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ABSTRACT

Reliable detection of hazardous materials is a fundamental requirement of any national security program. Such
materials can take a wide range of forms including metals, radioisotopes, volatile organic compounds, and
biological contaminants. In particular, detection of hazardous materials in highly challenging conditions — such
as in cluttered ambient environments, where complex collections of analytes are present, and with sensors lacking
specificity for the analytes of interest — is an important part of a robust security infrastructure. Sophisticated
single sensor systems provide good specificity for a limited set of analytes but often have cumbersome hardware
and environmental requirements. On the other hand, simple, broadly responsive sensors are easily fabricated
and efficiently deployed, but such sensors individually have neither the specificity nor the selectivity to address
analyte differentiation in challenging environments. However, arrays of broadly responsive sensors can provide
much of the sensitivity and selectivity of sophisticated sensors but without the substantial hardware overhead.
Unfortunately, arrays of simple sensors are not without their challenges — the selectivity of such arrays can only
be realized if the data is first distilled using highly advanced signal processing algorithms. In this paper we will
demonstrate how the use of powerful estimation algorithms, based on those commonly used within the target
tracking community, can be extended to the chemical detection arena. Herein our focus is on algorithms that
not only provide accurate estimates of the mixture of analytes in a sample, but also provide robust measures of
ambiguity, such as covariances.

Keywords: chemical detection, electronic olfaction, Raman spectrograph, maximum likelihood estimation,
Levenberg-Marquardt

1. INTRODUCTION

The detection of hazardous materials is a important part of an effective security infrastructure, and such materials
can take a wide range of forms including metals, radioisotopes, volatile organic compounds, and biological
contaminants.1 In particular, detection of hazardous materials in highly challenging conditions — such as
cluttered ambient environments, complex collections of analytes, and sensors lacking specificity for the analytes
of interest — is an important part of a robust security infrastructure.

Sophisticated single sensor systems (such as mass spectrometers and gas chromatographers) provide good
specificity for a limited set of analytes but often have cumbersome hardware and environmental requirements, such
as sensor size and cost and environment temperature and humidity, to name but a few. Simple, broadly responsive
sensors are easily fabricated, but such sensors individually have neither the specificity nor the selectivity to address
analyte differentiation in challenging environments. In an effort to combine the selectivity of sophisticated sensor
systems with the ease of use of simple sensors, there has been significant work within the chemical analysis
community revolving around the use of arrays of simple sensors. Such arrays can provide much of the sensitivity
and selectivity of sophisticated sensors but without the substantial hardware overhead. For example, an area in
which such sensors arrays might find use is in first responder applications, where size, weight, cost, and ease of
use are paramount. Unfortunately, arrays of simple sensors are not without their challenges. In particular, the
selectivity of such arrays can only be realized if the data is first distilled using highly advanced signal processing

and data fusion algorithms.

There is a vast extant literature on sensor arrays, and several review articles2,3 give an entryway into the
literature. The modern work on such sensor arrays began with sensor arrays containing broadly reactive elements
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that were combined with signal processing/pattern detection algorithms to create a system for analyte detection.4

Such ideas are often referred to using the term electronic nose, with more modern references referring to electronic

olfaction, to emphasize the connection between the work in electronic sensors arrays and the mammalian olfactory
system. The over 1000 olfactory genes in humans (not to mention the greater than 100 million olfactory cells in
a canine) are a natural example of the power and complexity of chemical sensor arrays.3

Several mathematical approaches have been applied to processing data from sensor arrays, and reviews of
the state of the art are available.5 The current methods range from principal component analysis, Fischer linear
discriminants, quadratic discriminants clustering techniques, and other standard mathematical algorithms, to
artificial intelligence approaches including neural networks and fuzzy logic. In effect, many of the current ideas
are drawn from “Pattern Classification”6 and these techniques have been applied from a more “engineering”
point of view. While these techniques are certainly applicable to a subset of the problems of interest, they are
not ubiquitous in their effectiveness. We of course hope to leverage past pattern classification work to the largest
extent possible, but our novel contribution has come from a somewhat different direction.

It is critical to note that chemical sensor arrays achieve their effectiveness by way of data fusion, just as
distributed networks of radar, infra-red, acoustic, etc. sensors are more effective than individual sensor in
target tracking problems.7–9 Of course, there are important differences between the two domains. For example,
chemical sensor arrays have classically been colocated, though we observe that modern chemical sensing systems
are moving toward spatially distributed scenarios as well. Our goal in this article is to highlight the subtle
interaction between the chemical detection and target tracking domains, and demonstrate how they may be
combined to the benefit of both with a particular focus on the correct handling of ambiguity. While the focus of
this article is on colocated sensors, we note that the same approach is applicable to distributed sensors.

Our approach toward the multidimensional chemistry problem stems from Numerica’s experience in the world
of target tracking. We discuss our initial thoughts and first steps towards this novel combination of approaches in
Section 2 and offer several papers10–13 as examples of the exact type of synergy that Numerica hopes to leverage
between chemical detection and target tracking. In Section 3 we will discuss the particular data for the current
analysis, and in Section 4 we derive models of sensor responses which include proper treatment of ambiguity.
Using those models, we demonstrate discrimination algorithms in Section 5 and Section 6 that use not only the
derived estimates but also their covariances to substantially improve the performance of the detection algorithms.

2. MAXIMUM LIKELIHOOD ESTIMATION AND CHEMICAL ANALYSIS

Given an array of simple sensors, one could imagine posing the following non-linear optimization problem: from a
set of measurements and library of sensor responses, often called “analyte exemplars”, one derives an expectation

maximization problem and solves for the concentration of the various exemplars. In other words, one computes
the concentrations of the exemplars that are most likely to have given rise to the observed data. Of course, posing
the problem in such a way is impractical in all but the simplest of cases — one almost never has a complete
library of exemplars and their mutual interactions. Even given a perfect library and a perfect understanding
of the underlying expectation maximization problem, one will almost certainly have difficulty solving the full
non-linear problem because of the size of the parameter space and the presence of local minima. Many of the
algorithms commonly used for multi-dimensional chemical analysis5,6 are various forms of approximation to this
underlying intractable problem.

The stochastic state estimation, signal processing, and data fusion regimes are examples of the ubiquitous
nature of maximum likelihood estimation. These regimes make use of several approximations to precisely the
same underlying problem. The approximations espouse a slightly different view of the underlying estimation
problem and are promising candidates for application to multi-dimensional chemical analysis. However, there
are several issues that hinder the swift application of such algorithms to the chemical detection realm. These
issues and their possible solutions are precisely the topic of this paper.

2.1 Initial Impressions

As previously mentioned the chemical and biological detection problem can be posed as a maximum likelihood
estimation (MLE) problem. In its most generic form, the MLE problem poses the question “Which input to



a given system would most likely produce the observed output?”. In the field of target tracking, the given
system is a set of tracking sensors such as radars. The input to the system is the set of target states, and the
system generates output measurements. Target tracking entails inverting this state-to-measurement operator
to determine the target state that most likely produced the observed measurements. In the field of chemical
detection, the system is a set of chemical sensors. Similarly to the tracking problem, the input to the system is a
list of chemicals and their concentration, perhaps coupled with temperature, pressure, or other information, and
the system generates output measurements. The problem is to determine which chemicals most likely produced
the observed sensor data. Note that in both cases, the sensors are stochastic, i.e., a given input does not always
produce the same output; rather, the output is polluted by some amount of random noise. This noise results
from many phenomena including imperfect sensors and unknown parameters such as thermal effects, to name
but a few.

2.1.1 Benefits of an Estimation View of Chemical Analysis

Fortunately, if the chemical problem can be posed as a maximum likelihood estimation problem, we may draw
on previous research in the well developed field of estimation, which addresses the following important questions:

Given the maximum likelihood estimate for a parameter, what is the covariance of the estimate?

In the chemical case, this means we may ask our estimator not only for its estimate of the concentration of a given
chemical, but also for the covariance of that estimate. The covariance provides information on the deviation of the
true value from expected estimate. This feature is often sorely lacking in more traditional “pattern classification”
approaches. For example an artificial neural network (ANN) is often employed to differentiate between different
classes, but the ANN typically will not be able to report its confidence in addition to the answer. Conversely,
an estimator that returns a mean and a covariance can provide the user statistically rigorous information for
making downstream decisions.

Does representing the estimate as a mean and covariance suffice to capture the underlying

probability density function? There is an underlying assumption in the above question that bears carefully
analysis in the chemical detection domain. Namely, the first question assumes that a Gaussian model is ap-
propriate for the representation of the ambiguity in the estimation problem. Even if the computed mean and
covariance are the correct first two cumulants/moments of the underlying distribution, there is no guarantee that
the higher order cumulants/moments are negligible.

For a given estimation problem, what is the most accurate estimator possible? The Cramér-Rao
inequality specifies a lower bound on the variance of any estimator. It is not always possible to design an
estimator that meets this bound; however, if an estimator does meet the Cramér-Rao bound for a given sensor
and parametrized model, it is considered efficient. In this context, an estimator is efficient if a more accurate
estimator is impossible. While space does not allow an extensive analysis of this topic in the current text, one
can find such details in another paper.14

We emphasize the utility that such research could present to the field of chemical detection. Evaluating the
efficiency of current estimators would shed light on whether current detection is limited by sensor hardware or
software, and research could be directed appropriately. Once an estimator is designed that achieves the Cramér-
Rao Bound for a given sensor, that estimator design may be concluded a success, and efforts to further improve
accuracy may be focused elsewhere, for example, on the sensor hardware.14

2.1.2 Extensions to Estimation

There is a natural division of the target tracking problem along two axes of difficulty: number of sensors and
number of targets. The simplest case is, of course, a single target being tracked by a single sensor. This simple
case is fairly easy to solve — assuming predictable target motion and a linear sensor with white, Gaussian noise
— using a standard linear least squares signal processing approach either by batch processing or recursively by
way of a Kalman filter. In a chemical context, this would be a similar problem to estimating the concentration
of a single analyte given a single, well understood sensor, perhaps a mass spectrometer (MS). Unfortunately,
such simple scenarios are hardly commonplace. The field of target tracking then consists largely of the study of
a number of techniques one may use to extend this solution to cover realistic scenarios. Furthermore, because
sensors are often nonlinear, we use enhanced versions of the Kalman filter, such as the Extended Kalman filter,



the Unscented Kalman filter, or the Particle filter, to solve efficiently the corresponding nonlinear least squares
problem.

When multiple targets are present, but we still have but a single sensor, one may employ an N-dimensional
assignment solver to determine which measurements returned by the sensor are associated with each target.
Translated into a chemical context, this might correspond to a mass spectrometer tasked with detecting several
analytes, of which some, all, or none may be present. In this instance an assignment solver would be required
for determining which peaks (or which fractions of a peak) could be assigned to a given compound.

When tracking with multiple sensors, one must address sensor fusion issues as sensor bias and sensor drift
(temporally dependent bias), among many others. An important issue here is that of network complexities. If
many distributed sensors are used, the data may be too burdensome to transmit in full on the network; ac-
cordingly, advanced algorithms may be used to ensure that all sensors on the network are able to communicate
effectively while using minimal bandwidth.15 In a chemical detection context, these techniques may allow im-
proved performance when using multiple sensors that, for example, are subjected to differing environmental
conditions (temperature, humidity, etc.), causing the measurements to drift independently of each other.

Finally, when we combine multiple sensor with multiple targets, we must integrate all of the solutions pre-
sented above. The combination of bias mitigation and network constraints with multi-frame assignment often
entails both improved performance as well as additional complexity.

We hope that we have convinced the reader of at least some measure of connection between chemical detection
problems and target tracking algorithms. In the rest of this article we expound on that connection and demon-
strate how the combination of the two fields leads to substantially improved chemical detection performance.

2.2 Signal Processing

Several obstacles await those who would implement a maximum likelihood estimator for chemical detection.
Perhaps the most difficult step in implementing an MLE chemical detector is characterizing the sensor, that is,
defining a probability density function (pdf) on the sensor’s output space for each point in its input space.

In the target tracking world, many sensors are well characterized by a Gaussian pdf in their measurement
space. While it is certainly the case that the actual performance of the sensor is far more complicated, a Gaussian
assumption in the measurement space of the sensor is a good approximation for many of the sensors used in
target tracking. This is to say that a radar can be thought of as a machine that performs two operations on its
input: it first transforms the input point from input space into output space, and then it adds approximately
zero-mean Gaussian noise to the transformed point in output space. As an example a 3D radar might transform
a target’s true location in (X, Y, Z) coordinates into a measurement in (range, bearing, azimuth) coordinates
and then add Gaussian noise to the reported (range, bearing, azimuth) measurement. This mechanism can be
written as follows:

z = h(x) + v (1)

where z is the noisy measurement, x is the point in input space, h is the (possibly nonlinear) mapping function
from input space to output space, and v is the Gaussian distributed noise with some covariance R:

v ∼ N(0,R) (2)

For some chemical sensors, this characterization may be straightforward, but for others, the characterization
is difficult. We present the mass spectrometer as an example of a sensor which may be easy to characterize. For
a given input analyte to a mass spectrometer, we consider the output to be a vector containing the entire mass
spectrum. We typically expect that for a pure sample, this vector will contain a relatively small number of large
values; these large values correspond to the peaks for the charge-to-mass ratios that were most prevalent. Data
collected over many runs would show slight variations in peak height and peak location, and it is likely that
these variations could be well characterized by Equation 1 and Equation 2.

In such circumstances the sensor characterization is complete once we can come up with an appropriate
mapping function h and measurement covariance R for each point in the input space. For some sensors this
mapping can be derived through first principles (e.g., deriving the relative frequencies of differing charge-to-mass



ratios in a mass spectrometer), while other sensors exhibit behavior too complex to be modeled by first principles
(e.g., stochastically distributed tin oxide nanowire resistors).

Equation 1, for some appropriate h, will be suitable to describe any type of sensor; however, the h may be
difficult to obtain. On the other hand, Equation 2 may not be a good representation for the noise of a given
sensor, in which case another noise model must be used. Clearly many of the algorithms derived herein require
representations for h and v for particular sensors of interest. Accordingly a key focus of our work has been
on deriving models for which Equation 2 at least roughly holds and that work can be found in Section 4. A
somewhat more subtle point is determining whether a particular h well models a sensor of interest. Clearly an
improperly defined h has profound effect on any algorithms that use such an h. One of the most important facets
of our work has been the detection of sensors for which a particular h and v are a good model of the sensor’s
performance and for which it is not.

3. ELECTRONIC OLFACTION DATA

There are a vast number of different chemical sensors on which one could imagine applying the techniques
from Section 2. Examples of such sensors include tandem mass spectrometers, chemresistors, ion mobility
spectrometers (IMS), differential ion mobility spectrometers (DMS), semi-conductor metal oxide sensors, and
surface acoustic wave sensors.

For this paper we focus our attention on a data set produced from an array of 512 chemresistors. Our
particular set of sensors is challenging both because of their slow response time as well as their particularly noisy
nature, as we see in Section 5. These data sets covers a variety of environmental changes over a 616 minute test
sequence and is particularly interesting to us for several reasons. First, it displays striking non-linearities that are
very reminiscent of some previous work of ours having to do with non-linear maximum likelihood estimators.14

Second, the time dependence of the measurement morphology, sampled over a long period of time, appears to be
something of which we can take advantage. A canonical time sequence from this data set can be seen in Figure 1.
Of particular interest is the fact that two regions that have same underlying environment can have substantially
different morphology, depending on the initial state when the environment changes. This dichotomy between
environment and state is the focus of Section 4.
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Figure 1. The left figure show a canonical time sequence from the 512-sensor data set. This is a plot from a single sensor
over the time period covering the first 1232 minutes of data collection. Note that the data from between zero and 616
minutes and the data between 616 minutes and 1232 minutes look very similar; this is because the data was gathered
twice in identical manners. The right figure shows an example of the exponential decay in the measurements. For a region
in which the environment is not changing, the measurements are decaying to some fixed value related to the contents of
the environment, plus noise. Accordingly, an exponentially decaying model appears appropriate.



4. MODELING AND PARAMETRIZATION

4.1 Derivation

This chapter combines several ideas from Section 2 within the context of the 512-sensor data set discussed
in Section 3. In particular the maximum likelihood estimation ideas from Section 2, representations of the
covariances of the estimates, and standard dimensional reduction concepts have been combined to provided an
analysis framework for the 512-sensor data set.

The first component required for the proposed analysis is a model for the non-stochastic portion of the mea-
surement dynamics. For this model we have assumed that, in a time range of fixed environmental composition,
the measurements will converge exponentially to a particular fixed value, plus noise. Figure 1 shows an example
time series which is indicative of the reason for making this assumption for the current analysis. Of course, the
assumption of exponential decay may very well be incorrect for some, if not many, of the 512 sensors. Perhaps
for a given sensor it is even correct for some analytes and incorrect for others. One of the novel parts of our
approach is that the model mismatch is detected and accounted for in the final fusion algorithm.

Note that we do not assume that during any interval the measurements reach their final equilibrium state.
For that reason we do not estimate the current position of a measurement, but instead endeavor to estimate the
most likely asymptotic final value of the set of measurements. As shown in Figure 2, the sensor value returned
for a given environment depends on the sensor’s past environments, whereas the asymptotic value will not. This
is akin to a joint state/parameter estimation problem, quite common in target tracking.

To be precise, we endeavor to find a curve of the form

y = f(a, b, c, x) = aebx + c (3)

that best fits the data in a least-squares sense. As the dependence of the errors in the fit are a non-linear
function of the input parameters [a, b, c], we solve this problems using a Levenberg-Marquardt method originally
appearing in.16,17 Levenberg-Marquardt couples a gradient descent method with a Gauss-Newton algorithm to
combine the robustness of the gradient descent with the fast convergence of Gauss-Newton approach.

One interesting facet of the above approach is that once a non-linear optimization problem is proposed, there
is great freedom in the choice of which non-linear problem is actually solved. In particular, the parametrization
chosen in Equation 3 in terms of [a, b, c], while rather simple, is not the most desirable for our actual numerical
calculations. Other parametrization one might consider are

y = f(y0, ẏ0, y∞, x) (4)

where y∞ represents the asymptotic value of y, or

y = f(y0, ẏ0, ÿ0, x). (5)

The parametrization in terms of [a, b, c] can be determined from the other parametrization (4 and 5) by solving
the following equations:

y0 = aebx0 + c (6)

ẏ0 = abebx0 (7)

ÿ0 = ab2ebx0 (8)

y∞ = c (9)

Note, all of these parametrizations are equivalent. We say two parametrization [a0, b0, c0] and [a1, b1, c1] are
equivalent if there exists a diffeomorphism g such that

[a0, b0, c0] = g(a1, b1, c1). (10)

In other words, a solution to the problem of interest in one parametrization can be smoothly mapped to a solution
in the other parametrization.

Of course, two equivalent parametrization may not have the same performance within a numerical scheme
such as Levenberg-Marquardt in terms of their robustness and convergence rates, and indeed that is the case
here. Our experimentation reveals that the parametrization in Equation 5 is superior to that in both Equation 4
and Equation 3.



4.2 Results

Given the problem derivation in Section 4.1, we study the 512-sensor data set discussed in Section 3. We endeavor
to categorize the various environments given in the 512-sensor data set by the c parameter we compute using
the non-linear estimator in the previous section. The c parameter is the asymptotic value we predict as x goes
to infinity, and it should be independent of the previous environment as we move along the time sequence.

Our first set of calculations is intended to be a proof of concept, and makes use of the fact that we know over
which regions the environment is constant. Note that we do not make any assumptions about the environment
composition in each segment, though we do know when the environment changes. Of course, such an assumption
cannot be made for a real system,but one can consider these calculations to be training data which we use as
an input to some recursive method. They identify the characteristics of the data (such as the moments of their
probability density function) that we may endeavor to detect using a recursive estimator.

Our first result in shown in Figure 2. In this plot we have used the batch estimator above to compute the
asymptotic c value of the exponential decay. In Figure 2 we show three different environments labeled AIR,
WET, and WET+IDLH. Note that even though the measurement sequences are quite different, both the AIR
and the WET regions get similar markings, both in the mean and covariance of the estimates. On the other hand,
while the WET+IDLH area is visually similar to the adjoining WET areas, the both the mean and covariance
of the estimate are substantially different.

In Section 5 we analyze the performance of sensors based upon several characteristics, not the least of which
is the variances they produce. The variance derivation in Section 4.1 plays a similarly substantial role, now just
viewed from a different perspective.
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Figure 2. Plot (a) shows that while the measurements appear to decay to a fixed value, plus noise, based upon the current
state of the environment, their exact values depend not only upon the final state they are attracted to, but also upon their
initial state. For example, the two regions marked AIR should both identified as such even though the morphology of the
two measurement sequences are quite different. Plot (b) shows an example calculation. The red dots denote the mean of
the c estimate using the estimator from Section 4.1, while the error bars denote the variance. Roughly speaking, the WET
and AIR regions are well differentiated because the distance between their means, normalized by their variances, is large.
On the other hand, the smaller amount of data and large variance in the WET+IDLH region makes the differentiation of
the WET and WET+IDLH regions less apparent. Accordingly, in Section 5 we study those sensors that have variances
which are ubiquitously small even in the presence of regions with small amounts of data.

5. SENSOR SELECTION

As opposed to Section 4 where the focus is on computations involving single sensors, here we change our focus to
sensor fusion. In particular we show in Section 6 that a näıve Fisher Linear Discriminants (FLD) implementation
gives rise to erroneous results. In this chapter we examine the 512-sensor data set and propose preprocessing
techniques that are applicable to more robust FLS analysis. One feature of particular note in this section is a
discussion of the subtle roles that both errors and variances play in the analysis of sensor quality.



5.1 Data Analysis and Normalization

For an FLD-like method to be maximally effective, it is required that the input data satisfy certain constraints.
For example, in Figure 3 one may observe that the maximum value of a particular sensor’s response varies wildly
over the set of 512 sensors, by as much as four orders of magnitude. As is well known, these large variations have
a tendency to emphasize the sensors with large values over the sensors with small values in an FLD analysis, even
when the sensors with large values may not be particularly sensitive to the analytes of interest or are particularly
noisy. Accordingly, we take the obvious step of normalizing each sensor so that they all vary over a fixed range,
in this case [0, 1].
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Figure 3. Plot (a) shows the maximum amplitude achieved by each sensor in the 512-sensor data set over the entire
run. The maximum sensor c values vary by more than four orders of magnitude, which, in many discrimination schemes,
will cause the smaller sensor responses to be essentially ignored. To allow all sensors a fair chance at selecting for the
analytes of interest, we first normalize the sensor data by scaling it such that it falls in the [0, 1] interval. Plot (b) shows
the normalized maximum RSS error for each sensor, after normalization, sorted by value. This offers a quick glimpse of
the relative frequency of sensors with a given level of accuracy. In particular the worst 5% or so of the sensors exhibit
a much poorer fit to the exponential model than do the majority of sensors; when we select sensors to be used for
discrimination, we will prohibit these sensors from being used. Plot (c) shows the maximum standard deviation reported
by the Levenberg-Marquardt minimizer. These values show a dramatic variation and will also be used to select which
sensors are used for classification.

We leverage the results in Section 4 and compute the c values for both the unnormalized and normalized
sensors. As one might expect, and is demonstrated in Figure 3, the c values for the unnormalized data vary
even more wildly than the original data, while the c values for the normalized data are much more well behaved.
Modulo a small number of outliers, the maximum c value for each sensor varies over only one order of magnitude
and presents a much more promising scenario for an FLD analysis. One might be tempted to remove the few
outliers and proceed with an analysis, but the derivation of the c values in Section 4 gives rise to a more powerful
and rigorous approach.

In particular, the calculations in Section 4 provide not only values of c for each environmental region across
the 512 sensors, but also estimates of the variances (the square of the standard deviation) of c and the error

of the exponential decay fit. Figure 3 shows plots of the maximum standard deviation and error for both the
normalized data. As one may observe, the maximum standard deviations and errors range over several orders
of magnitude. There are several possible reasons for the wide variation, including an insufficient number of
iterations of the Levenberg-Marquardt, variations in the noise characteristics of different sensors, or, perhaps
most importantly, a sensor whose response is not correctly captured by the exponential decay model in Section 4.

Regardless of the reason, the statistical information provided by the Levenberg-Marquardt algorithm provides
a powerful tool for separating those sensors that are well modeled by the exponential decay assumptions in
Section 4 from those that are not. At this point the attentive reader might wonder why we examine both the
variances and the errors, since the errors are just draws from the probability density function defined by the
variance. Unfortunately, there are subtleties of which one must take into account for a proper evaluation of the
sensors. First, a Levenberg-Marquardt algorithm returns a variance which assumes the underlying distribution of
the errors is Gaussian. If this is not the case, then the variance can be overly optimistic and the actual errors can



be much larger than one would expect. Second, if one has small amounts of data, it might very well be that the
errors of the fit are unrealistically small even though the variance of the estimated c parameter, in a Cramer-Rao
sense, is large. In other words if we desire to accurately describe a sensor’s motion with an exponential decay
c parameter, we must ensure that two conditions are met: the exponential model must fit fairly well with the
observed data, and the variance of the computed c parameter must not be too large. Accordingly, we use both

variance and error as measures of the quality of the sensors.

Currently, our criterion for choosing the cut-off for the errors and standard deviations is rather ad hoc; we
choose the cut-offs so that approximately 1

4
of the sensors would remain after down selection. Of course, more

rigorous criterions are certainly desirous, but even these rather rough cut-offs lead to a set of sensors which has
given rise to the substantially improved results in our FLD analysis in Section 6.

6. DISCRIMINATION RESULTS

6.1 Introduction

In this chapter we apply the results from Section 2, Section 4, and Section 5 to standard methods in classification
(Fisher linear discriminants). We compare and contrast classification results along two dimensions of interest.
Along the first dimension, we evaluate the potential performance gains one may achieve by fusing a subset
consisting of the best (in a variance and error sense) eleven out of 512 sensors versus all 512. Along the second
dimension, we examine performance changes when one classifies the c value estimates rather than the raw sensor
data (Section 4).

We demonstrate an application of FLD to the data from Section 3 in Figure 4. In keeping with industry
standard practices, we show Receiver Operating Characteristic (ROC) curves for each of the four classifiers. If
we assume that the two classes (positive and negative for a given analyte) have identical covariances and that
a false positive is just as undesirable as a false negative, then the decision threshold for FLD falls at zero. This
threshold is plotted as a red circle in Figure 4. As one can see, the application of Fisher discriminants to the
original data does not provide an accurate classification of the measurements which have an IDLH concentration
of our analyte versus the those measurements which do not have an IDLH concentration of our analyte. Similarly,
using either the computed invariant descriptor c values or the low error/low variance sensors by themselves∗ also
leads to inaccurate classification. It is only the use of the computed invariant descriptor c values in tandem with
the low error/low variance sensors that leads to a completely correct classification.

7. CONCLUSIONS

One of the major highlights of our work is deriving a batch parameter estimator to solve a non-linear least
squares problem based on the Levenberg-Marquardt algorithm. We have examined the entire 512-sensor data
set, and created a preprocessing method to determine the sensors that provide more important information for
the purpose of detecting the analytes. It has been our observation that the effectiveness of the provided set
of sensors varies wildly, and we therefore endeavored to separate out sensors which satisfy a particular set of
statistical measures. Here we have another of the core results of this work. From first principles, and without

a priori recourse to information on particular sensor morphologies, we detected which sensors are well modeled
by the work in Section 4. Using these methods we are able to select the best sensors, removing those that may
pollute future calculations, but retaining those that provide useful information. Section 6 wraps up our study on
discrimination by applying Fisher’s Linear Discriminants to a carefully chosen subset of the 512 sensors in the
data set. We demonstrate improvement in data classification using both exponential modeling or using sensor
set pruning.
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Figure 4. Four examples of Fisher linear discriminants using various preprocessing techniques. Within each plot the y-axis
is used to differentiate training data from testing data as well as measurements with IDLH concentration of our analyte
from those without. The top left plot uses the raw data for all the sensors, the top right plot uses the raw data from with
low error/low variance c values, the bottom left plot uses the invariant descriptor c values from all the sensors, and the
bottom right plot uses the invariant descriptor c values from the low error/low variance sensors. The best (in this case,
complete) classification of the testing data occurs for the combination of invariant descriptor c values and low error/low
variance sensors (bottom right). Note that both the modeling and covariance calculations in Section 4 are required to
achieve 100% correct classification. Without proper covariance calculations, so common in target tracking but quite
uncommon in chemical detection, correct classification is not achievable in this context.
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