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ABSTRACT

The fusion of Chemical, Biological, Radiological, and Nuclear (CBRN) sensor readings from both point and
stand-off sensors requires a common space in which to perform estimation. In this paper we suggest a common
representational space that allows us to properly assimilate measurements from a variety of different sources
while still maintaining the ability to correctly model the structure of CBRN clouds. We design this space with
sparse measurement data in mind in such a way that we can estimate not only the location of the cloud but also
our uncertainty in that estimate. We contend that a treatment of the uncertainty of an estimate is essential in
order to derive actionable information from any sensor system; especially for systems designed to operate with
minimal sensor data. A companion paper1 further extends and evaluates the uncertainty management introduced
here for assimilating sensor measurements into a common representational space.
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1. INTRODUCTION

The tracking and characterization of CBRN threats will likely require the fusion of a variety of different sensor
measurements. When detecting CBRN hazards, long range sensor instruments such as radar, infrared (IR),
electro-optical, and long wave hyper spectral; short range instruments such as Raman spectrometers; and a wide
array of point sensors such as ion mobility spectrometers (IMS) and chemical-resistor arrays can potentially be
used for sensing. In this paper we seek to begin to address the integration and fusion of these different sensor
measurement types into a common tracking space. IR spectrometers,2–5 IMS,6 and Raman Spectrometers7 have
been proven to be some of the most successful chemical detection methods and hence will form the motivation
for the sensor models considered in this paper.

Radar and IR systems are currently used to track airborne objects in real-time. However, how to properly
track and characterize CBRN releases in real-time is still an open problem. The fusion of all the various sensor
types into a common tracking space is an important step when defining such a system capable of real-time
CBRN release tracking. Our hope is to contribute to the understanding of possible common tracking spaces by
examining spaces that can be represented using low dimensional parameterizations.

It is a challenging task to take the sensor measurement types defined above and integrate them into a common
space. While one can imagine very high-dimensional spaces, such as those produced by griding schemes and finite
element methods, it is difficult to properly fill in such a large parameter space without strong models to constrain
the space. This is particularly true in our case because we seek to provide results for scenarios where we have
a relatively low number of weak sensors. Rather than attempt to fill in such a large parameter space, here
we instead attempt to parameterize the models. By doing this we hope to dramatically reduce the number of
parameters needed to describe the scenario, and hence also improve our performance in settings with poor sensor
data.

We believe that while good estimates of CBRN entities are important, any estimate of them must also come
with an ambiguity measure describing the uncertainty of the estimate. There is an extensive body of literature
on the proper handling of ambiguity in target tracking problems8–13 (and references therein) as well as a similar,
but substantially smaller, body of work that addresses ambiguity in chemical detection problems.14–18 While an
ambiguity analysis has been performed on various components of a system for WMD consequence management,
the authors are not aware of any studies that address the interactions between sources of ambiguity. Accordingly,
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herein the authors describe how a representation of the errors or uncertainty of the system, conspicuously absent
from many other techniques, may be provided.

Another way to look at the importance of ambiguity is to note that the information provided to the user
in CBRN scenarios must be correct. The worst possible sin in such life and death circumstances would be to
provide the user with information that is not factual. Note, there is an important and subtle distinction here.
We consider providing the user with information whose veracity is unknown, or ambiguous, and not informing

them of this fact to be as bad as providing incorrect information. The act of informing the user that a suspect
cloud is composed of water vapor means very different things depending on whether one is 99.999% sure it is
water vapor or one is 51% sure it is water vapor and 49% sure it is nerve gas, even though both situations lead
to the same “most probable estimate”.

We approach the problem of correctly merging sensor measurements into a common tracking space that cor-
rectly handles ambiguity from the perspective of classical target tracking. By formulating the problem using the
recursive Bayesian estimation framework we can apply many of same techniques prevalent in the target tracking
domain to the characterization of CBRN releases. In Section 2 we develop a low-dimensional tracking space
that attempts to represent the cloud at a level of detail appropriate for a limited number of measurements.
We consider the associated measurement functions for different sensor types as well as a parameterization for
the common tracking space. In Section 3 we present preliminary qualitative results from a sample implemen-
tation of the ideas presented in Section 2. These simulations are intended to illustrate our low-dimensional
parameterization approach.

2. LOW DIMENSIONAL CLOUD MODELS

We begin our discussion of a common representational space for CBRN clouds with a discussion of how best to
parameterize CBRN clouds. Herein we propose to analyze clouds that have been parameterized by way of some
low dimensional representation. The search for a low dimensional parameterization of clouds is driven by the
desire to make maximal use of our limited measurement data. The more parameters that need to be estimated
the more sensor data will be needed in order to provide not only an estimate of the cloud but also an estimate
of the uncertainty in our model.

2.1 Notation

In this discussion we do not propose to represent the cloud by a large collection of voxels. While such an ap-
proach is quite effective in many domains (such as finite-element analysis), we do not focus on such discretizations
for the current analysis because it would necessitate the estimation of a large number of parameters (say the
concentration of the chemical in each volume element). The concentration is also likely to be highly correlated
between adjacent cells leading to substantial redundancy in the volumetric parameterization. The representa-
tional scheme we develop here is not unrelated to these discritizion schemes, but attempts to describe the cloud
using many fewer parameters.

We propose to represent the cloud by way of a function that can be evaluated at a point in space/time to
give a concentration of the chemical of interest. In addition, to simplify the current exposition and visualization,
we assume that the cloud is two-dimensional, though nothing in this text relies essentially on that fact. By
assuming a two dimensional cloud we are essentially modeling the cloud density at head height across a certain
region. As will be seen later, this is a reasonable assumption since modeling programs that deal with the effect
of CBRN releases typically report concentrations at ground level. Given this we seek a function that, provided
with a point in a two-dimensional space, returns the concentration of a chemical of interest at that point. Of
course, one could also consider a vector of such functions, each of which returns the concentration of a different
chemical compound, but in the current text we choose to focus on a single chemical compound.

As a purely expository example to illustrate the type of representations we seek, one might consider assuming
that the cloud of interest has a maximum concentration c at a point x, y, and then decays linearly to 0 at some
distance r. This is intentionally a quite rough representation whose only role is to be simple to describe and
trivial to improve on later in this text. Plotting the concentration of such a cloud in x, y space would reveal a



distribution whose curves of constant concentration, or level sets, are circles and whose cross section through
x, y is a cone. There are many such possible clouds and we parameterize them by way of a vector αc as in

αc =





x
r
c



 (1)

where x =

(

x
y

)

is the center of the cone and r and c are defined as described above. In more precise terms,

we have a function hc(αc,xi) which gives the concentration of the chemical of interest at a point xi =

(

xi

yi

)

by way of the following function

hc(αc,xi) =

{

c
(

1 −
||x−xi||2

r

)

if ||x − xi||2 < r

0 otherwise.
(2)

Note that the function hc(αc,xi) is not an actual cloud model that we will use, but rather an illustration of how
such a model can be defined. In addition to modeling the chemical concentration in our two dimensional space,
we also need to model the process by which this chemical concentration is measured. To this end the function
hc(αc,xi) can also be viewed as a measurement function for a point sensor. Taking this view we have introduced
another concept, namely a sensor parameter space xi. In a scenario with a set of N such point sensors we will
denote them by X = {x1, . . .xN}. In Equation (2) we simply return the concentration at the given point, but
one can imagine much more complicated measurement processes and we will discuss an example of one later.

While Equation (2) provides a model for a point sensor, the actual reported measurements come from point
sensors observing a real cloud. Suppose we are provided a set of such measurements Z = {z1, . . . , zN} generated
from the collection of sensors at positions X. Each zi is then defined by

zi = ht(xi) + vi (3)

where ht(xi) is the true cloud concentration at the point xi and vi ∈ N(0, ri) is the sensor noise. Given a set of
these measurements, and assuming that hc(αc,xi) can well model ht(xi), one can then define a non-linear least
squares problem to estimate the unknown αc as

oc(X,Z) = min
αc

N
∑

i=1

‖hc(αc,xi) − zi‖
2. (4)

Even better, if the sensors also provide their measurement (co)variances R = {r0, . . . , rN}, then one can define
the weighted non-linear least squares problem

oc(X,Z,R) = min
αc

N
∑

i=1

(hc(αc,xi) − zi)
T r−1

i (hc(αc,xi) − zi). (5)

Even though our in current discussion hc, zi and ri as described above are all scalar valued, we use the more
general vector valued notation in Equation (5) to emphasize that this model can describe multi-dimensional
values as well. We also make two observations. First, we classically solve equations of the form of Equation (5)
by way of methods such as the Levenberg-Marquardt algorithm. Second, when one solves such problems by
way of the Levenberg-Marquardt algorithm one can also compute an approximation of the uncertainty of the
parameter estimate α̃c = oc(X,Z,R) in the form of a 4 x 4 covariance matrix Pα̃c

.

At this point we have a well defined non-linear least squares parameter estimation problem for the parameter
vector αc. Of course, the actual solution of such a problem is far from trivial. Such problems may have many



local minima, and one often requires a good initial guess to find the particular solution of interest. While we note
the presence of such issues, we leave their resolution aside for the moment and focus our efforts on appropriate
modifications to the above problem to make it more realistic.

2.2 First Calculations

While the simple and unrealistic cloud model in Equation (2) along with minimization in Equation (5) provides
a classic example of non-linear least squares estimation, it also foreshadows several important ideas of our
work. First, once one enters the realm of nonlinear estimation, one then has great freedom in their choice of
parameterizations. For example, the parameterization αc = [x, r, c]T was chosen arbitrarily. One could just
as easily have chosen αc2 = [ρ, θ, r, c]T where ρ and θ give the center of the disk in cylindrical coordinates
and r, c are defined as before. Of course, not all parameterizations are created equal. For example, the latter
parameterization is singular at ρ = 0 in the sense that θ is not defined at that point.

Let us now change our toy model into one which is slightly more realistic and perhaps worthy of some pre-
liminary calculations. We start by considering the diffusion equation since the chemical clouds we are interested
in tracking undergo a diffusion process that will significantly effect their final shape and distribution. While not
intended to be an introduction to partial differential equations for diffusion processes, as motivation we start
with the standard diffusion equation

∂φ(p, t)

∂t
= ∇[w(φ, t)∇φ(p, t)] (6)

which for the case of uniform diffusion where the diffusion coefficient w(φ, t) = w for all densities φ and times t
the above reduces to

∂φ(p, t)

∂t
= w∇2φ(p, t) (7)

The parameter t represents dispersion time and p ∈ R
n position. A fundamental solution (and Green’s function)

for Equation (7) can be obtained by applying the equation to a point emission source, with initial conditions
φ(p, 0) = δ(p). Equation (8) describes the distribution of such a cloud originating from a point source in a
windless environment.19,20

φ(p, t) =
1

(4πwt)n/2
exp(−

pT p

4wt
) (8)

Note that Equation (8) is a special case of a Gaussian! In a striking example of the beauty of mathematics,
if we relax our assumptions to include constant wind and scaling effects we are left with a full multi-variate
Gaussian describing the cloud density. Given this observation we can replace our toy hc(αc,xi) with a slightly
more realistic cloud model based on Gaussians.

2.3 Point Sensors

Following the same pattern that we used above we can define a new cloud parameterization αg to replace our
toy αc parameterization. In order to account for scaling and rotation we relax the definition in Equation (8) to
be a general Gaussian mass density function parameterized by

αg =


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




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x
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g
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











, (9)



where x defines the center of mass of the distribution, e, f , and g give the size and shape of the distribution’s
elliptical level sets, and c is a scaling factor for the total mass of chemical in the cloud. Given this new
parameterization one can define a point measurement function hg(αg,xi) motivated by the diffusion equation as

hg(αg,xi) = c
1

2π
√

‖Σ‖
exp(−

1

2

(

x − xi)
T Σ−1(x − xi)

)

. (10)

where Σ =

(

e f
f g

)

∗.

Similar to the setting discussed earlier, if we are provided with a set of measurements zi as defined in
Equation (3) then we can again define a weighted non-linear least squares problem by

og(X,Z,R) = min
αg

N
∑

i=1

(hg(αg,xi) − zi)
T r−1

i (hg(αg,xi) − zi), (11)

a solution of which by the Levenberg-Marquardt algorithm leads to an estimate of αg we will call α̃g as well as
its associated 6 x 6 covariance matrix Pα̃g

.

To avoid confusion, let us reiterate that the calculations we discuss here use Gaussian distributions in two
ways:

First, we use them as a Gaussian mass density function to represent how gas is distributed in a cloud as
defined by Equation (9). Note that in the parameterization αg the parameter c differentiates the Gaussian mass
density function parameterized by Equation (9) from a Gaussian probability density function (PDF). An integral
of a PDF from −∞ to ∞ is, by definition, 1, but there is no reason to assume that the mass density of our cloud
satisfies this constraint. Accordingly, we scale our Gaussian mass density by c to allow its total mass to vary.

Second, we use a Gaussian probability density function to represent the statistics of the parameters of our
chosen model using α̃g as the mean, and Pα̃g

as the covariance.

So we assume that the concentration of chemicals in the cloud follows a Gaussian mass distribution, just
as predicted by the diffusion equation. We also assume the parameters that we estimate–by way of taking
measurements and then solve for using a weighted non-linear least squares formulation–have errors associated
with them. For example, perhaps there are errors with the placement of a cloud’s center of mass x. We assume
that these errors are well represented by a Gaussian probability distribution, so a covariance matrix (such as
Pα̃g

) completely characterizes them.

The gentle reader may decide whether it is a beautiful or confusing mathematical happenstance that we
assume the parameters of our Gaussian mass density are described by a Gaussian probability density function.
While we may relax these Gaussian assumptions in future work, we will endeavor to carefully distinguish between
the two uses here.

2.4 Stand-Off Sensors

In the previous sections we have focused on sensors which sample the chemical mass density function at a
single point. In this section we extend our model by examining an additional sensor type. Namely, we define
a simple form of stand-off sensor which measures the integral of the chemical mass density along a line. Let
Y = {y1, . . .yN , ẏ1, . . . ẏM} define the positions yi and directions ẏi of M stand-off sensors. Specifically, given
a ray l(yj , ẏj , t) ∈ R

2 defined by

l(yj , ẏj , t) = yj + tẏj (12)

∗We admit that Σ looks much like a covariance matrix, but thinking in these terms can lead one astray. e, f , and g
parameterize the shape of the cloud and have nothing to do with probability densities!



one can define a measurement function hl as

hl(αg,yj , ẏj) =

∫ ∞

0

hg(αg, l(yj , ẏj , t))dt. (13)

To evaluate the above integral one can use any of a myriad of discretization schemes. As hg has an exponential
decay one can even evaluate the integral efficiently to within a given error bound (i.e. using just a few evaluations
of hg) since it is almost compactly supported. Given a measurements for M stand-off sensors Q = {q1, . . . , qM},
with noise levels S = {s1, . . . , sM} we can define global sensor and measurement sets A = X ∪ Y , B = Z ∪ Q,
and C = R ∪ S. Using A, B, and C we can again solve a non-linear least squares problem

ob(A,B,C) = min
αg

N
∑

i=1

(hg(αg,xi) − zi)
T r−1

i (hg(αg,xi) − zi)+ (14)

M
∑

j=1

(hl(αg,yj , ẏj) − qj)
T s−1

j (hl(αg,yj , ẏj) − qj),

where we have N point sensor measurements, M stand-off measurements, and the measurements qj with noise
uj ∈ N(0, sj) are defined as

qj =

∫ ∞

0

ht(l(yj , ẏj , t))dt + uj (15)

The measurement function hl(αg,yj , ẏj) can be viewed as a weighted sum of a number of hg sensors that lie
along the ray defined by the sensor; in fact, that is also how it may be implemented. On the other hand, it can
also be viewed as a simple model for a stand-off sensor. In particular, one can think of it as a sensor placed at
yj which is pointed in the direction ẏj . Figure 1 gives a picture of such a sensor.

Figure 1. A canonical scenario which mixes stand-off and point sensors. The point sensors defined by the measurement
function hg are marked with an empty circle. The stand-off sensors with measurement function hl are marked with a
solid circle and a ray representing the space over which they integrate. Note that the stand-off sensors in this model can
be defined in terms of a weighted sum of point sensors along the ray defined by the stand-off sensor. The parameter y1

represents the location of the first stand-off sensor and ẏ1 its direction. The same hold true for y2 and ẏ2 which define
the second stand-off sensor.

Now, consider the scenario shown in Figure 2 with many more line sensors. In this scenario we happen to
use several hl sensors with the additional constraint that they all share a common origin yj . Note, that we can
now solve the exact same non-linear least squares problem, as in Equation (14), to estimate αg. The reason we
choose such a configuration for standoff sensors is to provide a rough model of an imaging sensor. In particular,
one can choose a line/plane, as in Figure 2, and create an “image” where each pixel of the image is set to have
the value of the hl sensor that passes through that pixel.



Figure 2. This figure shows a special set of line sensors. In particular, they all happen to share a single origin y1, but
point in different directions ẏ1, . . . , ẏ6. This roughly models an imaging sensor. In other words, one can imagine selecting
an image plane (shown here as a dotted line) and setting the value of each pixel in that plane to the value of the line
sensor that passes through that pixel.

Note, we don’t actually use the fact that there is an intuitive connection between imaging sensors and the
sensor configuration shown in Figure 2 when we solve Equation (14). But it is helpful to keep this connection in
mind when we consider modeling imaging sensors.

2.5 Towards the Representation of Realistically Complicated Clouds

The discussion above addresses the case where the underlying cloud follows a single Gaussian dispersion pattern.
But suppose we are interested in modeling clouds that are potentially much more complicated than can be
adequately described by one Gaussian. In order to represent these more complicated clouds we will need many
more parameters. Rather than discarding the usefulness of the Gaussian representation, we consider how to
combine multiple such representations to accurately represent complicated cloud structures.

Instead of αg ∈ R
6, consider extending this representation to a sum of K different Gaussians αG ∈ R

6K

parameterized as

αG =







α
1
g
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α
K
g






(16)

with a corresponding definition of new measurement functions

hG(αG,xi) =
K

∑

k=1

hg(α
k
g ,xi) (17)

and

hL(αG,yj , ẏj) =

K
∑

k=1

hl(α
k
g ,yj , ẏj). (18)

Given this new parameterization we can now solve another least-squares minimization problem

os(A,B,C) = min
αG

N
∑

i=1

(hG(αG,xi) − zi)
T r−1

i (hG(αG,xi) − zi)+ (19)

M
∑

j=1

(hL(αG,yj , ẏj) − qj)
T s−1

j (hL(αG,yj , ẏj) − qj).



One would obviously be concerned that we now have K times as many parameters and therefore need more data
to estimate them. One might also be concerned about the complexity of the αG parameterization. Note however
that by choosing αG to be a sum of Gaussians we have constrained the optimization space significantly.

Given sufficient data, one can now solve Equation (19) just as one solves Equation (14). In principle there
is nothing preventing us from using as many Gaussians as we need, up to the point where we have insufficient
measurements to estimate the, perhaps many, parameters in question. The key motivating idea behind using
sums of Gaussians is to make the best use possible of a limited number of parameters to describe the cloud while
still allowing flexibility in our representation detail.

If a particular scenario only has a few point sensors taking readings then it makes sense to constrain the
parameterization of our cloud to use only a few parameters. While it may be tempting to use thousands of
parameters to define what looks to be a very realistic cloud, because we have so few measurements we cannot
possibly be justified in drawing so precise a picture. Instead of trying to very precisely model a very uncertain
cloud density, by using a Gaussian sum approach we attempt to allow for a proper choice of parameterization
detail based on the conditions of any particular scenario.

How effective our choice of Gaussian sums proves to be when representing cloud structures in actual scenarios
is still an area of continuing research. The following section however gives a description of promising preliminary
results describing the effect of applying our parameterization method to 2D chemical cloud simulations.

3. SIMULATION RESULTS

In this section we simulate an actual chemical cloud to create ground level concentration reports using a software
environment described below called PEGEM. Using this data we can then apply the estimation techniques
discussed in the previous section in order to predict the concentration profile of the cloud as well as our uncertainty
in that estimate. We note that in this section we provide qualitative results to demonstrate the applicability
of Gaussian sums to CBRN estimation problems. For a more quantitative analysis we refer the reader to our
companion paper which touches on how to evaluate CBRN estimation methods.1

3.1 Using PEGEM to Simulate CBRN Events

A simulation environment called the Post Engagement Ground Effects Model (PEGEM) has been created to
model the effects of intercepting warheads containing a variety of different payloads. We have obtained a copy of
version 6.1 of the software in order to evaluate the effectiveness of our algorithms on realistically modeled data.

Figure 3. The Post Engagement Ground Effects Model (PEGEM) software allows us to define specific CBRN scenarios
and extract the chemical concentrations that arise at any given time. This screen capture shows the inhalation hazard
of a generic chemical threat at ground level. The ‘X’ marks where the missile was when it detonated at an altitude of
1000m.

As is noted in its title, PEGEM is predominantly interested in the concentrations and effects of Chemical,
Biological, Radiological, Nuclear, and high yield Explosive (CBRNE) threats at ground level. Figure 3 shows



a typical visualization from PEGEM that displays the inhalation hazard of a generic chemical warhead on a
non-intercepted missile. As can be seen from the ‘X’ marked in the figure, the chemical hazard at ground level
is not necessarily centered at the detonation point of the missile. This is primarily because of weather effects.
The weather used in this scenario is standard historical data shipped with the PEGEM software.

There are many different settings and parameters that effect the simulations in PEGEM. For the figures in
this discussion we have chosen a generic setup that models the effects of a chemical warhead carried in a ballistic
missile.

Figure 4. This is the chemical ground concentration calculated by PEGEM 5 minutes into a simulation with a chemical
threat. The mesh surface shown represents not the actual vertical height of the cloud, but rather the amount of chemical
present over the region where the concentration is above 0.001 mg/m2. Note this is a different cutoff than in Figure 5
where we have drawn the concentration surface out to 0.02 mg/m2.

The warhead itself carries a large amount of chemical agent, and bursts at an altitude of 1000 m. Given
these settings PEGEM simulates the concentration levels over time as the chemical agent progresses. In the
results that follow we attempt to model the 2D cloud at ground level as described by PEGEM 5 minutes after
the start of the simulation. This time puts us in the middle of when the ground concentration cloud is growing
and expanding. Figure 4 shows the concentration of the cloud calculated by PEGEM at 5 minutes. Note that
the height of the surface shown in Figure 4 represents concentration level, not actual vertical height.

3.2 Noise Studies with PEGEM Truth Data

Instead of assuming that our model perfectly matches the data by using a Gaussian cloud for ‘truth’ during our
simulations, we can use the calculated chemical concentrations from PEGEM as our ‘truth’ cloud. This allows
us to observe the behavior of our algorithms on more realistic concentration data.

In the experiments shown here we use only point sensors. These sensors are modeled as measuring the
truth (as defined by PEGEM) corrupted by white Gaussian noise as defined by Equation (3). In this setting
the function ht(xi) : R

2 7→ R defined earlier maps position coordinates to the chemical concentration values
computed by PEGEM. Using this sensor model we can create scenarios with both low and high noise values and
observe the performance of a Gaussian sum based estimation scheme.

Equation (19) can be solved (approximately) using the Levenberg-Marquardt (LM) method to produce both
an estimate of the chemical cloud parameterized by α̃G = os(X,Z,R) and also an associated covariance matrix
Pα̃G

. We do this twice for two different noise levels, a low noise level ri = 0.001 mg/m2, and a high noise level
ri = 0.1 mg/m2. The results of both sets of experiments are shown in Figure 5, with the top two pictures
illustrating the results of the low noise experiment, and the bottom two pictures the results of the high noise
experiment. Both scenarios use a parameterization of K = 2 Gaussians.



In each run there are 50 different point sensors scattered randomly near the PEGEM cloud. Note that the
random pattern of sensors is the same within both experiments. The red bars in the figures represent the sensor
returns, the yellow surface represents our estimate, the red mesh represents truth, and the dark region on the
ground represents the area outside of which we we are 95% confident that the chemical concentration is less than
0.02 mg/m2. This dark region is our way of visualizing the meaning of the covariance matrix Pα̃G

and what it
implies about our knowledge of the chemical concentration. The rational behind drawing the covariance in this
manner comes from the needs of decision makers to evaluate the safety of different areas based on the confidence
of our estimate.

For both of the experiments shown in Figure 5, an initial position for the Levenberg-Marquardt solver was
obtained by using a weighted average of the sensor returns, where the weight of each sensor’s position was scaled
by its concentration height. Given a generic set of Gaussians at this location the Levenberg-Marquardt solver
finds a least squares fit of the Gaussian sum to the sensor readings using Equation (19). The covariance around
the fitted solution Pα̃G

is then estimated as

Pα̃G
= (∇2os(X,Z,R))−1 (20)

from the inverse Hessian over the αG parameters at the point α̃G. Note that this linearization is the most
optimistic choice we can make since it is also equal to the Cramér-Rao21 bound at the point α̃G. For the
experiments shown in Figure 5 we assumed that all the point sensors were corrupted by an identical amount of
independent Gaussian noise, so R is a set of identical values.

Since we are using PEGEM to generate moderately realistic data, it is important to note that we are still
assuming a Gaussian concentration for our estimate. Without any adjustment, our current approach can lead
to overly optimistic covariances due to inconsistencies between our model and the actual cloud shape. This can
be addressed in the future using a variety of techniques, ranging from inflating the covariance matrix, to more
accurately modeling the non-linearities in the problem.

3.3 Using Model Extrapolation to Interpolate Between Sensors

Looking at the noise levels in Figure 5 it can be seen that only a very rough guess can be visually inferred from
the sensors. To see this look at the left plot for each experiment and try to guess the extents of the cloud without
using your knowledge of the truth (shown as the red mesh in the right plots). Because of the large uncertainty
in the measurements it is only because we assume that the distribution follows Gaussian diffusion from a small
set of source points that the estimator is able to decide on any particular estimate.

By assuming that diffusion has a dominating effect on cloud shape we have made an assumption about how
any concentration cloud is likely to be distributed. In fact, it is this assumption that allows us to make predictions
about what the chemical concentration will be away from a sensor reading location. Figure 5 seems to indicate
that, to a large extent, this assumption makes reasonable interpolations. There are many areas in the above
figures that have not been sufficiently sampled by the point sensors. In these regions the only way we can predict
anything is by using our model assumptions to fill in the gaps.

It should also be noted that there are many paths forward to improve this interpolation. For example if we
were to know the mass of a cloud then a large number of possible solutions could be ruled out. This type of
information might come from identifying the source of the cloud, or from a time in the past when the cloud was
completely observed. Physical constants such as known total mass are powerful ways to constrain the space of
possible solutions and improve the accuracy of our model.

4. CONCLUSION

By starting with the assumption that a low-dimensional parametrization of the cloud is preferable, we have
derived a common representational space using Gaussian sums. Using sums of Gaussians any cloud density can
be represented and the uncertainty of that estimate approximated by a linearization at the solution. These
methods are a promising approach to deal with integrating multiple CBRN related sensor returns into a common
operating picture. We believe that the key contribution of these approaches is the explicit handling of uncertainty,
which allows not only an estimate to be provided to the user, but also a confidence in that estimate.



Figure 5. The two rows of figures show the results of fitting a sum of two Gaussians to point sensor measurements taking
readings from PEGEM chemical cloud concentration values. The top two figures show results from when the measurements
are corrupted with a small amount of noise according to Equation (3) with ri = 0.001 mg/m2. The bottom two figures
show the change in results when the noise is increased to ri = 0.1 mg/m2. The left plots show just the sensor returns,
where the length of the angled part of the bar represents the 95% confidence variation, and the middle of the angled
portion of the bars represents the reported concentration level. In the right two figures the red mesh represents truth, the
orange surface our estimate, and the dark region outside the estimate is the region outside of which we are 95% confident
that the chemical concentration is less than 0.02 mg/m2.
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