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ABSTRACT

The coordinated use of multiple distributed sensors by network communication has the potential to substantially
improve track state estimates even in the presence of enemy countermeasures. In the modern electronic warfare
environment, a network-centric tracking system must function in a variety of jamming scenarios. In some
scenarios hostile electronic countermeasures (ECM) will endeavor to deny range and range rate information,
leaving friendly sensors to depend on passive angle information for tracking. In these cases the detrimental
effects of ECM can be at least partially ameliorated through the use of multiple networked sensors, due to the
inability of the ECM to deny angle measurements and the geometric diversity provided by having sensors in
distributed locations. Herein we demonstrate algorithms for initiating and maintaining tracks in such hostile
operating environments with a focus on maximum likelihood estimators and provide Cramer-Rao bounds on
the performance one can expect to achieve. Cramer-rao bound, maximum likelihood estimation, angle only
tracking, passive tracking

1. INTRODUCTION

The coordinated use of multiple distributed sensors by network communication has the potential to substantially
improve track state estimates, associated feature and attribute estimates, and combat identification (CID) of
targets, even in the presence of enemy countermeasures. The improvement is primarily due to geometric diversity,
complementary sensor information, and different coverage areas and these effects are precisely those that are
particularly desirable for tracking problems involving passive angle measurements.

In the modern electronic warfare environment a network-centric tracking system will have to function in
a variety of jamming scenarios. In some scenarios, hostile electronic countermeasures (ECM) will endeavor
to deny range and range rate information leaving friendly sensors to depend on passive angle information for
tracking. The lower dimensionality of the passive angle information causes difficulty in initiating tracks, inability
in correctly assigning measurements to current tracks, and failure in maintaining tracks. On the other hand, the
efficacy of ECM can be reduced in multi-sensor network-centric architectures through the inability of the ECM
to deny angle measurements and the geometric diversity provided by having sensors in distributed locations.

Throughout this paper we will use the terms lower dimensional and low dimensional to indicate measurements
and track states whose positional dimension is lower than three. Similarly, we will use the term high dimen-

sional to refer to measurements and tracks whose positional dimension is three. This distinction is of critical
importance to all that follows. A classic example of a high dimensional measurement is a range-bearing-elevation
measurement, while a canonical example of a low dimensional measurement is a bearing-elevation measurement,
where perhaps the range has been denied by electronic counter measures. Another useful distinction to make in
passive angle tracking is between two-dimensional angle only tracking and one-dimensional bearing only tracking.
In two-dimensional angle only tracking, bearing and elevation are available and only range has been denied to
the sensor, while in one-dimensional bearing only tracking the elevation of the target is not available. Generally
bearing only tracking is significantly more difficult than angle only tracking, but both are important and realistic
problems. Finally, one often talks about composite tracks, that are comprised of measurements from several
sensors, and local tracks that are comprised of measurements from only a single sensor. Throughout this text the
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assumption is that composite tracks are always high dimensional, unless explicitly stated otherwise, and local
tracks are of whatever dimension is convenient for that particular local sensor.

The determination of higher dimensional states from lower dimensional measurements has a long and storied
history going at least as far back as Carl Friedrich Gauss. In particular, Laplace and Gauss both worked
on the problem of determining orbits from angle only data in an astrodynamics context.1 A rich and active
extant literature exists for these problems with methods that roughly divide into two categories.2 Namely, we
have batch parameter estimate methods, such as various flavors of least squares processing,3–5 and recursive
stochastic estimation, such as the Extended Kalman Filter and its like.4–6 One factor that permeates much of
the literature is the key idea of observability and the Cramér-Rao bound which gives a lower bound on mean
squared error among all unbiased estimators.5,7, 8 The authors would like to call out3 for special attention as
that article motivated much of our original work in this area.

With respect to tracking, multiple target tracking methods divide into two broad classes, namely single
frame and multiple frame methods. The most successful of the multiple frame methods are Multiple Hypotheses
Tracking (MHT)4 and Multiple Frame Assignment (MFA).9,10 The performance advantage of the multiple frame
methods over the single frame methods follows from the ability to hold difficult decisions in abeyance until more
information is available or, equivalently, the opportunity to change past decisions to improve current decisions.
These methods offer improved track accuracy, attribute/feature association, and covariance consistency, as well
as reduced number of track switches, track breaks, and missed targets.

In the absence of system latency (e.g., communications and processing) a centralized architecture is provably
optimal in that it is capable of producing the best track quality (e.g., purity and accuracy) and a consistent air
picture. However, the centralized tracker is unacceptable for several reasons, notably communication overloads,
system latency, and single-point-failure. Thus, one must turn to a distributed architecture for both estima-
tion/fusion11 and data association. Network-centric MFA architectures have been developed12–14 that achieve
tracking performance comparable to that of a centralized tracker, while maintaining SIAP. The achievement of
SIAP is based on a Cooperative Engagement Capability (CEC)-like rule that requires that “each platform be in
charge of associating its own measurements to the network tracks.”

Throughout this paper we have endeavored to analyze important component parts of a distributed tracking
system in the context of passive angle tracking and the relationship between low dimensional local tracks and
high dimensional composite tracks. Our focus has been on advanced methods for properly treating the inherent
non-linearity between the various spaces of interest (e.g. Cartesian tracking spaces vs. cylindrical measurement
spaces) within both track initiation and extension. Also, the network infrastructure in which these algorithms
function is of critical importance for realistic systems, and considerations of such a distributed system permeate
all of our work.

This paper is organized as follows. In Section 2 we address of the challenge of track initiation with low-
dimensional measurements by deriving initiation schemes using maximum likelihood estimation. The core idea
here is to carefully analyze the covariances generated by the initiation schemes for consistency. In Section 3, we use
these error estimates as a means to examine the efficiency of different sensor and protected asset configurations.
These ideas allow one to compute optimal sensor placements based upon given threat scenarios. In Section 4,
we explain our current network architecture and describe the additional architectural components necessary to
include passive angle local tracks with the higher dimensional composite tracks.

2. INITIATION OF HIGH-DIMENSIONAL TRACKS FROM LOW DIMENSIONAL
MEASUREMENTS

In this section, we consider the problem of estimating the initial high-dimensional state of a single target using
a sequence of low-dimensional measurements. In particular, we study the mathematical aspects of initiating a
two-dimensional track using bearing-only measurements from two or more sensors.

Given a sequence of noisy bearing-only measurements, an estimator will produce an estimate of the target
state as well as an estimate of the covariance. Our goal is not only to find an algorithm for such an estimator, but
also to evaluate the covariance of the estimator relative to the smallest possible covariance that could be achieved
given the noise in the measurements. We can accomplish this by utilizing the Cramér-Rao lower bound (CRLB),



which provides a lower bound on the covariance of all possible estimators. Any estimator which achieves this
covariance is said to be efficient.

2.1 Maximum Likelihood Estimator and the Cramér-Rao lower bound

Let Z = {zi}
N
i=1 be a set of measurements at times ti, and f(ti, θ) be the function that maps from the high-

dimensional state θ into the measurement space. If p(Z|θ) is the conditional probability of Z given the state θ, a
maximum likelihood estimator is an estimator which seeks to maximize p(Z|θ) as a function of θ. Furthermore, if
the individual measurements zi have independent Gaussian noise with equal variances, then the MLE equivalently
minimizes the non-linear function

S(θ) =

N∑

i=1

(zi − f(ti, θ))
2. (1)

This means that for such noise models, the MLE is equivalent to a non-linear least-squares problem (NLLS). A
variety of methods including Levenberg-Marquardt, Gauss-Newton, etc., can be used for solving NLLS problems;
for our purposes it suffices that there exist well-known techniques for solving the problem.

Given a maximum-likelihood estimator θ̂, we can compute its covariance V ar(θ̂). This gives a measure of the
uncertainty of the estimator. Since the measurements contain noise, one cannot expect the covariance of any
estimator to be zero. Nevertheless, we would like it to be as small as possible. The CRLB15 provides a lower
bound on the covariance; under the assumption that the individual measurements zi have independent Gaussian
noise with equal variances σ2, the CRLB reduces to

V ar(θ̂) ≥ ((Df)T σ−2Df)−1 (2)

where Df is the Jacobian of f . If the inequality in Equation 2 is replaced by strict equality for a particular
estimator, then we call that estimator efficient. Note in particular that if f is linear and full rank, then one can
easily show that the estimator is efficient.

2.2 Choice of motion model and state space

The function f in Equation 1 provides a mapping from state space to measurement space. Both the assumed
motion of the target and the parameterization of the state space are represented by this function. For the sake
of simplicity, we assume that during initiation the target has constant velocity.

We consider the problem of estimating this state based on bearing-only measurements at multiple times from
sensors at two distinct locations. Since there are four degrees of freedom for 2D constant velocity motion, simple
dimension-counting shows that bearing measurements from at least two different times are required in order to
have enough degrees of freedom in the measurements to fully recover the state.

Likewise, any parameterization of this state space must have four degrees of freedom. Different choices will
result in different versions of f in Equation 1, but all such choices (under reasonable assumptions) will result
in equivalent solutions of the NLLS problem, in that a solution using one parameterization can be mapped to
a solution using another parameterization. The only difference between parameterizations is the lower bound
provided by the CRLB. In some spaces, the CRLB may be sharp, while in others, it might not be sharp. If the
CRLB is sharp in one particular space and the MLE achieves the CRLB in that space, then we know that in
fact the performance of the MLE for all parameterizations is as good as it can be.

We compare two different parameterizations of the state space.

• A straightforward choice for parametrizing the state space of all such targets in 2D is

θC = [x0, y0, ẋ, ẏ] (3)

We call this parametrization the Cartesian parametrization; it has an associated mapping fC which we use
in Equation 1.



0 5 10 15 20
east (km)

0.0

0.5

1.0

1.5

2.0

n
o
rt

h
 (

km
)

Figure 1. Sample of bearing-only measurements for two sensors and one target. The diamond is the true target position.

• Another choice of parametrization is
θA = [α1, β1, αN , βN ] (4)

where αi is the bearing from sensor 1 to the target at time ti, and βi is the bearing from sensor 1 to
the target at time ti. The state is therefore parameterized by first and last bearings to the target. This
parametrization also has a mapping function fA which is used in Equation 1. We call this the angle-based

parametrization.

To illustrate the differences bewteen these parametrizations, consider two bearing-only sensors with an 8
second update rate. Sensor 1 located at (0, 0) and sensor 2 is located at (10, 0) (10 km east of Sensor 1). Both
sensors have a measurement error with 0.5 degree standard deviation. A target starts at (20, 1) and is traveling
at 200 kph west and 200 kph north. Figure 1 shows the geometry of the sensors, the target, and a sample of
measurements at t = 0. As can be seen in the figure, the geometry is fairly extreme; even though enough data
exists in principal to recover the target state, the observability is poor.

Figure 2 shows the distribution produced by the MLE over 50,000 Monte Carlo runs. Since these results on
the surface appear to be of fairly low quality, we might ask is this the best we can do? In fact, we find that the
covariance of the MLE in the Monte Carlo simulation is about 30% higher than the covariance calculated by the
CRLB. This gap could indicate that an estimator exists with a smaller covariance than the MLE, or it could be
that the CRLB is simply not sharp in this particular case. Using only the data provided so far, we have no way
to tell whether the former or the latter is true.

Again, we propose that it is not the estimator but rather the state space parameterization that is limiting
the sharpness of the CRLB. The angle parametrization, while producing the same set of solutions to the NLLS
problem, will generally have a different CRLB.

In the case where N = 2, the mapping fA from state space to measurement space is actually just the identity,
and the CRLB is easily shown to be sharp. Figure 3 shows the same Monte Carlo results as Figure 2, but mapped
into the angle-based parametrization. Since the CRLB is sharp for the angle-based parametrization, and the
MLE for the Cartesian parametrization is just a remapping of the MLE for the angle-based parametrization, we
can see that the MLE results shown in Figure 2 are in fact the best we can do (in the sense that the estimator
has the smallest possible covariance). Finally, Figure 4 shows the comparison of the covariances of the Cartesian
and angle-based parametrizations with an ideal χ2 distribution. As expected, the angle-based parametrization
is a closer match.

For the same sensor and target configuration, we can also consider increasing the number of measurements.
If N > 2, it is no longer the case that f = I, and we cannot easily show that the CRLB is sharp for the



Figure 2. MLE solution for Monte Carlo simulation with n = 50,000 for the Cartesian parametrization. Truth is indicated
by the diamond, and the mean of the 50,000 runs is indicated by the ’+’ symbol. Not only is the distribution non-
symmetric, the MLE appears to be biased as well.

angle-based parametrization. However, Monte-Carlo simulation shows that even if N = 5, the Cartesian-based
parametrization has a covariance that is about 10% larger than the CRLB covariance, whereas the angle-based
parametrization has a covariance that exceeds the CRLB covariance by only about 2%. In other words, for
N = 5 the MLE using the Cartesian-based parametrization is still has close to the smallest possible covariance
even though the CRLB might suggest otherwise.

(We also note that as N → ∞, it has been shown previously15 that the covariance of the MLE approaches
the CRLB for any parametrization. This result is not particularly useful for the small values of N that typically
are used in realistic scenarios).

2.3 Accuracy maps

In Section 2.2 we studied one particular example of sensor/target configuration. Given that we know the MLE
is nearly efficient, we now wish to better understand what effect the target and sensor geometry has on the
accuracy that can be achieved by the MLE.

In order to produce meaningful results in a graphical form, we consider our measure of accuracy to be the
trace of the covariance matrix returned by the MLE. Since the trace of a matrix is the sum of its eigenvalues,
this boils the “size” of the covariance matrix down to one number. Larger traces mean that the eigenvalues are
larger which means a larger uncertainty in the state estimate.

For a given sensor configuration, we consider a set of targets starting at points (x0, y0) which lie on a regular
grid and traveling with constant velocity motion towards the origin.

For each target, we then construct a set of bearing-only measurements on that target, and use the MLE to
estimate the state and covariance of the state estimate. We can then reduce this to a single number (the trace
of the covariance) for each target starting location in the regular grid.

Figure 5 shows the target starting locations and velocity vectors for a three-sensor configuration, and also
the trace of the covariance for each target. The accuracy falls off primarily as a function of distance, and does
not appear to have a strong directional dependance.



Figure 3. MLE solution for Monte Carlo simulation with n = 50,000 for the angle-based parametrization. Truth is
indicated by the diamond, and the mean of the 50,000 runs is indicated by the ’+’ symbol.
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Figure 5. Trace covariance map for target direction to the left 1000 from the sensors. (a) shows target direction. (b)
shows the trace covariance map. The accuracy falls off as a function of distance from the sensors.
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Figure 6. Trace covariance maps for three combinations for two of the three sensors. The target can be seen clearly in
certain directions from the sensors, but it cannot be seen as clearly when it forms a line with the sensors.

Figure 6 shows the trace of the covariance for three different orientations of a two-sensor configuration. In
this case, there is a strong directional dependance, because targets which are in line with the two sensors are not
as observable as targets which are out of line with the two sensors. (Note that Figure 2 falls into the “in line”
category.)

3. DISAMBIGUATION OF GHOST HYPOTHESES

One issue that often arises in multi-sensor multi-target bearing only tracking is commonly known as ghosting.
Figure 7 shows an example of such problem in a two-sensor two-target example. In effect, ghosting arises from
multiple target configurations giving rise to the same set of measurement reports. It does not only arise from
a particular configuration of targets and sensors, but is instead a general phenomena. Ghosting gives rise to
multiple possible assignment solutions for the given data and leads to confusion in the air picture.

Since ghost targets will in general have different kinematics than the true targets, one can use kinematic
estimates of the target states to disambiguate true from ghost targets. One way to keep track of this will be
to maintain the tracks that contain the ghosts as a separate hypothesis. Each hypothesis contains a set of
measurement to target assignments. For two sensors and n targets, there exists a total of n2 possible target
positions. There are then n! hypotheses, or possible groups of targets with assigned sensor measurements. For
m sensors and n targets, there exist (n!)m hypotheses.

We can use the methods from multiple hypotheses tracking. Each hypothesis will have a score consisting
of the sum of the likelihood scores for each target. As time goes on, the hypotheses that contain the ghosts
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Figure 7. An example of ghosting. We have two configurations of targets that give rise to the same set of angle only
measurements. In particular, targets at positions A and B will give rise to the same set of measurements as targets at
positions Y and Z. Even worse, this is not an issue specific to this configuration. Any smoothly varying set of measurements
can be generated by varying either A/B or X/Y, but note the kinematics of A/B and X/Y can be substantially different.

will have worse likelihood scores than those with the true targets, because the ghosts do not follow the expected
target motion model. At that point, those hypotheses with ghosts will be discarded, and we will have maintained
tracks on the true targets. The existing body of research on multiple hypothesis tracking provides algorithms
for maintaining good hypotheses and removing unlikely ones.

The hypotheses in the MHT/MFA solver can be compared to discern whether the most probable hypothesis
has an appreciable difference in probability over the other possible hypotheses. In effect, a “winning” hypothesis
which is close in score to the other “losing” hypotheses is ambiguous since, under slightly different conditions,
one of the other hypotheses might have been the “winner”. Such ambiguity is easy to detect when one uses a
MHT/MFA type assignment solver since a number of hypotheses are retained, rather than being pruned away
as in an SHT.

For these calculations we now use two targets of interest. As before, the targets approach the asset at the
origin from many directions. We assume the two targets are flying in parallel, with various distances from each
other∗. In this section, we particularly focus on searching for the ambiguity of ghost hypotheses as compared to
the truth hypothesis.

Each of the following figures represents the ambiguity between the two parallel targets at each point of the
map. The ambiguity is determined by how well the true hypothesis compares with the next best hypothesis.
Each hypothesis is the set of measurement associations that generate two targets.

The figures show the relative difference in the two best hypotheses scores. With three sensors and two targets,
there should be eight possible hypotheses, though in actuality, there are only four because of symmetry. Of the
four unique hypotheses, we choose the true hypothesis and the hypothesis with the next lowest score, though
in certain cases due to random perturbations, the hypothesis with the lowest score is not necessarily the true
hypothesis. The ratio tells us how much information the score will tell us about which hypothesis is true and
which is the ghost. We take as our metric the ratio between the true hypothesis, and the hypothesis with the
next best score. We define this ratio as “ambiguity”.

∗There are many other target formations one might consider. We choose parallel flight since we believe that is one of
the more difficult configurations.
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Figure 8. Ambiguity map for the target direction to the left 1000 from the sensors. (a) shows target direction. (b)
shows the ambiguity map. Counter-intuitively, there is a region in which the ambiguity is substantially worse closer to
the sensors than it is further away. The reason may be that the parallel motion of the targets orthogonal to the sensor
direction allows the ghosts to appear to travel in constant velocity similar to the true targets.

For each square, the complete initiation method of Section 2 is computed for each ghost and each true target.
The targets are initialized with measurements generated by the two true targets and the sensors. The three
sensors are arranged in an equilateral triangle. They use bearing only measurements with measurement noise
0.01 rad. The targets travel with constant velocity of 50/s (dimensionless space units) towards the point of
interest. Five measurements are used, each 1s apart.

Figure 8 shows a particular target and sensor configurations, and the ambiguity map computed from this
configuration. The figure highlights one of the many non-intuitive properties of angle-only tracking; in this case,
some target locations which are farther away from the sensors have lower ambiguity than targets which are closer
to the sensors.

4. NETWORK ARCHITECTURE

Coordination of multiple distributed sensors through the use of a communications network can substantially
improve track state, feature, and attribute estimates. However, in order to fully utilize this rich collection of
data, we require advanced algorithms for data fusion. We have developed an architectural concept in which
high-dimensional measurement-to-track and low dimensional measurement-to-track tracking can simultaneously
coexist and interact. Figure 9 illustrates the general framework, which we also describe below.

Three-dimensional sensors and their associated composite trackers (CT) communicate with one another over
the HDT (“High Dimensional Tracking”) network. Track initiation is coordinated among the trackers over this
logical network, and associations between measurements and existing tracks are also communicated over this
network. Such association messages are called Associated Measurement Reports or AMR’s.

At the same time, low-dimensional sensors send all of their measurements to a corresponding low-dimensional
tracker (LDT) which maintains 1D or 2D tracks in e.g. bearing or bearing-elevation space. Associations between
low-dimensional measurements and low-dimensional tracks are called LDAMR’s, and these are reported by the
LDT over the LDT logical network.

The Low-Dimensional Initiation and Correlation (LDIC) component is a gatekeeper between the LDT and
HDT networks. It maintains the same high-dimensional track database that all of the CT’s maintain, but it
also attempts to initiate high-dimensional tracks from multiple low-dimensional measurements, and to correlate
low-dimensional tracks to high-dimensional tracks. It therefore consumes LDAMR’s on the LDT logical network,
but also produces and consumes track initiation reports and AMR’s on the HDT network.
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Figure 9. Network hierarchy for mixed high-dimensional and low-dimensional tracking networks.

The network architecture is therefore a hierarchical composition of two networks, with a initiation and
correlation component which acts as a gatekeeper between the two logical networks.

5. CONCLUSIONS

In this paper we have demonstrated that the maximum likelihood estimator is nearly efficient for a model
bearing-only track initiation problem, even though a naive analysis using the CRLB would suggest otherwise.
We also showed the geometric relationship between the accuracy that can be achieved by this estimator and the
configuration of the sensors.

Furthermore, we showed that in multi-target scenarios, ghosting can occur, and the ambiguity in the ghosting
problem can be resolved using kinematic considerations. Similarly to the accuracy, the ambiguity depends on
the geometric arrangement of targets and sensors; some combinations produce more ambiguity than others in
non-intuitive ways.

Finally, we demonstrated a prototype network architecture for integrating low-dimensional and high-dimensional
sensors onto a hierarchy of networks.
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