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Abstract

We introduce a novel training principle for generative probabilistic models that is an al-
ternative to maximum likelihood. The proposed Generative Stochastic Networks (GSN)
framework generalizes Denoising Auto-Encoders (DAE) and is based on learning the tran-
sition operator of a Markov chain whose stationary distribution estimates the data distri-
bution. The transition distribution is a conditional distribution that generally involves a
small move, so it has fewer dominant modes and is unimodal in the limit of small moves.
This simplifies the learning problem, making it less like density estimation and more akin
to supervised function approximation, with gradients that can be obtained by backprop.
The theorems provided here provide a probabilistic interpretation for denoising autoen-
coders and generalize them; seen in the context of this framework, auto-encoders that
learn with injected noise are a special case of GSNs and can be interpreted as generative
models. The theorems also provide an interesting justification for dependency networks
and generalized pseudolikelihood and define an appropriate joint distribution and sampling
mechanism, even when the conditionals are not consistent. GSNs can be used with missing
inputs and can be used to sample subsets of variables given the rest. Experiments validat-
ing these theoretical results are conducted on both synthetic datasets and image datasets.
The experiments employ a particular architecture that mimics the Deep Boltzmann Ma-
chine Gibbs sampler but that allows training to proceed with backprop through a recurrent
neural network with noise injected inside and without the need for layerwise pretraining.

1. Introduction

Research in deep learning (see Bengio (2009) and Bengio et al. (2013a) for reviews) grew
from breakthroughs in unsupervised learning of representations, based mostly on the Re-
stricted Boltzmann Machine (RBM) (Hinton et al., 2006), auto-encoder variants (Bengio
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Figure 1: Top: A denoising auto-encoder defines an estimated Markov chain where the tran-
sition operator first samples a corrupted X̃ from C(X̃|X) and then samples a reconstruction
from Pθ(X|X̃), which is trained to estimate the ground truth P (X|X̃). Note how for any
given X̃, P (X|X̃) is a much simpler (roughly unimodal) distribution than the ground truth
P (X) and its partition function is thus easier to approximate. Bottom: More generally, a
GSN allows the use of arbitrary latent variables H in addition to X, with the Markov chain
state (and mixing) involving both X and H. Here H is the angle about the origin. The
GSN inherits the benefit of a simpler conditional and adds latent variables, which allow
more powerful deep representations in which mixing is easier (Bengio et al., 2013b).
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et al., 2007; Vincent et al., 2008), and sparse coding variants (Lee et al., 2007; Ranzato
et al., 2007). However, the most impressive recent results have been obtained with purely
supervised learning techniques for deep networks, in particular for speech recognition (Dahl
et al., 2010; Deng et al., 2010; Seide et al., 2011) and object recognition (Krizhevsky et al.,
2012). The latest breakthrough in object recognition (Krizhevsky et al., 2012) was achieved
with fairly deep convolutional networks with a form of noise injection in the input and
hidden layers during training, called dropout (Hinton et al., 2012).

In all of these cases, the availability of large quantities of labeled data was critical.

On the other hand, progress with deep unsupervised architectures has been slower, with
the established approaches with a probabilistic footing being the Deep Belief Network
(DBN) (Hinton et al., 2006) and the Deep Boltzmann Machine (DBM) (Salakhutdinov
and Hinton, 2009). Although single-layer unsupervised learners are fairly well developed
and used to pre-train these deep models, jointly training all the layers with respect to a
single unsupervised criterion remains a challenge, with a few techniques arising to reduce
that difficulty (Montavon and Muller, 2012; Goodfellow et al., 2013). In contrast to recent
progress toward joint supervised training of models with many layers, joint unsupervised
training of deep models remains a difficult task.

In particular, the normalization constant involved in complex multimodal probabilistic
models is often intractable and this is dealt with using various approximations (discussed
below) whose limitations may be an important part of the difficulty for training and using
deep unsupervised, semi-supervised or structured output models.

Though the goal of training large unsupervised networks has turned out to be more elusive
than its supervised counterpart, the vastly larger available volume of unlabeled data still
beckons for efficient methods to model it. Recent progress in training supervised models
raises the question: can we take advantage of this progress to improve our ability to train
deep, generative, unsupervised, semi-supervised or structured output models?

This paper lays theoretical foundations for a move in this direction through the following
main contributions:

1 – Intuition: In Section 2 we discuss what we view as basic motivation for studying
alternate ways of training unsupervised probabilistic models, i.e., avoiding the intractable
sums or maximization involved in many approaches.

2 – Training Framework: We start Section 3 by presenting our recent work on the
generative view of denoising auto-encoders (Section 3.1). We present the walkback algorithm
which addresses some of the training difficulties with denoising auto-encoders (Section 3.2).

We then generalize those results by introducing latent variables in the framework to define
Generative Stochastic Networks (GSNs) (Section 3.4). GSNs aim to estimate the data-
generating distribution indirectly, by parametrizing the transition operator of a Markov
chain rather than directly parametrizing a model P (X) of the observed random variable X.
Most critically, this framework transforms the unsupervised density estimation problem into
one which is more similar to supervised function approximation. This enables training by
(possibly regularized) maximum likelihood and gradient descent computed via simple back-
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propagation, avoiding the need to compute intractable partition functions. Depending on
the model, this may allow us to draw from any number of recently demonstrated supervised
training tricks. For example, one could use a convolutional architecture with max-pooling
for parametric parsimony and computational efficiency, or dropout (Hinton et al., 2012) to
prevent co-adaptation of hidden representations.

3 – General theory: Training the generative (decoding / denoising) component of a
GSN P (X|h) with noisy representation h is often far easier than modeling P (X) explicitly
(compare the blue and red distributions in Figure 1). We prove that if our estimated
P (X|h) is consistent (e.g. through maximum likelihood), then the stationary distribution
of the resulting Markov chain is a consistent estimator of the data-generating density, P (X)
(Section 3.1 and Appendix 6).

4 – Consequences of theory: We show that the model is general and extends to a wide
range of architectures, including sampling procedures whose computation can be unrolled
as a Markov Chain, i.e., architectures that add noise during intermediate computation
in order to produce random samples of a desired distribution (Theorem 3). An exciting
frontier in machine learning is the problem of modeling so-called structured outputs, i.e.,
modeling a conditional distribution where the output is high-dimensional and has a complex
multimodal joint distribution (given the input variable). We show how GSNs can be used
to support such structured output and missing values (Section 3.6).

5 – Example application: In Section 4.2 we show an example application of the GSN
theory to create a deep GSN whose computational graph resembles the one followed by
Gibbs sampling in deep Boltzmann machines (with continuous latent variables), but that
can be trained efficiently with back-propagated gradients and without layerwise pretraining.
Because the Markov Chain is defined over a state (X,h) that includes latent variables, we
reap the dual advantage of more powerful models for a given number of parameters and
better mixing in the chain as we add noise to variables representing higher-level information,
first suggested by the results obtained by Bengio et al. (2013b) and Luo et al. (2013). The
experimental results show that such a model with latent states indeed mixes better than
shallower models without them (Table 1).

6 – Dependency networks: Finally, an unexpected result falls out of the GSN theory:
it allows us to provide a novel justification for dependency networks (Heckerman et al., 2000)
and for the first time define a proper joint distribution between all the visible variables that
is learned by such models (Section 3.8).

2. Summing over too many major modes

The approach presented in this paper is motivated by a difficulty often encountered with
probabilistic models, especially those containing anonymous latent variables. They are
called anonymous because no a priori semantics are assigned to them, like in Boltzmann
machines, and unlike in many knowledge-based graphical models. Whereas inference over
non-anonymous latent variables is required to make sense of the model, anonymous variables
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are only a device to capture the structure of the distribution and need not have a clear
human-readable meaning.

However, graphical models with latent variables often require dealing with either or both
of the following fundamentally difficult problems in the inner loop of training, or to actually
use the model for making decisions: inference (estimating the posterior distribution over
latent variables h given inputs x) and sampling (from the joint model of h and x). However,
if the posterior P (h|x) has a huge number of modes that matter, then the approximations
made may break down.

Many of the computations involved in graphical models (inference, sampling, and learn-
ing) are made intractable and difficult to approximate because of the large number of
non-negligible modes in the modeled distribution (either directly P (x) or a joint distri-
bution P (x, h) involving latent variables h). In all of these cases, what is intractable is
the computation or approximation of a sum (often weighted by probabilities), such as a
marginalization or the estimation of the gradient of the normalization constant. If only a
few terms in this sum dominate (corresponding to the dominant modes of the distribution),
then many good approximate methods can be found, such as Monte-Carlo Markov chains
(MCMC) methods.

Deep Boltzmann machines (Salakhutdinov and Hinton, 2009) combine the difficulty of
inference (for the positive phase where one tries to push the energies associated with the
observed x down) and also that of sampling (for the negative phase where one tries to push
up the energies associated with x’s sampled from P (x)). Sampling for the negative phase
is usually done by MCMC, although some unsupervised learning algorithms (Collobert
and Weston, 2008; Gutmann and Hyvarinen, 2010; Bordes et al., 2013) involve “negative
examples” that are sampled through simpler procedures (like perturbations of the observed
input, in a spirit reminiscent of the approach presented here). Unfortunately, using an
MCMC method to sample from P (x, h) in order to estimate the gradient of the partition
function may be seriously hurt by the presence of a large number of important modes, as
argued below.

To evade the problem of highly multimodal joint or posterior distributions, the currently
known approaches to dealing with the above intractable sums make very strong explicit
assumptions (in the parametrization) or implicit assumptions (by the choice of approxima-
tion methods) on the form of the distribution of interest. In particular, MCMC methods
are more likely to produce a good estimator if the number of non-negligible modes is small:
otherwise the chains would require at least as many MCMC steps as the number of such
important modes, times a factor that accounts for the mixing time between modes. Mixing
time itself can be very problematic as a trained model becomes sharper, as it approaches
a data-generating distribution that may have well-separated and sharp modes (i.e., mani-
folds) (Bengio et al., 2013b).

We propose to make another assumption that might suffice to bypass this multimodality
problem: the effectiveness of function approximation. As is typical in machine learning, we
postulate a rather large and flexible family of functions (such as deep neural nets) and then
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use all manner of tricks to pick a member from that combinatorially large family (i.e. to
train the neural net) that both fits observed data and generalizes to unseen data well.

In particular, the GSN approach presented in the next section relies on estimating the
transition operator of a Markov chain, e.g. P (xt|xt−1) or P (xt, ht|xt−1, ht−1). Because each
step of the Markov chain is generally local, these transition distributions will often include
only a very small number of important modes (those in the neighborhood of the previous
state). Hence the gradient of their partition function will be easy to approximate. For
example consider the denoising transitions studied by Bengio et al. (2013c) and illustrated
in Figure 1, where x̃t−1 is a stochastically corrupted version of xt−1 and we learn the
denoising distribution P (x|x̃). In the extreme case (studied empirically here) where P (x|x̃)
is approximated by a unimodal distribution, the only form of training that is required
involves function approximation (predicting the clean x from the corrupted x̃).

Although having the true P (x|x̃) turn out to be unimodal makes it easier to find an
appropriate family of models for it, unimodality is by no means required by the GSN
framework itself. One may construct a GSN using any multimodal model for output (e.g.
mixture of Gaussians, RBMs, NADE, etc.), provided that gradients for the parameters of
the model in question can be estimated (e.g. log-likelihood gradients).

The approach proposed here thus avoids the need for a poor approximation of the gradient
of the partition function in the inner loop of training, but still has the potential of capturing
very rich distributions by relying mostly on “function approximation”.

Besides the approach discussed here, there may well be other very different ways of
evading this problem of intractable marginalization, including approaches such as sum-
product networks (Poon and Domingos, 2011), which are based on learning a probability
function that has a tractable form by construction and yet is from a flexible enough family of
distributions. Another interesting direction of investigation that avoids the need for MCMC
and intractable partition functions is the variational auto-encoder (Kingma and Welling,
2014; Gregor et al., 2014; Mnih and Gregor, 2014; Rezende et al., 2014) and related directed
models (Bornschein and Bengio, 2014; Ozair and Bengio, 2014), which rely on learned
approximate inference.

3. Generative Stochastic Networks

In this section we work our way from denoising auto-encoders (DAE) to generative stochas-
tic networks (GSN). We illustrate the usefulness of denoising auto-encoders being applied
iteratively as a way to generate samples (and model a distribution). We introduce the
walkback training algorithm and show how it can facilitate the training.

We generalize the theory to GSNs, and provide a theorem that serves as a recipe as to
how they can be trained. We also reference a classic result from matrix perturbation theory
to analyze the behavior of GSNs in terms of their stationary distribution.

We then study how GSNs may be used to fill missing values and theoretical conditions
for estimating associated conditional samples. Finally, we connect GSNs to dependency
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nets and show how the GSN framework fixes one of the main problems with the theoretical
analysis of dependency nets and propose a particular way of sampling from them.

3.1 Denoising auto-encoders to model probability distributions

Assume the problem we face is to construct a model for some unknown data-generating
distribution P (X) given only examples of X drawn from that distribution. In many cases,
the unknown distribution P (X) is complicated, and modeling it directly can be difficult.

A recently proposed approach using denoising auto-encoders (DAE) transforms the dif-
ficult task of modeling P (X) into a supervised learning problem that may be much easier
to solve. The basic approach is as follows: given a clean example data point X from P (X),
we obtain a corrupted version X̃ by sampling from some corruption distribution C(X̃|X).
For example, we might take a clean image, X, and add random white noise to produce X̃.
We then use supervised learning methods to train a function to reconstruct, as accurately
as possible, any X from the data set given only a noisy version X̃. As shown in Figure 1,
the reconstruction distribution P (X|X̃) may often be much easier to learn than the data
distribution P (X), because P (X|X̃) tends to be dominated by a single or few major modes
(such as the roughly Gaussian shaped density in the figure). What we call a major mode
is one that is surrounded by a substantial amount of probability mass. There may be a
large number of minor modes that can be safely ignored in the context of approximating a
distribution, but the major modes should not be missed.

But how does learning the reconstruction distribution help us solve our original problem of
modeling P (X)? The two problems are clearly related, because if we knew everything about
P (X), then our knowledge of the C(X̃|X) that we chose would allow us to precisely specify
the optimal reconstruction function via Bayes rule: P (X|X̃) = 1

zC(X̃|X)P (X), where z is
a normalizing constant that does not depend on X. As one might hope, the relation is also
true in the opposite direction: once we pick a method of adding noise, C(X̃|X), knowledge
of the corresponding reconstruction distribution P (X|X̃) is sufficient to recover the density
of the data P (X).

In a recent paper, Alain and Bengio (2013) showed that denoising auto-encoders with
small Gaussian corruption and squared error loss estimated the score (derivative of the log-
density with respect to the input) of continuous observed random variables, thus implicitly
estimating P (X). The following Proposition 1 generalizes this to arbitrary variables (dis-
crete, continuous or both), arbitrary corruption (not necessarily asymptotically small), and
arbitrary loss function (so long as they can be seen as a log-likelihood).

Proposition 1 Let P (X) be the training distribution for which we only have empirical
samples. Let C(X̃|X) be the fixed corruption distribution and Pθ(X|X̃) be the trained re-
construction distribution (assumed to have sufficient capacity). We define a Markov chain
that starts at some X0 ∼ P (X) and then iteratively samples pairs of values (Xk, X̃k) by
alternatively sampling from C(X̃k|Xk) and from Pθ(Xk+1|X̃k).
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Let π be the stationary distribution of this Markov chain when we consider only the
sequence of values of {Xk}∞k=0.

If we assume that this Markov chain is irreducible, that its stationary distribution exists,
and if we assume that Pθ(X|X̃) is the distribution that minimizes optimally the following
expected loss

L =

∫
X̃

∫
X
P (X)C(X̃|X) logPθ(X|X̃)dXdX̃,

then we have that the stationary distribution π is the same as the training distribution P (X).

Proof If we look at the density P (X̃) =
∫
P (X)C(X̃|X)dX̃ that we get for X̃ by applying

C(X̃|X) to the training data from P (X), we can rewrite the loss as a KL divergence∫
X̃

∫
X
P (X)C(X̃|X) logPθ(X|X̃)dXdX̃ = −KL

(
P (X)C(X̃|X)‖Pθ(X|X̃)P (X̃)

)
+ cst

where the constant is independent of Pθ(X|X̃). This expression is maximized when we have
a Pθ(X|X̃) that satisfies

P (X)C(X̃|X) = Pθ(X|X̃)P (X̃). (1)

In that case, we have that

Pθ∗(X|X̃) =
P (X)C(X̃|X)

P (X̃
= P (X|X̃)

where P (X|X̃) represents the true conditional that we get through the usual application of
Bayes’ rule.

Now, when we sample iteratively between C(X̃k|Xk) and Pθ∗(Xk+1|X̃k) to get the Markov
chain illustrated above, we are performing Gibbs sampling. We understand what Gibbs
sampling does, and here we are sampling using the two possible ways of expressing the joint
from equation (1). This means that the stationary distribution π of the Markov chain will
have P (X) as marginal density when we look only at the Xk component of the chain.

Beyond proving that P (X|X̃) is sufficient to reconstruct the data density, Proposition 1
also demonstrates a method of sampling from a learned, parametrized model of the density,
Pθ(X), by running a Markov chain that alternately adds noise using C(X̃|X) and denoises
by sampling from the learned Pθ(X|X̃), which is trained to approximate the true P (X|X̃).

Before moving on, we should pause to make an important point clear. Alert readers
may have noticed that P (X|X̃) and P (X) can each be used to reconstruct the other given
knowledge of C(X̃|X). Further, if we assume that we have chosen a simple C(X̃|X) (say, a
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uniform Gaussian with a single width parameter), then P (X|X̃) and P (X) must both be
of approximately the same complexity. Put another way, we can never hope to combine
a simple C(X̃|X) and a simple P (X|X̃) to model a complex P (X). Nonetheless, it may
still be the case that P (X|X̃) is easier to model than P (X) due to reduced computational
complexity in computing or approximating the partition functions of the conditional dis-
tribution mapping corrupted input X̃ to the distribution of corresponding clean input X.
Indeed, because that conditional is going to be mostly assigning probability to X locally
around X̃, P (X|X̃) has only one or a few major modes, while P (X) can have a very large
number of them.

So where did the complexity go? P (X|X̃) has fewer major modes than P (X), but the
location of these modes depends on the value of X̃. It is precisely this mapping from X̃ →
mode location that allows us to trade a difficult density modeling problem for a supervised
function approximation problem that admits application of many of the usual supervised
learning tricks.

In the Gaussian noise example, what happens is that the tails of the Gaussian are expo-
nentially damping all but the modes that are near X, thus preserving the actual number
of modes but considerably changing the number of major modes. In the Appendix we also
present one alternative line of reasoning based on a corruption process C(X̃|X) that has
finite local support, thus completely removing the modes that are not in the neighborhood
of X. We argue that even with such a corruption process, the stationary distribution π will
match the original P (X), so long as one can still visit all the regions of interest through a
sequence of such local jumps.

Two potential issues with Proposition 1 are that 1) we are learning distribution Pθ(X|X̃)
based on experimental samples so it is only asymptotically minimizing the desired loss, and
2) we may not have enough capacity in our model to estimate Pθ(X|X̃) perfectly.

The issue is that, when running a Markov chain for infinitely long using a slightly imper-
fect Pθ(X|X̃), these small differences may affect the stationary distribution π and compound
over time. We are not allowed to “adjust” the Pθ(X|X̃) as the chain runs.

This is addressed by Theorem 4 cited in the later Section 3.4. That theorem gives us a
result about continuity, so that, for “well-behaved” cases, when Pθ(X|X̃) is close to P (X|X̃)
we must have that the resulting stationary distribution π is close to the original P (X).

3.2 Walkback algorithm for training denoising auto-encoders

In this section we describe the walkback algorithm which is very similar to the method
from Proposition 1, but helps training to converge faster. It differs in the training samples
that are used, and the fact that the solution is obtained through an iterative process. The
parameter update changes the corruption function, which changes the X̃ in the training
samples, which influences the next parameter update, and so on.
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Figure 2: Walkback samples get attracted by
spurious modes and contribute to removing
them. Segment of data manifold in violet and
example walkback path in red dotted line,
starting on the manifold and going towards
a spurious attractor. The vector field repre-
sents expected moves of the chain, for a uni-
modal P (X|X̃), with arrows from X̃ to X.
The name walkback is because this proce-
dure forces the model to learn to walk back
from the random walk it generates, towards
the X’s in the training set.

Sampling in high-dimensional spaces (like in experiments in Section 4.1) using a simple
local corruption process (such as Gaussian or salt-and-pepper noise) suggests that if the
corruption is too local, the DAE’s behavior far from the training examples can create spu-
rious modes in the regions insufficiently visited during training. More training iterations
or increasing the amount of corruption noise helps to substantially alleviate that problem,
but we discovered an even bigger boost by training the Markov chain to walk back towards
the training examples (see Figure 2). We exploit knowledge of the currently learned model
Pθ(X|X̃) to define the corruption, so as to pick values of X̃ that would be obtained by
following the generative chain: wherever the model would go if we sampled using the gener-
ative Markov chain starting at a training example X, we consider to be a kind of “negative
example” X̃ from which the auto-encoder should move away (and towards X). The spirit
of this procedure is thus very similar to the CD-k (Contrastive Divergence with k MCMC
steps) procedure proposed to train RBMs (Hinton, 1999; Hinton et al., 2006).

We start by defining the modified corruption process Ck(X̃|X) that samples k times
alternating between C(X̃|X) and the current Pθ(X|X̃).

We can express this recursively if we let C1(X̃|X) be our original C(X̃|X), and then define

Ck+1(X̃|X) =

∫
X̃′

∫
X′
C(X̃|X ′)Pθ(X ′|X̃ ′)Ck(X̃ ′|X)dX ′dX̃ ′ (2)

Note that this corruption distribution Ck(X̃|X) now involves the distribution Pθ(X|X̃) that
we are learning.

With the help of the above definition of Ck(X̃|X), we define the walkback corruption
process Cwb(X̃|X). To sample from Cwb, we first draw a k distributed according to some
distribution, e.g., a geometric distribution with parameter p = 0.5 and support on k ∈
{1, 2, . . .}), and then we sample according to the corresponding Ck(X̃|X). Other values than
p = 0.5 could be used, but we just want something convenient for that hyperparameter.
Conceptually, the corruption process Cwb means that, from a starting point X we apply
iteratively the original C and Pθ, and then we flip a coin to determine if we want to do it
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again. We re-apply until we lose the coin flip, and then this gives us a final value for the
sample X̃ based on X.

The walkback loss is given by

Lwb '
1

N

N∑
i=1

logPθ(X
(i)|X̃(i)) (3)

for samples (X(i), k(i), X̃(i)) drawn from X ∼ P (X), k ∼ Geometric(0.5) and X̃ ∼ Ck(X̃|X).
Minimizing this loss is an iterative process because the samples used in the empirical ex-
pression depend on the parameter θ to be learned. This iterated minimization is what we
call the walkback algorithm. Samples are generated with the current parameter value θt,
and then the parameters are modified to reduce the loss and yield θt+1. We repeat until the
process stabilizes. In practical applications, we do not have infinite-capacity models and we
do not have a guarantee that the walkback algorithm should converge to some θ∗.

3.2.1 Reparametrization Trick

Note that we do not need to analytically marginalize over the latent variables involved: we
can back-propagate through the chain, considering it like a recurrent neural network with
noise (the corruption) injected in it. This is an instance of the so-called reparametrization
trick, already proposed in (Bengio, 2013; Kingma, 2013; Kingma and Welling, 2014). The
idea is that we can consider sampling from a random variable conditionally on others (such
as X̃ given X) as equivalent to applying a deterministic function taking as argument the
conditioning variables as well as some i.i.d. noise sources. This view is particularly useful for
the more general GSNs introduced later, in which we typically choose the latent variables
to be continuous, i.e., allowing to backprop through their sampling steps when exploiting
the reparametrization trick.

3.2.2 Equivalence of the Walkback Procedure

With the walkback algorithm, one can also decide to include or not in the loss function all
the intermediate reconstruction distributions through which the trajectories pass. That is,
starting from some X0, we sample

X0 ∼ P (X) X̃0 ∼ C(X̃0|X0),

X1 ∼ Pθ(X1|X̃0) X̃1 ∼ C(X̃1|X1)

X2 ∼ Pθ(X2|X̃1) X̃2 ∼ C(X̃2|X2)

...
...

Xk−1 ∼ Pθ(Xk−1|X̃k−2) X̃k−1 ∼ C(X̃k−1|Xk−1)

and we use all the pairs (X, X̃k) as training data for the walkback loss at equation (3).

The following proposition looks very similar to Proposition 1, but it uses the walkback
corruption instead of the original corruption C(X̃|X). It is also an iterated process through
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which the current value of the parameter θt sets the loss function that will be minimized
by the updated θt+1.

Proposition 2 Let P (X) be the training distribution for which we only have empirical
samples. Let π(X) be the implicitly defined asymptotic distribution of the Markov chain
alternating sampling from Pθ(X|X̃) and C(X̃|X), where C is the original local corruption
process.

If we assume that Pθ(X|X̃) has sufficient capacity and that the walkback algorithm con-
verges (in terms of being stable in the updates to Pθ(X|X̃)), then π(x) = P (X).

That is, the Markov chain defined by alternating Pθ(X|X̃) and C(X̃|X) gives us samples
that are drawn from the same distribution as the training data.

Proof

Consider that during training, we produce a sequence of estimators Pθt(X|X̃) where Pθt
corresponds to the t-th training iteration (modifying the parameters after each iteration).
With the walkback algorithm, Pθt−1 is used to obtain the corrupted samples X̃ from which
the next model Pθt−1 is produced.

If training converges in terms of θt → θ∗, it means that we have found a value of Pθ∗(X|X̃)
such that

θ∗ = argminθ
1

N

N∑
i=1

logPθ(X
(i)|X̃(i))

for samples (X(i), X̃(i)) drawn from X ∼ P (X), X̃ ∼ Cwb(X̃|X).

By Proposition 1, we know that, regardless of the the corruption Cany(X̃|X) used, when
we have a Pθ(X|X̃) that minimizes optimally the loss∫

X̃

∫
X
P (X)Cany(X̃|X) logPθ(X|X̃)dXdX̃

then we can recover P (X) by alternating between Cany(X̃|X) and Pθ(X|X̃).

Therefore, once the model is trained with walkback, the stationary distribution π of the
Markov chain that it creates has the same distribution P (X) as the training data.

Hence if we alternate between the original corruption C(X̃|X) and the walkback solution
Pθ∗(X|X̃), then the stationary distribution with respect to X is also P (X).

Note that this proposition applies regardless of the value of geometric distribution used
to determine how many steps of corruption will be used. It applies whether we keep all the
samples along to the way, or only the one at the last step. It applies regardless of if we use
a geometric distribution to determine which Ck to select, or any other type of distribution.

A consequence is that the walkback training algorithm estimates the same distribution
as the original denoising algorithm, but may do it more efficiently (as we observe in the
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experiments), by exploring the space of corruptions in a way that spends more time where
it most helps the model to kill off spurious modes.

The Markov chain that we get with walkback should also generally mix faster, be less
susceptible to getting stuck in bad modes, but it will require a Pθ∗(X|X̃) with more capacity
than originally. This is because Pθ∗(X|X̃) is now less local, covering the values of the initial
X that could have given rise to the X̃ resulting from several steps of the Markov chain.

3.3 Walkbacks with individual scaling factors to handle uncertainty

The use of the proposed walkback training procedure is effective in suppressing the spurious
modes in the learned data distribution. Although the convergence is guaranteed asymp-
totically, in practice, given limited model capacity and training data, it has been observed
that the more walkbacks in training, the more difficult it is to maximize Pθ(X|X̃). This
is simply because more and more noise is added in this procedure, resulting in X̃ that is
further away from X, therefore a potentially more complicated reconstruction distribution.

In other words, Pθ(X|X̃) needs to have the capacity to model increasingly complex re-
construction distributions. As a result of training, a simple, or usually unimodal Pθ(X|X̃)
is most likely to learn a distribution with a larger uncertainty than the one learned without
walkbacks in order to distribute some probability mass to the more complicated and mul-
timodal distributions implied by the walkback training procedure. One possible solution
to this problem is to use a multimodal reconstruction distribution such as in Ozair et al.
(2014), Larochelle and Murray (2011), or Dinh et al. (2015). We propose here another
solution, which can be combined with the above, that consists in allowing a different level
of entropy for different steps of the walkback.

3.3.1 Scaling trick in binary X

In the case of binary X, the most common choice of the reconstruction distribution is the
factorized Multinoulli distribution where Pθ(X|X̃) =

∏d
i=1 Pθ(X

i|X̃) and d is the dimen-
sionality of X. Each factor Pθ(X

i|X̃) is modeled by a Bernoulli distribution that has its
parameter pi = sigmoid(fi(X̃)) where fi(·) is a general nonlinear transformation realized
by a neural network. We propose to use a different scaling factor αk for different walkback
steps, resulting in a new parameterization pki = sigmoid(αkfi(X̃)) for the k-th walkback
step, with αk > 0 being learned. αk effectively scales the pre-activation of the sigmoid
function according to the uncertainty or entropy associated with different walkback steps.
Naturally, later reconstructions in the walkback sequence are less accurate because more
noise has been injected. Hence, given the ki-th and kj-th walkback steps that satisfy ki < kj ,
the learning will tend to result in αki > αkj because larger αk correspond to less entropy.

3.3.2 Scaling trick in real-valued X

In the case of real-valued X, the most common choice of Pθ(X|X̃) is the factorized Gaussian.
In particular, each factor Pθ(X

i|X̃) is modeled by a Normal distribution with its parameters
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µi and σi. Using the same idea of learning separate scaling factors, we can parametrize it
as Pθ(X

i|X̃) = N (µi, αkσ
2
i ) for the k-th walkback step. αk is positive and also learned.

However, Given the ki-th and kj-th walkback steps that satisfy ki < kj , the learning will
result αki < αkj , since in this case, larger αk indicates larger entropy.

3.3.3 Sampling with the learned scaling factors

After learning the scaling factors αk for k different walkback steps, the sampling is straight-
forward. One noticeable difference is that we have learned k Markov transition operators.
Although, asymptotically all k Markov chains generate the same distribution of X, in prac-
tice, they result in different distributions because of the different αk learned. In fact, using
α1 results the samples that are sharper and more faithful to the data distribution. We
verify the effect of learning the scaling factor further in the experimental section.

3.4 Extending the denoising auto-encoder to more general GSNs

The denoising auto-encoder Markov chain is defined by X̃t ∼ C(X̃|Xt) andXt+1 ∼ Pθ(X|X̃t),
where Xt alone can serve as the state of the chain. The GSN framework generalizes the
DAE in two ways:

1. the “corruption” function is not fixed anymore but a parametrized function that can
be learned and corresponds to a “hidden” state (so we write the output of this function
H rather than X̃); and

2. that intermediate variable H is now considered part of the state of the Markov chain,
i.e., its value of Ht at step t of the chain depends not just on the previous visible Xt−1
but also on the previous state Ht−1.

For this purpose, we define the Markov chain associated with a GSN in terms of a visible
Xt and a latent variable Ht as state variables, of the form

Ht+1 ∼ Pθ1(H|Ht, Xt)

Xt+1 ∼ Pθ2(X|Ht+1).

X2X0 X1

H
0

H
1

H2

This definition makes denoising auto-encoders a special case of GSNs. Note that, given that
the distribution of Ht+1 may depend on a previous value of Ht, we find ourselves with an
extra H0 variable added at the beginning of the chain. This H0 complicates things when
it comes to training, but when we are in a sampling regime we can simply wait a sufficient
number of steps to burn in.
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3.4.1 Main result about GSNs

The next theoretical results give conditions for making the stationary distributions of the
above Markov chain match a target data-generating distribution. It basically says that,
in order to estimate the data-generating distribution P (X0), it is enough to achieve two
conditions.

The first condition is similar to the one we obtain when minimizing denoising reconstruc-
tion error, i.e., we must make sure that the reconstruction distribution P (X1|H1) approaches
the conditional distribution P (X0|H1), i.e., the X0’s that could have given rise to H1.

The second condition is novel and regards the initial state H0 of the chain, which in-
fluences H1. It says that P (H0|X0) must match P (H1|X0). One way to achieve that is
to initialize H0 associated with a training example X0 with the previous value of H1 that
was sampled when example X0 was processed. In the graphical model in the statement of
Theorem 3, note how the arc relating X0 and H0 goes in the X0 → H0 direction, which is
different from the way we would sample from the GSN (graphical model above), where we
have H0 → X0. Indeed, during training, X0 is given, forcing it to have the data-generating
distribution.

Note that Theorem 3 is there to provide us with a guarantee about what happens when
those two conditions are satisfied. It is not originally meant to describe a training method.

In section 3.4.3 we explain how to these conditions could be approximately achieved.

Theorem 3 Let (Ht, Xt)
∞
t=0 be the Markov chain defined by the following graphical model.

X2X0 X1

H
0

H
1

H2

If we assume that the chain has a stationary distribution πH,X , and that for every value of
(x, h) we have that

• all the P (Xt = x|Ht = h) = g(x|h) share the same density for t ≥ 1

• all the P (Ht+1 = h|Ht = h′, Xt = x) = f(h|h′, x) shared the same density for t ≥ 0

• P (H0 = h|X0 = x) = P (H1 = h|X0 = x)

• P (X1 = x|H1 = h) = P (X0 = x|H1 = h)

then for every value of (x, h) we get that

• P (X0 = x|H0 = h) = g(x|h) holds, which is something that was assumed only for
t ≥ 1
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• P (Xt = x,Ht = h) = P (X0 = x,H0 = h) for all t ≥ 0

• the stationary distribution πH,X has a marginal distribution πX such that π (x) =
P (X0 = x).

Those conclusions show that our Markov chain has the property that its samples in X are
drawn from the same distribution as X0.

Proof The proof hinges on a few manipulations done with the first variables to show that
P (Xt = x|Ht = h) = g(x|h), which is assumed for t ≥ 1, also holds for t = 0.

For all h we have that

P (H0 = h) =

∫
P (H0 = h|X0 = x)P (X0 = x)dx

=

∫
P (H1 = h|X0 = x)P (X0 = x)dx (by hypothesis)

= P (H1 = h).

The equality in distribution between (X1, H1) and (X0, H0) is obtained with

P (X1 = x,H1 = h) = P (X1 = x|H1 = h)P (H1 = h)

= P (X0 = x|H1 = h)P (H1 = h) (by hypothesis)

= P (X0 = x,H1 = h)

= P (H1 = h|X0 = x)P (X0 = x)

= P (H0 = h|X0 = x)P (X0 = x) (by hypothesis)

= P (X0 = x,H0 = h).

Then we can use this to conclude that

P (X0 = x,H0 = h) = P (X1 = x,H1 = h)

=⇒ P (X0 = x|H0 = h) = P (X1 = x|H1 = h) = g(x|h)

so, despite the arrow in the graphical model being turned the other way, we have that the
density of P (X0 = x|H0 = h) is the same as for all other P (Xt = x|Ht = h) with t ≥ 1.

Now, since the distribution of H1 is the same as the distribution of H0, and the transition
probability P (H1 = h|H0 = h′) is entirely defined by the (f, g) densities which are found
at every step for all t ≥ 0, then we know that (X2, H2) will have the same distribution as
(X1, H1). To make this point more explicitly,

P (H1 = h|H0 = h′) =

∫
P (H1 = h|H0 = h′, X0 = x)P (X0 = x|H0 = h′)dx

=

∫
f(h|h′, x)g(x|h′)dx

=

∫
P (H2 = h|H1 = h′, X1 = x)P (X1 = x|H1 = h′)dx

= P (H2 = h|H1 = h′)
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This also holds for P (H3|H2) and for all subsequent P (Ht+1|Ht). This relies on the crucial
step where we demonstrate that P (X0 = x|H0 = h) = g(x|h). Once this was shown, then
we know that we are using the same transitions expressed in terms of (f, g) at every step.

Since the distribution of H0 was shown above to be the same as the distribution of H1,
this forms a recursive argument that shows that all the Ht are equal in distribution to H0.
Because g(x|h) describes every P (Xt = x|Ht = h), we have that all the joints (Xt, Ht) are
equal in distribution to (X0, H0).

This implies that the stationary distribution πX,H is the same as that of (X0, H0). Their
marginals with respect to X are thus the same.

Intuitively, the proof of Theorem 3 achieves its objective by forcing all the (Ht, Xt) pairs
to share the same joint distribution, thus making the marginal over Xt as t→∞ (i.e. the
stationary distribution of the chain π) be the same as P (X0), i.e., the data distribution. On
the other hand, because it is a Markov chain, its stationary distribution does not depend
on the initial conditions, making the model generate from an estimator of P (X0) for any
initial condition.

To apply Theorem 3 in a context where we use experimental data to learn a model, we
would like to have certain guarantees concerning the robustness of the stationary density
πX . When a model lacks capacity, or when it has seen only a finite number of training
examples, that model can be viewed as a perturbed version of the exact quantities found
in the statement of Theorem 3.

3.4.2 A note about consistency

A good overview of results from perturbation theory discussing stationary distributions in
finite state Markov chains can be found in (Cho et al., 2000). We reference here only one
of those results.

Theorem 4 Adapted from (Schweitzer, 1968)

Let K be the transition matrix of a finite state, irreducible, homogeneous Markov chain.
Let π be its stationary distribution vector so that Kπ = π. Let A = I−K and Z = (A+ C)−1

where C is the square matrix whose columns all contain π. Then, if K̃ is any transition
matrix (that also satisfies the irreducible and homogeneous conditions) with stationary dis-
tribution π̃, we have that

‖π − π̃‖1 ≤ ‖Z‖∞
∥∥∥K − K̃∥∥∥

∞
.

This theorem covers the case of discrete data by showing how the stationary distribution
is not disturbed by a great amount when the transition probabilities that we learn are
close to their correct values. We are talking here about the transition between steps of the
chain (X0, H0), (X1, H1), . . . , (Xt, Ht), which are defined in Theorem 3 through the (f, g)
densities.
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3.4.3 Training criterion for GSNs

So far we avoided discussing the training criterion for a GSN. Various alternatives exist,
but this analysis is for future work. Right now Theorem 3 suggests the following rules :

• Define g(x|h) = P (X1 = x|H1 = h), i.e., the decoder, to be the estimator for
P (X0 = x|H1 = h), e.g. by training an estimator of this conditional distribution
from the samples (X0, H1), with reconstruction likelihood, logP (X1 = x0|H1), as
this would asymptotically achieve the condition P (X0|H1) = P (X1|H1). To see that
this is true, consider the following.

We sampleX0 from P (X0) (the data-generating distribution) andH1 from P (H1|H0, X0).
Refer to one of the next bullet points for an explanation about how to get values for
H0 to be used when sampling from P (H1|H0, X0) here. This creates a joint distri-
bution over (X0, H1) that has P (X0|H1) as a derived conditional. Then we train the
parameters of a model Pθ(X1|H1) to maximize the log-likelihood

Ex0∼P (X0),h1∼P (H1|x0)[logPθ(X1 = x0|h1)]

=

∫
x0,h1

P (x0, h1) logPθ(X1 = x0|H1 = h1)dx0dh1

=

∫
h1

P (h1)

∫
x0

P (X0 = x0|H1 = h1) logPθ(X1 = x0|h1)dx0dh1

=− EH1 [KL(P (X0|H1)||Pθ(X1|H1))] + const. (4)

where the constant does not depend on θ, and thus the log-likelihood is maximized
when

Pθ(X1 = x|H1 = h) = P (X0 = x|H1 = h).

• Pick the transition distribution f(h|h′, x) to be useful, i.e., training it towards the
same objective, i.e., sampling an h′ that makes it easy to reconstruct x. One can
think of f(h|h′, x) as the encoder, except that it has a state which depends on its
previous value in the chain.

• To approach the condition P (H0|X0) = P (H1|X0), one interesting possibility is the
following. For each X0 in the training set, iteratively sample H1|(H0, X0) and substi-
tute the value of H1 as the updated value of H0. Repeat until you have achieved a
kind of “burn in”. Note that, after the training is completed, when we use the chain
for sampling, the samples that we get from its stationary distribution do not depend
on H0. Another option is to store the value of H1 that was sampled for the particular
training example x0, and re-use it as the initial H0 the next time that x0 is presented
during training. These techniques of substituting H1 into H0 are only required during
training. In our experiments, we actually found that a fixed H0 = 0 worked as well,
so we have used this simpler approach in the reported experiments.

• The rest of the chain for t ≥ 1 is defined in terms of (f, g).
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3.5 Random variable as deterministic function of noise

There several equivalent ways of expressing a GSN. One of the interesting formulations is
to use deterministic functions of random variables to express the densities (f, g) used in
Theorem 3. With that approach, we define Ht+1 = φθ1(Xt, Zt, Ht) for some independent
noise source Zt, and we insist that Xt cannot be recovered exactly from Ht+1, to avoid a
situation in which the Markov chain would not be ergodic. The advantage of that formu-
lation is that one can directly back-propagate the reconstruction log-likelihood logP (X1 =
x0|H1 = f(X0, Z0, H0)) into all the parameters of f and g, using the reparametrization
trick discussed above in Section 3.2.1. This method is described in (Williams, 1992).

In the setting described at the beginning of Section 3, the function playing the role of the
“encoder” was fixed for the purpose of the theorem, and we showed that learning only the
“decoder” part (but a sufficiently expressive one) sufficed. In this setting we are learning
both, which can cause certain broken behavior.

One problem would be if the created Markov chain failed to converge to a stationary
distribution. Another such problem could be that the function φ(Xt, Zt, Ht) learned would
try to ignore the noise Zt, or not make the best use out of it. In that case, the reconstruction
distribution would simply converge to a Dirac at the input X. This is the analogue of the
constraint on auto-encoders that is needed to prevent them from learning the identity
function. Here, we must design the family from which f and g are learned such that when
the noise Z is injected, there are always several possible values of X that could have been
the correct original input.

Another extreme case to think about is when φ(X,Z,H) is overwhelmed by the noise
and has lost all information about X. In that case the theorems are still applicable while
giving uninteresting results: the learner must capture the full distribution of X in Pθ2(X|H)
because the latter is now equivalent to Pθ2(X), since φ(X,Z,H) no longer contains informa-
tion about X. This illustrates that when the noise is large, the reconstruction distribution
(parametrized by θ2) will need to have the expressive power to represent multiple modes.
Otherwise, the reconstruction will tend to capture an average output, which would visually
look like a fuzzy combination of actual modes. In the experiments performed here, we have
only considered unimodal reconstruction distributions (with factorized outputs), because we
expect that even if P (X|H) is not unimodal, it would be dominated by a single mode when
the noise level is small. However, future work should investigate multimodal alternatives.

A related element to keep in mind is that one should pick the family of conditional
distributions Pθ2(X|H) so that one can sample from them and one can easily train them
when given (X,H) pairs, e.g., by maximum likelihood.

3.6 Handling missing inputs or structured output

In general, a simple way to deal with missing inputs is to clamp the observed inputs and
then run the Markov chain with the constraint that the observed inputs are fixed and
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not resampled at each time step, whereas the unobserved inputs are resampled each time,
conditioned on the clamped inputs.

In the context of the GSN described in Section 3.4 using the two distributions

Ht+1 ∼ Pθ1(H|Ht, Xt)

Xt+1 ∼ Pθ2(X|Ht+1)

we need to make some adjustments to Pθ2(X|Ht+1) to be able to sample X conditioned
on some of its components being clamped. We also focus on the case where there are no
connections between the Ht → Ht+1. That is, we study the more basic situation where we
train an denoising auto-encoder instead of a GSN that has connections between the hidden
units.

Let S be a set of values that X can take. For example, S can be a subset of the units
of X that are fixed to given values. We can talk about clamping X ∈ S, or just “clamping
S” when the meaning is clear. In order to sample from a distribution with clamped S, we
need to be able to sample from

Ht+1 ∼ Pθ1(H|Xt)

Xt+1 ∼ Pθ2(X|Ht+1, X ∈ S).

This notation might be strange at first, but it’s as legitimate as conditioning on 0 < X when
sampling from any general distribution. It involves only a renormalization of the resulting
distribution Pθ2(X|Ht+1, X ∈ S).

In a general scenario with two conditional distributions (Pθ1 , Pθ2) playing the roles of
f(x|h) and g(h|x), i.e. the encoder and decoder, we can make certain basic assumptions
so that the asymptotic distributions of (Xt, Ht) and (Xt, Ht+1) both exist. There is no
reason to think that those two distributions are the same, and it is trivial to construct
counter-examples where they differ greatly.

However, when we train a DAE with infinite capacity, Proposition 1 shows that the opti-
mal solution leads to those two joints being the same. That is, the two trained conditional
distributions f(h|x) and g(x|h) are mutually compatible. They form a single joint distribu-
tion over (X,H). We can sample from it by the usual Gibbs sampling procedure. Moreover,
the marginal distribution over X that we obtain will match that of the training data. This
is the motivation for Proposition 1.

Knowing that Gibbs sampling produces the desired joint distribution over (X,H), we
can now see how it would be possible to sample from (X,H)|(X ∈ S) if we are able to
sample from f(h|x) and g(x|h, x ∈ S). Note that it might be very hard to sample from
g(x|h, x ∈ S), depending on the particular model used. We are not making any assumption
on the factorization of g(x|h), much like we are not making any assumption on the particular
representation (or implementation) of g(x|h).

In section 3.4.2 we address a valid concern about the possibility that, in a practical
setting, we might not train g(x|h) to achieve an exact match the density of X|H. That
g(x|h) may be very close to the optimum, but it might not be able to achieve it due to
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its finite capacity or its particular parametrization. What does that imply about whether
the asymptotic distribution of the Markov chain obtained experimentally compared to the
exact joint (X,H) ?

We deal with this issue in the same way as we dealt with it when it arose in the context
of Theorem 3. The best that we can do is to refer to Theorem 4 and rely on an argument
made in the context of discrete states that would closely approximate our situation (which
is in either discrete or continuous space).

Our Markov chain is homogeneous because it does not change with time. It can be made
irreducible my imposing very light constraints on f(h|x) so that f(h|x) > 0 for all (x, h).
This happens automatically when we take f(h|x) to be additive Gaussian noise (with fixed
parameters) and we train only g(x|h). In that case, the optimum g(x|h) will assign non-zero
probability weight on all the values of x.

We cannot guarantee that a non-optimal g(x|h) will not be broken in some way, but we
can often get g(x|h) to be non-zero by selecting a parametrized model that cannot assign
a probability of exactly zero to an x. Finally, to use Theorem 4 we need to have that the
constant ‖Z‖∞ from that Theorem 4 to be non-zero. This is a bit more complicated to
enforce, but it is something that we will get if the transition matrix stays away from the
identity matrix. That constant is zero when the chain is close to being degenerate.

Theorem 4 says that, with those conditions verified, we have that an arbitrarily good
g(x|h) will lead to an arbitrarily good approximation of the exact joint (X,H).

Now that we know that this approach is grounded in sound theory, it is certainly reason-
able to try it in experimental settings in which we are not satisfying all the requirements,
and see if the results are useful or not. We would refer the reader to our experiment shown
in Figure 6 where we clamp certain units and resample the rest.

To further understand the conditions for obtaining the appropriate conditional distribu-
tions on some of the visible inputs when others are clamped, we consider below sufficient and
necessary conditions for making the stationary distribution of the clamped chain correspond
to the normalized distribution (over the allowed values) of the unclamped chain.

Proposition 5 Let f(h|x) and g(x|h) be the encoder and decoder functions such that they
are mutually compatible (i.e. they represent a single joint distribution for which we can
sample using Gibbs sampling). Let π(X,H) denote that joint.

Note that this happens when we minimize

EX
[
log

∫
g(x|h)f(h|x)dh

]
or when we minimize the walkback loss (see Proposition 2).

Let S ⊆ X be a set of values that X can take (e.g. some components of X can be assigned
certain fixed values), and such that P(X ∈ S) > 0. Let π(x|x ∈ S) denote the conditional
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distribution of π(X,H) on which we marginalize over H and condition on X ∈ S. That is,

π(x|x ∈ S) ∝ π(x)I(x ∈ S) =

∫
h π(x, h)I(x ∈ S)dh∫

x

∫
h π(x, h)I(x ∈ S)dhdx

.

Let g(x|h, x ∈ S) denote a restriction of the decoder function that puts probability weight
only on the values of x ∈ S. That is,

g(x|h, x ∈ S) ∝ g(x|h)I(x ∈ S).

If we start from some x0 ∈ S and we run a Markov chain by alternating between f(h|x)
and g(x|h, x ∈ S), then the asymptotic distribution of that chain with respect to X will be
the same as π(x|x ∈ S).

3.7 General conditions for clamping inputs

In the previous section we gave a sufficient condition for “clamping S” to work in the
context of a Markov chain based on an encoder distribution with density f(h|x) and a
decoder distribution with density g(x|h).

In this section, we will give a sufficient and necessary condition on the sufficient and
necessary conditions for handling missing inputs by clamping observed inputs.

Proposition 6 Assume we have an ergodic Markov chain with transition operators having
density f(h|x) and g(x|h). Its unique stationary distribution is π(x, h) over X × H which
satisfies: ∫

X×H
π(x, h)f(h′|x)g(x′|h′)dxdh = π(x′, h′).

Assume that we start from (X0, H0) = (x0, h0) where x0 ∈ S, S ⊆ X (S can be con-
sidered as a constraint over X) and we sample (Xt+1, Ht+1) by first sampling Ht+1 with
encoder f(Ht+1|Xt) and then sampling Xt+1 with decoder g(Xt+1|Ht+1, Xt+1 ∈ S), the new
stationary distribution we reach is πS(x, h).

Then a sufficient condition for

πS(x) = π(x|x ∈ S)

is for π(x|x ∈ S) to satisfy∫
S
π(x|x ∈ S)f(h′|x)dx = π(h′|x ∈ S) (5)

where π(x|x ∈ S) and π(h′|x ∈ S) are conditional distributions

π(x|x ∈ S) =
π(x)∫

S π(x′)dx′
, π(h′|x ∈ S) =

∫
S π(x, h′)dx∫

S×H π(x, h)dxdh
.
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Proof Based on the assumption that the chain is ergodic, we have that πS(X,H) is the
unique distribution satisfying∫

S×H
πS(x, h)f(h′|x)g(x′|h′, x′ ∈ S)dxdh = πS(x′, h′). (6)

Now let us check if π(x, h|x ∈ S) satisfies the equation above.

The Markov chain described in the statement of the Theorem is defined by looking at
the slices (Xt, Ht). This means that, by construction, the conditional density π(x|h) is just
given by g(x|h).

This relation still holds even if we put the S constraint on x

g(x′|h′, x′ ∈ S) = π(x′|h′, x′ ∈ S).

Now if we substitute πS(x, h) by π(x, h|x ∈ S) in Equation 6, the left side of Equation 6
becomes ∫

S×H
π(x, h|x ∈ S)f(h′|x)π(x′|h′, x′ ∈ S)dxdh

= π(x′|h′, x′ ∈ S)

∫
S

(

∫
H
π(x, h|x ∈ S)dh)f(h′|x)dx

= π(x′|h′, x′ ∈ S)

∫
S
π(x|x ∈ S)f(h′|x)dx

= π(x′|h′, x′ ∈ S)π(h′|x ∈ S) (using Equation 5)

= π(x′|h′, x′ ∈ S)π(h′|x′ ∈ S)

= π(x′, h′|x′ ∈ S).

This shows that π(x, h|x ∈ S) satisfies Equation 6. Due to the ergodicity of the chain, the
distribution πS(x, h) that satisfies Equation 6 is unique, so we have πS(x, h) = π(x, h|x ∈ S).
By marginalizing over h we get

πS(x) = π(x|x ∈ S).

Proposition 6 gives a sufficient condition for dealing missing inputs by clamping observed
inputs. Note that this condition is weaker than the mutually compatible condition discussed
in Section 3.6. Furthermore, under certain circumstances, this sufficient condition becomes
necessary, and we have the following proposition :

Proposition 7 Assume that the Markov chain in Proposition 6 has finite discrete state
space for both X and H. The condition in Equation 5 in Proposition 6 becomes a necessary
condition when all discrete conditional distributions g(x|h, x ∈ S) are linear independent.

Proof We follow the same notions in Proposition 6 and now we have πS(x) = π(x|x ∈
S). Because πS(x) is the marginal of the stationary distribution reached by alternatively
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sampling with encoder f(H|X) and decoder g(X|H,X ∈ S), we have that π(x|x ∈ S)
satisfies ∫

S
π(x|x ∈ S)(

∫
H
f(h′|x)π(x′|h′, x′ ∈ S)dh′)dx = π(x′|x′ ∈ S)

which is a direct conclusion from Equation 6 when considering the fact that πS(x) = π(x|x ∈
S) and g(x′|h′, x′ ∈ S) = π(x′|h′, x′ ∈ S). If we re-arrange the integral of equation above,
we get: ∫

H
π(x′|h′, x′ ∈ S)(

∫
S
π(x|x ∈ S)f(h′|x)dx)dh′ = π(x′|x′ ∈ S). (7)

Note that
∫
S π(x|x ∈ S)f(h′|x)dx is the same as the left side of Equation 5 in Proposition

6 and it can be seen as some function F (h′) satisfying
∫
H F (h′)dh′ = 1. Because we

have considered a GSN over a finite discrete state space X = {x1, · · · , xN} and H =
{h1, · · · , hM}, the integral in Equation 7 becomes the linear matrix equation

G · F = Px,

where G(i, j) = g(x′i|h′j , x′ ∈ S) = π(x′i|h′j , x′ ∈ S), F(i) = F (h′i) and Px(i) = π(x′i|x′ ∈ S).
In other word, F is a solution of the linear matrix equation

G · Z = Px.

From the definition of G and Px, it is obvious that Ph is also a solution of this linear
matrix equation, if Ph(i) = π(h′i|x′ ∈ S). Because all discrete conditional distributions
g(x|h, x ∈ S) are linear independent, which means that all the column vectors of G are
linear independent, then this linear matrix equation has no more than one solution. Since
Ph is the solution, we have F = Ph, equivalently in integral form

F (h′) =

∫
S
π(x|x ∈ S)f(h′|x)dx = π(h′|x ∈ S)

which is the condition Equation 5 in Proposition 6.

Proposition 7 says that at least in discrete finite state space, if the g(x|h, x ∈ S) satisfies
some reasonable condition like linear independence, then along with Proposition 6, the
condition in Equation 5 is the necessary and sufficient condition for handling missing inputs
by clamping the observed part for at least one subset S. If we want this result to hold for
any subset S, we have the following proposition:

Proposition 8 If the condition in Equation 5 in Proposition 6 holds for any subset of S
that S ⊆ X , then we have

f(h′|x) = π(h′|x)

In other words, f(h|x) and g(x|h) are two conditional distributions marginalized from a
single joint distribution π(x, h).

Proof Because S can be any subset of X , of course that S can be a set which only has
one element x0, i.e., S = {x0}. Now the condition in Equation 5 in Proposition 6 becomes

1 · f(h′|x = x0) = π(h′|x = x0).
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Because x0 can be an arbitrary element in X , we have

f(h′|x) = π(h′|x), or f(h|x) = π(h|x).

Since from Proposition 6 we already know that g(x|h) is π(x|h), we have that f(h|x) and
g(x|h) are mutually compatible, that is, they are two conditional distributions obtained by
normalization from a single joint distribution π(x, h).

According to Proposition 8, if condition in Equation 5 holds for any subset S, then f(h|x)
and g(x|h) must be mutually compatible to the single joint distribution π(x, h).

3.8 Dependency Networks as GSNs

Dependency networks (Heckerman et al., 2000) are models in which one estimates condi-
tionals Pi(xi|x−i), where x−i denotes x \ xi, i.e., the set of variables other than the i-th
one, xi. Note that each Pi may be parametrized separately, thus not guaranteeing that
there exists a joint of which they are the conditionals. Instead of the ordered pseudo-
Gibbs sampler defined in Heckerman et al. (2000), which resamples each variable xi in
the order x1, x2, . . ., we can view dependency networks in the GSN framework by defin-
ing a proper Markov chain in which at each step one randomly chooses which variable to
resample. The corruption process therefore just consists of H = f(X,Z) = X−s where
X−s is the complement of Xs, with s a randomly chosen subset of elements of X (possibly
constrained to be of size 1). Furthermore, we parametrize the reconstruction distribu-
tion as Pθ2(X = x|H) = δx−s=X−sPθ2,s(Xs = xs|x−s) where the estimated conditionals
Pθ2,s(Xs = xs|x−s) are not constrained to be consistent conditionals of some joint distribu-
tion over all of X.

Proposition 9 If the above GSN Markov chain has a stationary distribution, then the
dependency network defines a joint distribution (which is that stationary distribution), which
does not have to be known in closed form. Furthermore, if the conditionals P (Xs|X−s) are
consistent estimators of the ground truth conditionals, then that stationary distribution is a
consistent estimator of the ground truth joint distribution.

The proposition can be proven by immediate application of Proposition 1 with the above
particular GSN model definitions.

This joint stationary distribution can exist even if the conditionals are not consistent.
To show that, assume that some choice of (possibly inconsistent) conditionals gives rise to
a stationary distribution π. Now let us consider the set of all conditionals (not necessarily
consistent) that could have given rise to that π. Clearly, the conditionals derived from π
by Bayes rule are part of that set, but there are infinitely many others (a simple counting
argument shows that the fixed point equation of π introduces fewer constraints than the
number of degrees of freedom that define the conditionals). To better understand why the
ordered pseudo-Gibbs chain does not benefit from the same properties, we can consider an
extended case by adding an extra component of the state X, being the index of the next
variable to resample. In that case, the Markov chain associated with the ordered pseudo-
Gibbs procedure would be periodic, thus violating the ergodicity assumption of the theorem.
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However, by introducing randomness in the choice of which variable(s) to resample next,
we obtain aperiodicity and ergodicity, yielding as stationary distribution a mixture over all
possible resampling orders. These results also show in a novel way (see e.g. Hyvärinen
(2006) for earlier results) that training by pseudolikelihood or generalized pseudolikelihood
provides a consistent estimator of the associated joint, so long as the GSN Markov chain
defined above is ergodic. This result can be applied to show that the multi-prediction
deep Boltzmann machine (MP-DBM) training procedure introduced by Goodfellow et al.
(2013) also corresponds to a GSN. This has been exploited in order to obtain much better
samples using the associated GSN Markov chain than by sampling from the corresponding
DBM (Goodfellow et al., 2013). Another interesting conclusion that one can draw from that
paper and its GSN interpretation is that state-of-the-art classification error can thereby be
obtained: 0.91% on MNIST without fine-tuning (best comparable previous DBM results was
well above 1%) and 10.6% on permutation-invariant NORB (best previous DBM results was
10.8%).

4. Experimental results

The theoretical results on Generative Stochastic Networks (GSNs) open for exploration a
large class of possible parametrizations and training procedures which share the property
that they can capture the underlying data distribution through the GSN Markov chain.
What parametrizations will work well? Where and how should one inject noise to best
balance fast mixing with making the implied conditional easy to model? We present results
of preliminary experiments with specific selections for each of these choices, but the reader
should keep in mind that the space of possibilities is vast.

We start in Section 4.1 with results involving GSNs without latent variables (denoising
auto-encoders in Section 3.1 and the walkback algorithm presented in Section 3.2). Then in
Section 4.2 we proceed with experiments related to GSNs with latent variables (model de-
scribed in Section 3.4). Section 4.3 extends experiments of the walkback algorithm with the
scaling factors discussed in Section 3.3. A Theano1 (Bergstra et al., 2010) implementation
is available2, including the links of datasets.

4.1 Experimental results regarding walkback in DAEs

We present here an experiment performed with a non-parametric estimator on two types of
data and an experiment done with a parametric neural network on the MNIST dataset.

Non-parametric case. The mathematical results presented here apply to any denois-
ing training criterion where the reconstruction loss can be interpreted as a negative log-
likelihood. This remains true whether or not the denoising machine P (X|X̃) is parametrized
as the composition of an encoder and decoder. This is also true of the asymptotic estimation
results in Alain and Bengio (2013). We experimentally validate the above theorems in a

1. http://deeplearning.net/software/theano/
2. https://github.com/yaoli/GSN
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case where the asymptotic limit (of enough data and enough capacity) can be reached, i.e.,
in a low-dimensional non-parametric setting. Fig. 3 shows the distribution recovered by the
Markov chain for discrete data with only 10 different values. The conditional P (X|X̃) was
estimated by multinomial models and maximum likelihood (counting) from 5000 training
examples. 5000 samples were generated from the chain to estimate the asymptotic distri-
bution πn(X). For continuous data, Figure 3 also shows the result of 5000 generated
samples and 500 original training examples with X ∈ R10, with scatter plots of pairs of
dimensions. The estimator is also non-parametric (Parzen density estimator of P (X|X̃)).

Figure 3: Top left: histogram of a data-generating distribution (true, blue), the empirical
distribution (red), and the estimated distribution using a denoising maximum likelihood
estimator. Other figures: pairs of variables (out of 10) showing the training samples and
the model-generated samples.

MNIST digits. We trained a DAE on the binarized MNIST data (thresholding at 0.5).
The 784-2000-784 auto-encoder is trained for 200 epochs with the 50000 training examples
and salt-and-pepper noise (probability 0.5 of corrupting each bit, setting it to 1 or 0 with
probability 0.5). It has 2000 tanh hidden units and is trained by minimizing cross-entropy
loss, i.e., maximum likelihood on a factorized Bernoulli reconstruction distribution. With
walkback training, a chain of 5 steps was used to generate 5 corrupted examples for each
training example. Figure 4 shows samples generated with and without walkback. The
quality of the samples was also estimated quantitatively by measuring the log-likelihood of
the test set under a non-parametric density estimator P̂ (x) = meanX̃P (x|X̃) constructed

27



from 10,000 consecutively generated samples (X̃ from the Markov chain). The expected
value of E[P̂ (x)] over the samples can be shown (Bengio et al., 2013d) to be a lower bound
(i.e. conservative estimate) of the true (implicit) model density P (x). The test set log-
likelihood bound was not used to select among model architectures, but visual inspection
of samples generated did guide the preliminary search reported here. Optimization hyper-
parameters (learning rate, momentum, and learning rate reduction schedule) were selected
based on the training objective. We compare against a state-of-the-art RBM (Cho et al.,
2013) with an AIS log-likelihood estimate of -64.1 (AIS estimates tend to be optimistic).
We also drew samples from the RBM and applied the same estimator (using the mean of the
RBM’s P (x|h) with h sampled from the Gibbs chain), and obtained a log-likelihood non-
parametric bound of -233, skipping 100 MCMC steps between samples (otherwise numbers
are very poor for the RBM, which mixes poorly). The DAE log-likelihood bound with and
without walkback is respectively -116 and -142, confirming visual inspection suggesting that
the walkback algorithm produces less spurious samples. However, the RBM samples can
be improved by a spatial blur. By tuning the amount of blur (the spread of the Gaussian
convolution), we obtained a bound of -112 for the RBM. Blurring did not help the auto-
encoder.

Figure 4: Successive samples generated by Markov chain associated with the trained DAEs
according to the plain sampling scheme (left) and walkback sampling scheme (right). There
are less “spurious” samples with the walkback algorithm.

4.2 Experimental results for GSNs with latent variables

We propose here to explore families of parametrizations which are similar to existing deep
stochastic architectures such as the Deep Boltzmann Machine (DBM) (Salakhutdinov and
Hinton, 2009). Basically, the idea is to construct a computational graph that is similar to
the computational graph for Gibbs sampling or variational inference in Deep Boltzmann
Machines. However, we have to diverge a bit from these architectures in order to accom-
modate the desirable property that it will be possible to back-propagate the gradient of
reconstruction log-likelihood with respect to the parameters θ1 and θ2. Since the gradient
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of a binary stochastic unit is 0 almost everywhere, we have to consider related alternatives.
An interesting source of inspiration regarding this question is a recent paper on estimating
or propagating gradients through stochastic neurons (Bengio, 2013). Here we consider the
following stochastic non-linearities: hi = ηout + tanh(ηin + ai) where ai is the linear activa-
tion for unit i (an affine transformation applied to the input of the unit, coming from the
layer below, the layer above, or both) and ηin and ηout are zero-mean Gaussian noises.

To emulate a sampling procedure similar to Boltzmann machines in which the filled-in
missing values can depend on the representations at the top level, the computational graph
allows information to propagate both upwards (from input to higher levels) and downwards,
giving rise to the computational graph structure illustrated in Figure 5, which is similar to
that explored for deterministic recurrent auto-encoders (Seung, 1998; Behnke, 2001; Savard,
2011). Downward weight matrices have been fixed to the transpose of corresponding upward
weight matrices.
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Figure 5: Left: Generic GSN Markov chain with state variables Xt and Ht. Right: GSN
Markov chain inspired by the unfolded computational graph of the Deep Boltzmann Machine
Gibbs sampling process, but with backprop-able stochastic units at each layer. The training
example X = x0 starts the chain. Either odd or even layers are stochastically updated
at each step. All xt’s are corrupted by salt-and-pepper noise before entering the graph
(lightning symbol). Each xt for t > 0 is obtained by sampling from the reconstruction
distribution for that step, Pθ2(Xt|Ht). The walkback training objective is the sum over
all steps of log-likelihoods of target X = x0 under the reconstruction distribution. In the
special case of a unimodal Gaussian reconstruction distribution, maximizing the likelihood is
equivalent to minimizing reconstruction error; in general one trains to maximum likelihood,
not simply minimum reconstruction error.

With the walkback algorithm, a different reconstruction distribution is obtained after each
step of the short chain started at the training example X. It means that the computational
graph from X to a reconstruction probability at step k actually involves generating inter-
mediate samples as if we were running the Markov chain starting at X. In the experiments,
the graph was unfolded so that 2D sampled reconstructions would be produced, where D
is the depth (number of hidden layers). The training loss is the sum of the reconstruction
negative log-likelihoods (of target X) over all 2D reconstructions.

Experiments evaluating the ability of the GSN models to generate good samples were
performed on the MNIST dataset and the Toronto Face Database (TFD), following the
setup in Bengio et al. (2013b).
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Theorem 3 requires H0 to have the same distribution as H1 (given X0) during training,
and this may be achieved by initializing each training chain with H0 set to the previous
value of H1 when the same example X0 was shown. However, it turned out that even with
a dumb initialization of H0, good results were obtained in the experiments below.

Networks with 2 and 3 hidden layers were evaluated and compared to regular denoising
auto-encoders. The latter has just 1 hidden layer and no state to state transition, i.e.,
the computational graph can be split into separate graphs for each reconstruction step in
the walkback algorithm. They all have tanh hidden units and pre- and post-activation
Gaussian noise of standard deviation 2, applied to all hidden layers except the first. In
addition, at each step in the chain, the input (or the resampled Xt) is corrupted with salt-
and-pepper noise of 40% (i.e., 40% of the pixels are corrupted, and replaced with a 0 or
a 1 with probability 0.5). Training is over 100 to 600 epochs at most, with good results
obtained after around 100 epochs, using stochastic gradient descent (minibatch size of one
example). Hidden layer sizes vary between 1000 and 1500 depending on the experiments,
and a learning rate of 0.25 and momentum of 0.5 were selected to approximately minimize
the reconstruction negative log-likelihood. The learning rate is reduced multiplicatively by
0.99 after each epoch. Following Breuleux et al. (2011), the quality of the samples was
also estimated quantitatively by measuring the log-likelihood of the test set under a Parzen
density estimator constructed from 10,000 consecutively generated samples (using the real-
valued mean-field reconstructions as the training data for the Parzen density estimator).
This can be seen as a lower bound on the true log-likelihood, with the bound converging
to the true likelihood as we consider more samples and appropriately set the smoothing
parameter of the Parzen estimator.3

Results are summarized in Table 1. As in Section 4.1, the test set Parzen log-likelihood
bound was not used to select among model architectures, but visual inspection of generated
samples guided this preliminary search. Optimization hyper-parameters (learning rate,
momentum, and learning rate reduction schedule) were selected based on the reconstruction
log-likelihood training objective. The Parzen log-likelihood bound obtained with a two-layer
model on MNIST is 214 (± standard error of 1.1), while the log-likelihood bound obtained
by a single-layer model (regular denoising auto-encoder, DAE in the table) is substantially
worse, at -152±2.2.

In comparison, Bengio et al. (2013b) report a log-likelihood bound of -244±54 for RBMs
and 138±2 for a 2-hidden layer DBN, using the same setup. We have also evaluated a
3-hidden layer DBM (Salakhutdinov and Hinton, 2009), using the weights provided by the
author, and obtained a Parzen log-likelihood bound of 32±2. See http://www.utstat.

toronto.edu/~rsalakhu/DBM.html for details.

Interestingly, the GSN and the DBN-2 actually perform slightly better than when using
samples directly coming from the MNIST training set, perhaps because the mean-field
outputs we use are more “prototypical” samples.

3. However, in this paper, to be consistent with the numbers given in Bengio et al. (2013b) we used a
Gaussian Parzen density, which makes the numbers not comparable with the AIS log-likelihood upper
bounds for binarized images reported in other papers for the same data.

30

http://www.utstat.toronto.edu/~rsalakhu/DBM.html
http://www.utstat.toronto.edu/~rsalakhu/DBM.html


Figure 7 shows two runs of consecutive samples from this trained model, illustrating
that it mixes quite well (faster than RBMs) and produces rather sharp digit images. The
figure shows that it can also stochastically complete missing values: the left half of the
image was initialized to random pixels and the right side was clamped to an MNIST image.
The Markov chain explores plausible variations of the completion according to the trained
conditional distribution.

Figure 6: Top: two runs of consecutive samples (one row after the other) generated from
2-layer GSN model, showing fast mixing between classes and nice sharp images. Note: only
every fourth sample is shown. Bottom: conditional Markov chain, with the right half of the
image clamped to one of the MNIST digit images and the left half successively resampled,
illustrating the power of the generative model to stochastically fill-in missing inputs.

4.3 Experimental results for GSNs with the scaling factors for walkbacks

We present the experimental results regarding the discussion in Section 3.3. Experiments
are done on both MNIST and TFD. For TFD, only the unsupervised part of the dataset
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Figure 7: These are expanded plots of those in Figure 6. Top: two runs of consecutive
samples (one row after the other) generated from a 2-layer GSN model, showing that it
mixes well between classes and produces nice sharp images. Figure 6 contained only one
in every four samples, whereas here every sample is shown. Bottom: conditional Markov
chain, with the right half of the image clamped to one of the MNIST digit images and the
left half successively resampled, illustrating the power of the trained generative model to
stochastically fill-in missing inputs. Figure 6 showed only 13 samples in each chain; here
we show 26.

is used, resulting 69,000 samples for train, 15,000 for validation, and 15,000 for test. The
training examples are normalized to have a mean 0 and a standard deviation 1.

For MNIST the GSNs we used have 2 hidden layers with 1000 tanh units each. Salt-and-
pepper noise is used to corrupt inputs. We have performed extensive hyperparameter search
on both the input noise level between 0.3 and 0.7, and the hidden noise level between 0.5
and 2.0. The number of walkback steps is also randomly sampled between 2 and 6. All the
experiments are done with learning the scaling factors, following the parameterization in
Section 3.3.1. Following previous experiments, the log-probability of the test set is estimated
by the same Parzen density estimator on consecutive 10,000 samples generated from the
trained model. The σ parameter in the Parzen estimator is cross-validated on the validation
set. The sampling is performed with α1, the learned scaling factor for the first walkback
step. The best model achieves a log-likelihood LL=237.44 on MNIST test set, which can
be compared with the best reported result LL=225 from Goodfellow et al. (2014).
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Figure 8: Left: consecutive GSN samples obtained after 10 training epochs. Right: GSN
samples obtained after 25 training epochs. This shows quick convergence to a model that
samples well. The samples in Figure 7 are obtained after 600 training epochs.

Figure 9: Consecutive GSN samples from a model trained on the TFD dataset. At the end
of each row, we show the nearest example from the training set to the last sample on that
row to illustrate that the distribution is not merely copying the training set.

On TFD, we follow a similar procedure as in MNIST, but with larger model capacity
(GSNs with 2000-2000 tanh units) and a wider hyperparameter range on the input noise
level (between 0.1 and 0.7), the hidden noise level (between 0.5 and 5.0), and the number
of walkback steps (between 2 and 6). For comparison, two types of models are trained, one
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Table 1: Test set log-likelihood lower bound (LL) obtained by a Parzen density estima-
tor constructed using 10,000 generated samples, for different generative models trained on
MNIST. The LL is not directly comparable to AIS likelihood estimates because we use a
Gaussian mixture rather than a Bernoulli mixture to compute the likelihood, but we can
compare with Rifai et al. (2012); Bengio et al. (2013b,c) (from which we took the last three
columns). A DBN-2 has 2 hidden layers, a CAE-1 has 1 hidden layer, and a CAE-2 has
2. The DAE is basically a GSN-1, with no injection of noise inside the network. The last
column uses 10,000 MNIST training examples to train the Parzen density estimator.

GSN-2 DAE RBM DBM-3 DBN-2 MNIST
Log-likelihood lower bound 214 -152 -244 32 138 24
Standard error 1.1 2.2 54 1.9 2.0 1.6

with the scaling factor and one without. The evaluation metric is the same as the one used
in MNIST experiments. We compute the Parzen density estimation on the first 10,000 test
set examples. The best model without learning the scaling factor results in LL = 1044,
and the best model with learning the scaling factor results in 1215 when the scaling factor
from the first walkback step is used and 1189 when all the scaling factors are used together
with their corresponding walkback steps. As two further comparisons, using the mean over
training examples to train the Parzen density estimator results in LL = 632, and using
the validation set examples to train the Parzen estimator obtains LL = 2029 (this can be
considered as an upper bound when the generated samples are almost perfect). Figure 11
shows the consecutive samples generated with the best model, compared with Figure 9 that
is trained without the scaling factor. In addition, Figure 10 shows the learned scaling factor
for both datasets that confirms the hypothesis on the effect of the scaling factors made in
Section 3.3.

5. Conclusion

We have introduced a new approach to training generative models, called Generative Stochas-
tic Networks (GSN), which includes generative denoising auto-encoders as a special case
(with no latent variable). It is an alternative to directly performing maximum likelihood
on an explicit P (X), with the objective of avoiding the intractable marginalizations and
partition function that such direct likelihood methods often entail. The training procedure
is more similar to function approximation than to unsupervised learning because the recon-
struction distribution is simpler than the data distribution, often unimodal (provably so in
the limit of very small noise). This makes it possible to train unsupervised models that
capture the data-generating distribution simply using backprop and gradient descent in a
computational graph that includes noise injection. The proposed theoretical results state
that under mild conditions (in particular that the noise injected in the networks prevents
perfect reconstruction), training a sufficient-capacity model to denoise and reconstruct its
observations (through a powerful family of reconstruction distributions) suffices to capture
the data-generating distribution through a simple Markov chain. Another view is that we
are training the transition operator of a Markov chain whose stationary distribution esti-
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Figure 10: Learned αk values for each walkback step k. Larger values of αk correspond
to greater uncertainty for TFD (real-valued) and less uncertainty for MNIST (binary),
due to the differing methods of parameterization given in Section 3.3.1 and 3.3.2. Thus,
both learned factors reflect the fact that there is greater uncertainty after each consecutive
walkback step.

mates the data distribution, which has the potential of corresponding to an easier learning
problem because the normalization constant for this conditional distribution is generally
dominated by fewer modes. These theoretical results are extended to the case where the
corruption is local but still allows the chain to mix and to the case where some inputs are
missing or constrained (thus allowing to sample from a conditional distribution on a subset
of the observed variables or to learned structured output models). The GSN framework is
shown to lend to dependency networks a valid estimator of the joint distribution of the ob-
served variables even when the learned conditionals are not consistent, also allowing to prove
in a new way the consistency of generalized pseudolikelihood training, associated with the
stationary distribution of a corresponding GSN (that randomly chooses a subset of variables
and then resamples it). Experiments have been conducted to validate the theory, in the case
where the GSN architecture is a simple denoising auto-encoder and in the case where the
GSN emulates the Gibbs sampling process of a Deep Boltzmann Machine. A quantitative
evaluation of the samples confirms that the training procedure works very well (in this case
allowing us to train a deep generative model without layerwise pretraining) and can be used
to perform conditional sampling of a subset of variables given the rest. After early versions
of this work were published (Bengio et al., 2014), the GSN framework has been extended and
applied to classification problems in several different ways (Goodfellow et al., 2013; Zhou
and Troyanskaya, 2014; Zöhrer and Pernkopf, 2014) yielding very interesting results. In
addition to providing a consistent generative interpretation to dependency networks, GSNs
have been used to provide one to Multi-Prediction Deep Boltzmann Machines (Goodfellow
et al., 2013) and to provide a fast sampling algorithm for deep NADE (Yao et al., 2014).
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Figure 11: Consecutive GSN samples from a model trained on the TFD dataset. The scaling
factors are learned. The samples are generated by using the scaling factor from the first
walkback step. Samples are sharper compared with Figure (9). This is also reflected by an
improvement of 140 in Parzen-estimated log-likelihood.
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6. Appendix: Argument for consistency based on local noise

This section presents one direction that we pursed initially to demonstrate that we had
certain consistency properties in terms of recovering the correct stationary distribution
when using a finite training sample. We discuss this issue when we cite Theorem 4 from
the literature in section 3.4 and thought it would be a good idea to include our previous
approach in this Appendix.

The main theorem in Bengio et al. (2013c) (stated in supplemental as Theorem S1)
requires that the Markov chain be ergodic. A set of conditions guaranteeing ergodicity is
given in the aforementioned paper, but these conditions are restrictive in requiring that
C(X̃|X) > 0 everywhere that P (X) > 0. The effect of these restrictions is that Pθ(X|X̃)
must have the capacity to model every mode of P (X), exactly the difficulty we were trying
to avoid. We show here how we may also achieve the required ergodicity through other
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means, allowing us to choose a C(X̃|X) that only makes small jumps, which in turn only
requires Pθ(X|X̃) to model a small part of the space around each X̃.

Let Pθn(X|X̃) be a denoising auto-encoder that has been trained on n training examples.
Pθn(X|X̃) assigns a probability to X, given X̃, when X̃ ∼ C(X̃|X). This estimator defines
a Markov chain Tn obtained by sampling alternatively an X̃ from C(X̃|X) and an X from
Pθ(X|X̃). Let πn be the asymptotic distribution of the chain defined by Tn, if it exists.
The following theorem is proven by Bengio et al. (2013c).

Theorem S1 If Pθn(X|X̃) is a consistent estimator of the true conditional distribution
P (X|X̃) and Tn defines an ergodic Markov chain, then as n→∞, the asymptotic distri-
bution πn(X) of the generated samples converges to the data-generating distribution P (X).

In order for Theorem S1 to apply, the chain must be ergodic. One set of conditions under
which this occurs is given in the aforementioned paper. We slightly restate them here:
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Figure 12: If C(X̃|X) is globally supported as required by Corollary 10 (Bengio et al.,
2013c), then for Pθn(X|X̃) to converge to P (X|X̃), it will eventually have to model all of
the modes in P (X), even though the modes are damped (see “leaky modes” on the left).
However, if we guarantee ergodicity through other means, as in Corollary 11, we can choose
a local C(X̃|X) and allow Pθn(X|X̃) to model only the local structure of P (X) (see right).
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Corollary 10 If the support for both the data-generating distribution and denoising model
are contained in and non-zero in a finite-volume region V (i.e., ∀X̃, ∀X /∈ V, P (X) =
0, Pθ(X|X̃) = 0 and ∀X̃, ∀X ∈ V, P (X) > 0, Pθ(X|X̃) > 0, C(X̃|X) > 0) and these
statements remain true in the limit of n→∞, then the chain defined by Tn will be ergodic.

If conditions in Corollary 10 apply, then the chain will be ergodic and Theorem S1 will
apply. However, these conditions are sufficient, not necessary, and in many cases they may
be artificially restrictive. In particular, Corollary 10 defines a large region V containing any
possible X allowed by the model and requires that we maintain the probability of jumping
between any two points in a single move to be greater than 0. While this generous condition
helps us easily guarantee the ergodicity of the chain, it also has the unfortunate side effect of
requiring that, in order for Pθn(X|X̃) to converge to the conditional distribution P (X|X̃),
it must have the capacity to model every mode of P (X), exactly the difficulty we were
trying to avoid. The left two plots in Figure 12 show this difficulty: because C(X̃|X) > 0
everywhere in V , every mode of P (X) will leak, perhaps attenuated, into P (X|X̃).

Fortunately, we may seek ergodicity through other means. The following corollary allows
us to choose a C(X̃|X) that only makes small jumps, which in turn only requires Pθ(X|X̃)
to model a small part of the space V around each X̃.

Let Pθn(X|X̃) be a denoising auto-encoder that has been trained on n training examples
and C(X̃|X) be some corruption distribution. Pθn(X|X̃) assigns a probability to X, given
X̃, when X̃ ∼ C(X̃|X) and X ∼ P(X). Define a Markov chain Tn by alternately sampling
an X̃ from C(X̃|X) and an X from Pθ(X|X̃).

Corollary 11 If the data-generating distribution is contained in and non-zero in a finite-
volume region V (i.e., ∀X /∈ V, P (X) = 0, and ∀X ∈ V, P (X) > 0) and all pairs of points
in V can be connected by a finite-length path through V and for some ε > 0, ∀X̃ ∈ V,∀X ∈ V
within ε of each other, C(X̃|X) > 0 and Pθ(X|X̃) > 0 and these statements remain true in
the limit of n→∞, then the chain defined by Tn will be ergodic.

Proof Consider any two points Xa and Xb in V . By the assumptions of Corollary 11, there
exists a finite length path between Xa and Xb through V . Pick one such finite length path
P . Chose a finite series of points x = {x1, x2, . . . , xk} along P , with x1 = Xa and xk = Xb

such that the distance between every pair of consecutive points (xi, xi+1) is less than ε as
defined in Corollary 11. Then the probability of sampling X̃ = xi+1 from C(X̃|xi)) will be
positive, because C(X̃|X)) > 0 for all X̃ within ε of X by the assumptions of Corollary 11.
Further, the probability of sampling X = X̃ = xi+1 from Pθ(X|X̃) will be positive from the
same assumption on P . Thus the probability of jumping along the path from xi to xi+1,
Tn(Xt+1 = xi+1|Xt = xi), will be greater than zero for all jumps on the path. Because
there is a positive probability finite length path between all pairs of points in V , all states
commute, and the chain is irreducible. If we consider Xa = Xb ∈ V , by the same arguments
Tn(Xt = Xa|Xt−1 = Xa) > 0. Because there is a positive probability of remaining in the
same state, the chain will be aperiodic. Because the chain is irreducible and over a finite
state space, it will be positive recurrent as well. Thus, the chain defined by Tn is ergodic.
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Although this is a weaker condition that has the advantage of making the denoising
distribution even easier to model (probably having less modes), we must be careful to
choose the ball size ε large enough to guarantee that one can jump often enough between
the major modes of P (X) when these are separated by zones of tiny probability. ε must
be larger than half the largest distance one would have to travel across a desert of low
probability separating two nearby modes (which if not connected in this way would make V
not anymore have a single connected component). Practically, there is a trade-off between
the difficulty of estimating P (X|X̃) and the ease of mixing between major modes separated
by a very low density zone.
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