.

References

Alain, Guillaume and Bengio, Yoshua. What regularized auto-encoders learn from the
data generating distribution. In International Conference on Learning Representa-
tions (ICLR’2013), 2013.

Behnke, Sven. Learning iterative image reconstruction in the neural abstraction pyra-
mid. Int. J. Computational Intelligence and Applications, 1(4):427–438, 2001.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy layer-wise training
of deep networks. In NIPS’2006, 2007.

Bengio, Yoshua. Learning deep architectures for AI. Now Publishers, 2009.

Bengio, Yoshua. Estimating or propagating gradients through stochastic neurons. Tech-
nical Report arXiv:1305.2982, Universite de Montreal, 2013.

Bengio, Yoshua, Courville, Aaron, and Vincent, Pascal. Unsupervised feature learning
and deep learning: A review and new perspectives. IEEE Trans. Pattern Analysis
and Machine Intelligence (PAMI), 2013a.
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