
Statistical Relational
Learning

Pedro Domingos
Dept. of Computer Science & Eng.

University of Washington

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Motivation
  Most learners assume i.i.d. data

(independent and identically distributed)
  One type of object
  Objects have no relation to each other

  Real applications:
dependent, variously distributed data
  Multiple types of objects
  Relations between objects

Examples
  Web search
  Information extraction
  Natural language processing
  Perception
  Medical diagnosis
  Computational biology
  Social networks
  Ubiquitous computing
  Etc.

Costs and Benefits of SRL

  Benefits
  Better predictive accuracy
  Better understanding of domains
  Growth path for machine learning

  Costs
  Learning is much harder
  Inference becomes a crucial issue
  Greater complexity for user

Goal and Progress
  Goal:

Learn from non-i.i.d. data as easily
as from i.i.d. data

  Progress to date
  Burgeoning research area
  We’re “close enough” to goal
  Easy-to-use open-source software available

  Lots of research questions (old and new)

Plan

  We have the elements:
  Probability for handling uncertainty
  Logic for representing types, relations,

and complex dependencies between them
  Learning and inference algorithms for each

  Figure out how to put them together
  Tremendous leverage on a wide range of

applications

Disclaimers
  Not a complete survey of statistical

relational learning
  Or of foundational areas
  Focus is practical, not theoretical
  Assumes basic background in logic,

probability and statistics, etc.
  Please ask questions
  Tutorial and examples available at

alchemy.cs.washington.edu

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Markov Networks
  Undirected graphical models

Cancer

Cough Asthma

Smoking

  Potential functions defined over cliques
Smoking Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 2.7

True True 4.5

Markov Networks
  Undirected graphical models

  Log-linear model:

Weight of Feature i Feature i

Cancer

Cough Asthma

Smoking

Hammersley-Clifford Theorem

If Distribution is strictly positive (P(x) > 0)
And Graph encodes conditional independences
Then Distribution is product of potentials over

 cliques of graph

Inverse is also true.
(“Markov network = Gibbs distribution”)

Markov Nets vs. Bayes Nets
Property Markov Nets Bayes Nets
Form Prod. potentials Prod. potentials

Potentials Arbitrary Cond. probabilities

Cycles Allowed Forbidden

Partition func. Z = ? Z = 1

Indep. check Graph separation D-separation

Indep. props. Some Some

Inference MCMC, BP, etc. Convert to Markov

Inference in Markov Networks
  Goal: Compute marginals & conditionals of

  Exact inference is #P-complete
  Conditioning on Markov blanket is easy:

  Gibbs sampling exploits this

MCMC: Gibbs Sampling

state ← random truth assignment
for i ← 1 to num-samples do
 for each variable x
 sample x according to P(x|neighbors(x))
 state ← state with new value of x
P(F) ← fraction of states in which F is true

Other Inference Methods

  Many variations of MCMC
  Belief propagation (sum-product)
  Variational approximation
  Exact methods

MAP/MPE Inference

  Goal: Find most likely state of world given
evidence

Query Evidence

MAP Inference Algorithms

  Iterated conditional modes
  Simulated annealing
  Graph cuts
  Belief propagation (max-product)

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Learning Markov Networks

  Learning parameters (weights)
  Generatively
  Discriminatively

  Learning structure (features)
  In this tutorial: Assume complete data

(If not: EM versions of algorithms)

Generative Weight Learning

  Maximize likelihood or posterior probability
  Numerical optimization (gradient or 2nd order)
  No local maxima

  Requires inference at each step (slow!)

No. of times feature i is true in data

Expected no. times feature i is true according to model

Pseudo-Likelihood

  Likelihood of each variable given its
neighbors in the data

  Does not require inference at each step
  Consistent estimator
  Widely used in vision, spatial statistics, etc.
  But PL parameters may not work well for

long inference chains

Discriminative Weight Learning

  Maximize conditional likelihood of query (y)
given evidence (x)

  Approximate expected counts by counts in
MAP state of y given x	

No. of true groundings of clause i in data

Expected no. true groundings according to model

Other Weight Learning
Approaches

  Generative: Iterative scaling
  Discriminative: Max margin

Structure Learning

  Start with atomic features
  Greedily conjoin features to improve score
  Problem: Need to reestimate weights for

each new candidate
  Approximation: Keep weights of previous

features constant

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

First-Order Logic
  Constants, variables, functions, predicates

E.g.: Anna, x, MotherOf(x), Friends(x, y)
  Literal: Predicate or its negation
  Clause: Disjunction of literals
  Grounding: Replace all variables by constants

E.g.: Friends (Anna, Bob)
  World (model, interpretation):

Assignment of truth values to all ground
predicates

Inference in First-Order Logic
  Traditionally done by theorem proving

(e.g.: Prolog)
  Propositionalization followed by model

checking turns out to be faster (often a lot)
  Propositionalization:

Create all ground atoms and clauses
  Model checking: Satisfiability testing
  Two main approaches:

  Backtracking (e.g.: DPLL)
  Stochastic local search (e.g.: WalkSAT)

Satisfiability
  Input: Set of clauses

(Convert KB to conjunctive normal form (CNF))
  Output: Truth assignment that satisfies all clauses,

or failure
  The paradigmatic NP-complete problem
  Solution: Search
  Key point:

Most SAT problems are actually easy
  Hard region: Narrow range of

#Clauses / #Variables

Backtracking

  Assign truth values by depth-first search
  Assigning a variable deletes false literals

and satisfied clauses
  Empty set of clauses: Success
  Empty clause: Failure
  Additional improvements:

  Unit propagation (unit clause forces truth value)
  Pure literals (same truth value everywhere)

The DPLL Algorithm
if CNF is empty then
 return true
else if CNF contains an empty clause then
 return false
else if CNF contains a pure literal x then
 return DPLL(CNF(x))
else if CNF contains a unit clause {u} then
 return DPLL(CNF(u))
else
 choose a variable x that appears in CNF
 if DPLL(CNF(x)) = true then return true
 else return DPLL(CNF(¬x))

Stochastic Local Search

  Uses complete assignments instead of partial
  Start with random state
  Flip variables in unsatisfied clauses
  Hill-climbing: Minimize # unsatisfied clauses
  Avoid local minima: Random flips
  Multiple restarts

The WalkSAT Algorithm

for i ← 1 to max-tries do
 solution = random truth assignment
 for j ← 1 to max-flips do
 if all clauses satisfied then
 return solution
 c ← random unsatisfied clause
 with probability p
 flip a random variable in c
 else
 flip variable in c that maximizes
 number of satisfied clauses
return failure

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Rule Induction
  Given: Set of positive and negative examples of

some concept
  Example: (x1, x2, … , xn, y)
  y: concept (Boolean)
  x1, x2, … , xn: attributes (assume Boolean)

  Goal: Induce a set of rules that cover all positive
examples and no negative ones
  Rule: xa ^ xb ^ … ⇒ y (xa: Literal, i.e., xi or its negation)
  Same as Horn clause: Body ⇒ Head
  Rule r covers example x iff x satisfies body of r

  Eval(r): Accuracy, info. gain, coverage, support, etc.

Learning a Single Rule

head ← y
body ← Ø
repeat
 for each literal x
 rx ← r with x added to body
 Eval(rx)
 body ← body ^ best x
until no x improves Eval(r)
return r

Learning a Set of Rules

R ← Ø
S ← examples
repeat
 learn a single rule r
 R ← R U { r }
 S ← S − positive examples covered by r
until S contains no positive examples
return R

First-Order Rule Induction
  y and xi are now predicates with arguments

E.g.: y is Ancestor(x,y), xi is Parent(x,y)
  Literals to add are predicates or their negations
  Literal to add must include at least one variable

already appearing in rule
  Adding a literal changes # groundings of rule

E.g.: Ancestor(x,z) ^ Parent(z,y) ⇒ Ancestor(x,y)
  Eval(r) must take this into account

E.g.: Multiply by # positive groundings of rule
 still covered after adding literal

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Plethora of Approaches
  Knowledge-based model construction

[Wellman et al., 1992]
  Stochastic logic programs [Muggleton, 1996]
  Probabilistic relational models

[Friedman et al., 1999]
  Relational Markov networks [Taskar et al., 2002]
  Bayesian logic [Milch et al., 2005]
  Markov logic [Richardson & Domingos, 2006]
  And many others!

Key Dimensions
  Logical language

First-order logic, Horn clauses, frame systems
  Probabilistic language

Bayes nets, Markov nets, PCFGs
  Type of learning

  Generative / Discriminative
  Structure / Parameters
  Knowledge-rich / Knowledge-poor

  Type of inference
  MAP / Marginal
  Full grounding / Partial grounding / Lifted

Knowledge-Based
Model Construction
  Logical language: Horn clauses
  Probabilistic language: Bayes nets

  Ground atom → Node
  Head of clause → Child node
  Body of clause → Parent nodes
  >1 clause w/ same head → Combining function

  Learning: ILP + EM
  Inference: Partial grounding + Belief prop.

Stochastic Logic Programs

  Logical language: Horn clauses
  Probabilistic language:

Probabilistic context-free grammars
  Attach probabilities to clauses
  .Σ Probs. of clauses w/ same head = 1

  Learning: ILP + “Failure-adjusted” EM
  Inference: Do all proofs, add probs.

Probabilistic Relational Models
  Logical language: Frame systems
  Probabilistic language: Bayes nets

  Bayes net template for each class of objects
  Object’s attrs. can depend on attrs. of related objs.
  Only binary relations
  No dependencies of relations on relations

  Learning:
  Parameters: Closed form (EM if missing data)
  Structure: “Tiered” Bayes net structure search

  Inference: Full grounding + Belief propagation

Relational Markov Networks
  Logical language: SQL queries
  Probabilistic language: Markov nets

  SQL queries define cliques
  Potential function for each query
  No uncertainty over relations

  Learning:
  Discriminative weight learning
  No structure learning

  Inference: Full grounding + Belief prop.

Bayesian Logic
  Logical language: First-order semantics
  Probabilistic language: Bayes nets

  BLOG program specifies how to generate relational world
  Parameters defined separately in Java functions
  Allows unknown objects
  May create Bayes nets with directed cycles

  Learning: None to date
  Inference:

  MCMC with user-supplied proposal distribution
  Partial grounding

Markov Logic
  Logical language: First-order logic
  Probabilistic language: Markov networks

  Syntax: First-order formulas with weights
  Semantics: Templates for Markov net features

  Learning:
  Parameters: Generative or discriminative
  Structure: ILP with arbitrary clauses and MAP score

  Inference:
  MAP: Weighted satisfiability
  Marginal: MCMC with moves proposed by SAT solver
  Partial grounding + Lazy inference

Markov Logic

  Most developed approach to date
  Many other approaches can be viewed as

special cases
  Main focus of rest of this tutorial

Markov Logic: Intuition

  A logical KB is a set of hard constraints
on the set of possible worlds

  Let’s make them soft constraints:
When a world violates a formula,
It becomes less probable, not impossible

  Give each formula a weight
(Higher weight ⇒ Stronger constraint)

Markov Logic: Definition
  A Markov Logic Network (MLN) is a set of

pairs (F, w) where
  F is a formula in first-order logic
  w is a real number

  Together with a set of constants,
it defines a Markov network with
  One node for each grounding of each predicate in

the MLN
  One feature for each grounding of each formula F

in the MLN, with the corresponding weight w

Example: Friends & Smokers

Example: Friends & Smokers

Example: Friends & Smokers

Example: Friends & Smokers

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

Cancer(A)

Smokes(A) Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

Cancer(A)

Smokes(A) Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

Cancer(A)

Smokes(A) Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Markov Logic Networks
  MLN is template for ground Markov nets
  Probability of a world x:

  Typed variables and constants greatly reduce
size of ground Markov net

  Functions, existential quantifiers, etc.
  Infinite and continuous domains

Weight of formula i No. of true groundings of formula i in x

Relation to Statistical Models
  Special cases:

  Markov networks
  Markov random fields
  Bayesian networks
  Log-linear models
  Exponential models
  Max. entropy models
  Gibbs distributions
  Boltzmann machines
  Logistic regression
  Hidden Markov models
  Conditional random fields

  Obtained by making all
predicates zero-arity

  Markov logic allows
objects to be
interdependent
(non-i.i.d.)

Relation to First-Order Logic

  Infinite weights ⇒ First-order logic
  Satisfiable KB, positive weights ⇒

Satisfying assignments = Modes of distribution
  Markov logic allows contradictions between

formulas

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

Query Evidence

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

  This is just the weighted MaxSAT problem
  Use weighted SAT solver

(e.g., MaxWalkSAT [Kautz et al., 1997])
  Potentially faster than logical inference (!)

The MaxWalkSAT Algorithm

for i ← 1 to max-tries do
 solution = random truth assignment
 for j ← 1 to max-flips do
 if ∑ weights(sat. clauses) > threshold then
 return solution
 c ← random unsatisfied clause
 with probability p
 flip a random variable in c
 else
 flip variable in c that maximizes
 ∑ weights(sat. clauses)
return failure, best solution found

But … Memory Explosion

  Problem:
If there are n constants
and the highest clause arity is c,
the ground network requires O(n) memory

  Solution:
Exploit sparseness; ground clauses lazily
→ LazySAT algorithm [Singla & Domingos, 2006]

c

Computing Probabilities

  P(Formula|MLN,C) = ?
  MCMC: Sample worlds, check formula holds
  P(Formula1|Formula2,MLN,C) = ?
  If Formula2 = Conjunction of ground atoms

  First construct min subset of network necessary to
answer query (generalization of KBMC)

  Then apply MCMC (or other)
  Can also do lifted inference [Braz et al, 2005]

Ground Network Construction

network ← Ø
queue ← query nodes
repeat
 node ← front(queue)
 remove node from queue
 add node to network
 if node not in evidence then
 add neighbors(node) to queue
until queue = Ø

But … Insufficient for Logic

  Problem:
Deterministic dependencies break MCMC
Near-deterministic ones make it very slow

  Solution:
Combine MCMC and WalkSAT
→ MC-SAT algorithm [Poon & Domingos, 2006]

Learning

  Data is a relational database
  Closed world assumption (if not: EM)
  Learning parameters (weights)
  Learning structure (formulas)

  Parameter tying: Groundings of same clause

  Generative learning: Pseudo-likelihood
  Discriminative learning: Cond. likelihood,

use MC-SAT or MaxWalkSAT for inference

Weight Learning

No. of times clause i is true in data

Expected no. times clause i is true according to MLN

Structure Learning
  Generalizes feature induction in Markov nets
  Any inductive logic programming approach can be

used, but . . .
  Goal is to induce any clauses, not just Horn
  Evaluation function should be likelihood
  Requires learning weights for each candidate
  Turns out not to be bottleneck
  Bottleneck is counting clause groundings
  Solution: Subsampling

Structure Learning

  Initial state: Unit clauses or hand-coded KB
  Operators: Add/remove literal, flip sign
  Evaluation function:

Pseudo-likelihood + Structure prior
  Search: Beam, shortest-first, bottom-up

[Kok & Domingos, 2005; Mihalkova & Mooney, 2007]

Alchemy
Open-source software including:
  Full first-order logic syntax
  Generative & discriminative weight learning
  Structure learning
  Weighted satisfiability and MCMC
  Programming language features

alchemy.cs.washington.edu

Alchemy Prolog BUGS

Represent-
ation

F.O. Logic +
Markov nets

Horn
clauses

Bayes
nets

Inference Model check-
ing, MC-SAT

Theorem
proving

Gibbs
sampling

Learning Parameters
& structure

No Params.

Uncertainty Yes No Yes

Relational Yes Yes No

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Applications
  Basics
  Logistic regression
  Hypertext classification
  Information retrieval
  Entity resolution
  Hidden Markov models
  Information extraction

  Statistical parsing
  Semantic processing
  Bayesian networks
  Relational models
  Robot mapping
  Planning and MDPs
  Practical tips

Running Alchemy

  Programs
  Infer
  Learnwts
  Learnstruct

  Options

  MLN file
  Types (optional)
  Predicates
  Formulas

  Database files

Uniform Distribn.: Empty MLN

Example: Unbiased coin flips

Type: flip = { 1, … , 20 }
Predicate: Heads(flip)

Binomial Distribn.: Unit Clause
Example: Biased coin flips
Type: flip = { 1, … , 20 }
Predicate: Heads(flip)
Formula: Heads(f)
Weight: Log odds of heads:

By default, MLN includes unit clauses for all predicates
(captures marginal distributions, etc.)

Multinomial Distribution
Example: Throwing die

Types: throw = { 1, … , 20 }
 face = { 1, … , 6 }
Predicate: Outcome(throw,face)
Formulas: Outcome(t,f) ^ f != f’ => !Outcome(t,f’).
 Exist f Outcome(t,f).

Too cumbersome!

Multinomial Distrib.: ! Notation
Example: Throwing die

Types: throw = { 1, … , 20 }
 face = { 1, … , 6 }
Predicate: Outcome(throw,face!)
Formulas:

Semantics: Arguments without “!” determine arguments with “!”.
Also makes inference more efficient (triggers blocking).

Multinomial Distrib.: + Notation
Example: Throwing biased die

Types: throw = { 1, … , 20 }
 face = { 1, … , 6 }
Predicate: Outcome(throw,face!)
Formulas: Outcome(t,+f)

Semantics: Learn weight for each grounding of args with “+”.

Logistic regression:

Type: obj = { 1, ... , n }
Query predicate: C(obj)
Evidence predicates: Fi(obj)
Formulas: a C(x)
 bi Fi(x) ^ C(x)

Resulting distribution:

Therefore:

Alternative form: Fi(x) => C(x)

Logistic Regression

Text Classification
page = { 1, … , n }
word = { … }
topic = { … }

Topic(page,topic!)
HasWord(page,word)

!Topic(p,t)
HasWord(p,+w) => Topic(p,+t)

Text Classification
Topic(page,topic!)
HasWord(page,word)

HasWord(p,+w) => Topic(p,+t)

Hypertext Classification
Topic(page,topic!)
HasWord(page,word)
Links(page,page)

HasWord(p,+w) => Topic(p,+t)
Topic(p,t) ^ Links(p,p') => Topic(p',t)

Cf. S. Chakrabarti, B. Dom & P. Indyk, “Hypertext Classification
Using Hyperlinks,” in Proc. SIGMOD-1998.

Information Retrieval
InQuery(word)
HasWord(page,word)
Relevant(page)

InQuery(w+) ^ HasWord(p,+w) => Relevant(p)
Relevant(p) ^ Links(p,p’) => Relevant(p’)

Cf. L. Page, S. Brin, R. Motwani & T. Winograd, “The PageRank Citation
Ranking: Bringing Order to the Web,” Tech. Rept., Stanford University, 1998.

Problem: Given database, find duplicate records

HasToken(token,field,record)
SameField(field,record,record)
SameRecord(record,record)

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’)
 => SameField(f,r,r’)
SameField(f,r,r’) => SameRecord(r,r’)
SameRecord(r,r’) ^ SameRecord(r’,r”)
 => SameRecord(r,r”)

Cf. A. McCallum & B. Wellner, “Conditional Models of Identity Uncertainty
with Application to Noun Coreference,” in Adv. NIPS 17, 2005.

Entity Resolution

Can also resolve fields:

HasToken(token,field,record)
SameField(field,record,record)
SameRecord(record,record)

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’)
 => SameField(f,r,r’)
SameField(f,r,r’) <=> SameRecord(r,r’)
SameRecord(r,r’) ^ SameRecord(r’,r”)
 => SameRecord(r,r”)
SameField(f,r,r’) ^ SameField(f,r’,r”)
 => SameField(f,r,r”)

More: P. Singla & P. Domingos, “Entity Resolution with
Markov Logic”, in Proc. ICDM-2006.

Entity Resolution

Hidden Markov Models
obs = { Obs1, … , ObsN }
state = { St1, … , StM }
time = { 0, … , T }

State(state!,time)
Obs(obs!,time)

State(+s,0)
State(+s,t) => State(+s',t+1)
Obs(+o,t) => State(+s,t)

Information Extraction

  Problem: Extract database from text or
semi-structured sources

  Example: Extract database of publications
from citation list(s) (the “CiteSeer problem”)

  Two steps:
  Segmentation:

Use HMM to assign tokens to fields
  Entity resolution:

Use logistic regression and transitivity

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) <=> InField(i+1,+f,c)
f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)
 ^ InField(i’,+f,c’) => SameField(+f,c,c’)
SameField(+f,c,c’) <=> SameCit(c,c’)
SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”)
SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Information Extraction

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) ^ !Token(“.”,i,c) <=> InField(i+1,+f,c)
f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)
 ^ InField(i’,+f,c’) => SameField(+f,c,c’)
SameField(+f,c,c’) <=> SameCit(c,c’)
SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”)
SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

More: H. Poon & P. Domingos, “Joint Inference in Information
Extraction”, in Proc. AAAI-2007.

Information Extraction

Statistical Parsing
  Input: Sentence
  Output: Most probable parse
  PCFG: Production rules

with probabilities
E.g.: 0.7 NP → N
 0.3 NP → Det N

  WCFG: Production rules
with weights (equivalent)

  Chomsky normal form:
 A → B C or A → a

S

John ate the pizza

NP
VP

N
V

NP

Det N

Statistical Parsing
  Evidence predicate: Token(token,position)

E.g.: Token(“pizza”, 3)
  Query predicates: Constituent(position,position)

E.g.: NP(2,4)
  For each rule of the form A → B C:

Clause of the form B(i,j) ^ C(j,k) => A(i,k)
E.g.: NP(i,j) ^ VP(j,k) => S(i,k)

  For each rule of the form A → a:
Clause of the form Token(a,i) => A(i,i+1)
E.g.: Token(“pizza”, i) => N(i,i+1)

  For each nonterminal:
Hard formula stating that exactly one production holds

  MAP inference yields most probable parse

Semantic Processing
  Weighted definite clause grammars:

Straightforward extension
  Combine with entity resolution:

NP(i,j) => Entity(+e,i,j)
  Word sense disambiguation:

Use logistic regression
  Semantic role labeling:

Use rules involving phrase predicates
  Building meaning representation:

Via weighted DCG with lambda calculus
(cf. Zettlemoyer & Collins, UAI-2005)

  Another option:
Rules of the form Token(a,i) => Meaning
and MeaningB ^ MeaningC ^ … => MeaningA

  Facilitates injecting world knowledge into parsing

Semantic Processing
Example: John ate pizza.

Grammar: S → NP VP VP → V NP V → ate
 NP → John NP → pizza

Token(“John”,0) => Participant(John,E,0,1)
Token(“ate”,1) => Event(Eating,E,1,2)
Token(“pizza”,2) => Participant(pizza,E,2,3)
Event(Eating,e,i,j) ^ Participant(p,e,j,k)
 ^ VP(i,k) ^ V(i,j) ^ NP(j,k) => Eaten(p,e)
Event(Eating,e,j,k) ^ Participant(p,e,i,j)
 ^ S(i,k) ^ NP(i,j) ^ VP(j,k) => Eater(p,e)
Event(t,e,i,k) => Isa(e,t)

Result: Isa(E,Eating), Eater(John,E), Eaten(pizza,E)

Bayesian Networks
  Use all binary predicates with same first argument

(the object x).
  One predicate for each variable A: A(x,v!)
  One clause for each line in the CPT and

value of the variable
  Context-specific independence:

One Horn clause for each path in the decision tree
  Logistic regression: As before
  Noisy OR: Deterministic OR + Pairwise clauses

Relational Models
  Knowledge-based model construction

  Allow only Horn clauses
  Same as Bayes nets, except arbitrary relations
  Combin. function: Logistic regression, noisy-OR or external

  Stochastic logic programs
  Allow only Horn clauses
  Weight of clause = log(p)
  Add formulas: Head holds => Exactly one body holds

  Probabilistic relational models
  Allow only binary relations
  Same as Bayes nets, except first argument can vary

Relational Models
  Relational Markov networks

  SQL → Datalog → First-order logic
  One clause for each state of a clique
  * syntax in Alchemy facilitates this

  Bayesian logic
  Object = Cluster of similar/related observations
  Observation constants + Object constants
  Predicate InstanceOf(Obs,Obj) and clauses using it

  Unknown relations: Second-order Markov logic
 S. Kok & P. Domingos, “Statistical Predicate Invention”, in
Proc. ICML-2007. (Tomorrow at 3:15pm in Austin Auditorium)

Robot Mapping

  Input:
Laser range finder segments (xi, yi, xf, yf)

  Outputs:
  Segment labels (Wall, Door, Other)
  Assignment of wall segments to walls
  Position of walls (xi, yi, xf, yf)

Robot Mapping

MLNs for Hybrid Domains

  Allow numeric properties of objects as nodes
E.g.: Length(x), Distance(x,y)

  Allow numeric terms as features
E.g.: –(Length(x) – 5.0)2
(Gaussian distr. w/ mean = 5.0 and variance = 1/(2w))

  Allow α = β as shorthand for –(α – β)2
E.g.: Length(x) = 5.0

  Etc.

Robot Mapping
SegmentType(s,+t) => Length(s) = Length(+t)
SegmentType(s,+t) => Depth(s) = Depth(+t)
Neighbors(s,s’) ^ Aligned(s,s’) =>
 (SegType(s,+t) <=> SegType(s’,+t))
!PreviousAligned(s) ^ PartOf(s,l) => StartLine(s,l)
StartLine(s,l) => Xi(s) = Xi(l) ^ Yi(s) = Yi(l)

PartOf(s,l) => =

Etc.

Cf. B. Limketkai, L. Liao & D. Fox, “Relational Object Maps for
Mobile Robots”, in Proc. IJCAI-2005.

Yf(s)-Yi(s) Yi(s)-Yi(l)
Xf(s)-Xi(s) Xi(s)-Xi(l)

Planning and MDPs
  Classical planning

Formulate as satisfiability in the usual way
  Actions with uncertain effects

Give finite weights to action axioms
  Sensing actions

Add clauses relating sensor readings to world states
  Relational Markov Decision Processes

  Assign utility weights to clauses (coming soon!)
  Maximize expected sum of weights of satisfied utility clauses
  Classical planning is special case:

Exist t GoalState(t)

Practical Tips
  Add all unit clauses (the default)
  Implications vs. conjunctions
  Open/closed world assumptions
  How to handle uncertain data:
R(x,y) => R’(x,y) (the “HMM trick”)

  Controlling complexity
  Low clause arities
  Low numbers of constants
  Short inference chains

  Use the simplest MLN that works
  Cycle: Add/delete formulas, learn and test

Summary

  Most domains are non-i.i.d.
  Much progress in recent years
  SRL mature enough to be practical tool
  Many old and new research issues
  Check out the Alchemy Web site:

alchemy.cs.washington.edu

