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Motivation 
  Most learners assume i.i.d. data 

(independent and identically distributed) 
  One type of object 
  Objects have no relation to each other 

  Real applications: 
dependent, variously distributed data 
  Multiple types of objects 
  Relations between objects 



Examples 
  Web search 
  Information extraction 
  Natural language processing 
  Perception 
  Medical diagnosis 
  Computational biology 
  Social networks 
  Ubiquitous computing 
  Etc. 



Costs and Benefits of SRL 

  Benefits 
  Better predictive accuracy 
  Better understanding of domains 
  Growth path for machine learning 

  Costs 
  Learning is much harder 
  Inference becomes a crucial issue 
  Greater complexity for user 



Goal and Progress 
  Goal: 

Learn from non-i.i.d. data as easily 
as from i.i.d. data 

  Progress to date 
  Burgeoning research area 
  We’re “close enough” to goal 
  Easy-to-use open-source software available 

  Lots of research questions (old and new) 



Plan 

  We have the elements: 
  Probability for handling uncertainty 
  Logic for representing types, relations, 

and complex dependencies between them 
  Learning and inference algorithms for each 

  Figure out how to put them together 
  Tremendous leverage on a wide range of 

applications 



Disclaimers 
  Not a complete survey of statistical 

relational learning 
  Or of foundational areas 
  Focus is practical, not theoretical 
  Assumes basic background in logic, 

probability and statistics, etc. 
  Please ask questions 
  Tutorial and examples available at 

alchemy.cs.washington.edu 
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Markov Networks 
  Undirected graphical models 

Cancer 

Cough Asthma 

Smoking 

  Potential functions defined over cliques 
Smoking Cancer   Ф(S,C) 

False False      4.5 

False True      4.5 

True False      2.7 

True True      4.5 



Markov Networks 
  Undirected graphical models 

  Log-linear model: 

Weight of Feature i Feature i 

Cancer 

Cough Asthma 

Smoking 



Hammersley-Clifford Theorem 

If Distribution is strictly positive (P(x) > 0) 
And Graph encodes conditional independences 
Then Distribution is product of potentials over       

  cliques of graph 

Inverse is also true. 
(“Markov network = Gibbs distribution”) 



Markov Nets vs. Bayes Nets 
Property Markov Nets Bayes Nets 
Form Prod. potentials Prod. potentials 

Potentials Arbitrary Cond. probabilities 

Cycles Allowed Forbidden 

Partition func. Z = ? Z = 1 

Indep. check Graph separation D-separation 

Indep. props. Some Some 

Inference MCMC, BP, etc. Convert to Markov 



Inference in Markov Networks 
  Goal: Compute marginals & conditionals of 

  Exact inference is #P-complete 
  Conditioning on Markov blanket is easy: 

  Gibbs sampling exploits this 



MCMC: Gibbs Sampling 

state ← random truth assignment 
for i ← 1 to num-samples do 
    for each variable x  
        sample x according to P(x|neighbors(x)) 
        state ← state with new value of x 
P(F) ← fraction of states in which F is true 



Other Inference Methods 

  Many variations of MCMC 
  Belief propagation (sum-product) 
  Variational approximation 
  Exact methods 



MAP/MPE Inference 

  Goal: Find most likely state of world given 
evidence 

Query Evidence 



MAP Inference Algorithms 

  Iterated conditional modes 
  Simulated annealing 
  Graph cuts 
  Belief propagation (max-product) 
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Learning Markov Networks 

  Learning parameters (weights) 
  Generatively 
  Discriminatively 

  Learning structure (features) 
  In this tutorial: Assume complete data 

(If not: EM versions of algorithms) 



Generative Weight Learning 

  Maximize likelihood or posterior probability 
  Numerical optimization (gradient or 2nd order)  
  No local maxima 

  Requires inference at each step (slow!) 

No. of times feature i is true in data 

Expected no. times feature i is true according to model 



Pseudo-Likelihood 

  Likelihood of each variable given its 
neighbors in the data 

  Does not require inference at each step 
  Consistent estimator 
  Widely used in vision, spatial statistics, etc. 
  But PL parameters may not work well for 

long inference chains 



Discriminative Weight Learning 

  Maximize conditional likelihood of query (y) 
given evidence (x) 

  Approximate expected counts by counts in 
MAP state of y given x	


No. of true groundings of clause i in data 

Expected no. true groundings according to model 



Other Weight Learning 
Approaches 

  Generative: Iterative scaling 
  Discriminative: Max margin 



Structure Learning 

  Start with atomic features 
  Greedily conjoin features to improve score 
  Problem: Need to reestimate weights for 

each new candidate 
  Approximation: Keep weights of previous 

features constant 
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First-Order Logic 
  Constants, variables, functions, predicates 

E.g.: Anna, x, MotherOf(x), Friends(x, y) 
  Literal: Predicate or its negation 
  Clause: Disjunction of literals 
  Grounding: Replace all variables by constants 

E.g.: Friends (Anna, Bob) 
  World (model, interpretation): 

Assignment of truth values to all ground 
predicates 



Inference in First-Order Logic 
  Traditionally done by theorem proving 

(e.g.: Prolog) 
  Propositionalization followed by model 

checking turns out to be faster (often a lot) 
  Propositionalization: 

Create all ground atoms and clauses 
  Model checking: Satisfiability testing 
  Two main approaches: 

  Backtracking (e.g.: DPLL) 
  Stochastic local search (e.g.: WalkSAT) 



Satisfiability 
  Input: Set of clauses 

(Convert KB to conjunctive normal form (CNF)) 
  Output: Truth assignment that satisfies all clauses, 

or failure 
  The paradigmatic NP-complete problem 
  Solution: Search 
  Key point: 

Most SAT problems are actually easy 
  Hard region: Narrow range of 

#Clauses / #Variables 



Backtracking 

  Assign truth values by depth-first search 
  Assigning a variable deletes false literals 

and satisfied clauses 
  Empty set of clauses: Success 
  Empty clause: Failure 
  Additional improvements: 

  Unit propagation (unit clause forces truth value) 
  Pure literals (same truth value everywhere) 



The DPLL Algorithm 
if CNF is empty then 
    return true 
else if CNF contains an empty clause then 
    return false 
else if CNF contains a pure literal x then 
    return DPLL(CNF(x)) 
else if CNF contains a unit clause {u} then 
    return DPLL(CNF(u)) 
else 
    choose a variable x that appears in CNF 
    if DPLL(CNF(x)) = true then return true 
    else return DPLL(CNF(¬x)) 



Stochastic Local Search 

  Uses complete assignments instead of partial 
  Start with random state 
  Flip variables in unsatisfied clauses 
  Hill-climbing: Minimize # unsatisfied clauses 
  Avoid local minima: Random flips 
  Multiple restarts 



The WalkSAT Algorithm 

for i ← 1 to max-tries do 
    solution = random truth assignment 
    for j ← 1 to max-flips do 
        if all clauses satisfied then 
            return solution 
        c ← random unsatisfied clause 
        with probability p 
            flip a random variable in c 
        else 
            flip variable in c that maximizes 
                number of satisfied clauses 
return failure 
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Rule Induction 
  Given: Set of positive and negative examples of 

some concept 
  Example: (x1, x2, … , xn, y) 
  y: concept (Boolean) 
  x1, x2, … , xn: attributes (assume Boolean) 

  Goal: Induce a set of rules that cover all positive 
examples and no negative ones 
  Rule:  xa ^ xb ^ … ⇒ y   (xa: Literal, i.e., xi or its negation) 
  Same as Horn clause:  Body ⇒ Head 
  Rule r covers example x iff x satisfies body of r 

  Eval(r): Accuracy, info. gain, coverage, support, etc. 



Learning a Single Rule 

head ← y 
body ← Ø 
repeat 
    for each literal x 
        rx ← r with x added to body 
        Eval(rx) 
    body ← body ^ best x 
until no x improves Eval(r) 
return r 



Learning a Set of Rules 

R ← Ø 
S ← examples 
repeat 
    learn a single rule r 
     R ← R U { r } 
    S ← S − positive examples covered by r 
until S contains no positive examples 
return R 



First-Order Rule Induction 
  y and xi are now predicates with arguments 

E.g.: y is Ancestor(x,y), xi is Parent(x,y) 
  Literals to add are predicates or their negations 
  Literal to add must include at least one variable 

already appearing in rule 
  Adding a literal changes # groundings of rule 

E.g.: Ancestor(x,z) ^ Parent(z,y) ⇒ Ancestor(x,y) 
  Eval(r) must take this into account 

E.g.: Multiply by # positive groundings of rule 
         still covered after adding literal 
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Plethora of Approaches 
  Knowledge-based model construction 

[Wellman et al., 1992] 
  Stochastic logic programs [Muggleton, 1996] 
  Probabilistic relational models 

[Friedman et al., 1999] 
  Relational Markov networks [Taskar et al., 2002] 
  Bayesian logic [Milch et al., 2005] 
  Markov logic [Richardson & Domingos, 2006] 
  And many others! 



Key Dimensions 
  Logical language 

First-order logic, Horn clauses, frame systems 
  Probabilistic language 

Bayes nets, Markov nets, PCFGs 
  Type of learning 

  Generative / Discriminative 
  Structure / Parameters 
  Knowledge-rich / Knowledge-poor 

  Type of inference 
  MAP / Marginal 
  Full grounding / Partial grounding / Lifted 



Knowledge-Based 
Model Construction 
  Logical language: Horn clauses 
  Probabilistic language: Bayes nets 

  Ground atom → Node 
  Head of clause → Child node 
  Body of clause → Parent nodes 
  >1 clause w/ same head → Combining function 

  Learning: ILP + EM 
  Inference: Partial grounding + Belief prop. 



Stochastic Logic Programs 

  Logical language: Horn clauses 
  Probabilistic language: 

Probabilistic context-free grammars 
  Attach probabilities to clauses 
  .Σ Probs. of clauses w/ same head = 1 

  Learning: ILP + “Failure-adjusted” EM 
  Inference: Do all proofs, add probs. 



Probabilistic Relational Models 
  Logical language: Frame systems 
  Probabilistic language: Bayes nets 

  Bayes net template for each class of objects 
  Object’s attrs. can depend on attrs. of related objs. 
  Only binary relations 
  No dependencies of relations on relations 

  Learning: 
  Parameters: Closed form (EM if missing data) 
  Structure: “Tiered” Bayes net structure search 

  Inference: Full grounding + Belief propagation 



Relational Markov Networks 
  Logical language: SQL queries 
  Probabilistic language: Markov nets 

  SQL queries define cliques 
  Potential function for each query 
  No uncertainty over relations 

  Learning: 
  Discriminative weight learning 
  No structure learning 

  Inference: Full grounding + Belief prop. 



Bayesian Logic 
  Logical language: First-order semantics 
  Probabilistic language: Bayes nets 

  BLOG program specifies how to generate relational world 
  Parameters defined separately in Java functions 
  Allows unknown objects 
  May create Bayes nets with directed cycles 

  Learning: None to date 
  Inference: 

  MCMC with user-supplied proposal distribution 
  Partial grounding 



Markov Logic 
  Logical language: First-order logic 
  Probabilistic language: Markov networks 

  Syntax: First-order formulas with weights 
  Semantics: Templates for Markov net features 

  Learning: 
  Parameters: Generative or discriminative 
  Structure: ILP with arbitrary clauses and MAP score 

  Inference: 
  MAP: Weighted satisfiability 
  Marginal: MCMC with moves proposed by SAT solver 
  Partial grounding + Lazy inference 



Markov Logic 

  Most developed approach to date 
  Many other approaches can be viewed as 

special cases 
  Main focus of rest of this tutorial 



Markov Logic: Intuition 

  A logical KB is a set of hard constraints 
on the set of possible worlds 

  Let’s make them soft constraints: 
When a world violates a formula, 
It becomes less probable, not impossible 

  Give each formula a weight 
(Higher weight  ⇒  Stronger constraint) 



Markov Logic: Definition 
  A Markov Logic Network (MLN) is a set of 

pairs (F, w) where 
  F is a formula in first-order logic 
  w is a real number 

  Together with a set of constants, 
it defines a Markov network with 
  One node for each grounding of each predicate in 

the MLN 
  One feature for each grounding of each formula F 

in the MLN, with the corresponding weight w 



Example: Friends & Smokers 
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Example: Friends & Smokers 

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 

Cancer(A) 

Smokes(A) Smokes(B) 

Cancer(B) 

Two constants: Anna (A) and Bob (B) 
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Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 
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Two constants: Anna (A) and Bob (B) 
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Example: Friends & Smokers 

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 



Markov Logic Networks 
  MLN is template for ground Markov nets 
  Probability of a world x: 

  Typed variables and constants greatly reduce 
size of ground Markov net 

  Functions, existential quantifiers, etc. 
  Infinite and continuous domains 

Weight of formula i No. of true groundings of formula i in x 



Relation to Statistical Models 
  Special cases: 

  Markov networks 
  Markov random fields 
  Bayesian networks 
  Log-linear models 
  Exponential models 
  Max. entropy models 
  Gibbs distributions 
  Boltzmann machines 
  Logistic regression 
  Hidden Markov models 
  Conditional random fields 

  Obtained by making all 
predicates zero-arity 

  Markov logic allows 
objects to be 
interdependent  
(non-i.i.d.) 



Relation to First-Order Logic 

  Infinite weights  ⇒  First-order logic 
  Satisfiable KB, positive weights ⇒  

Satisfying assignments = Modes of distribution 
  Markov logic allows contradictions between 

formulas 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 

Query Evidence 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 

  This is just the weighted MaxSAT problem 
  Use weighted SAT solver 

(e.g., MaxWalkSAT [Kautz et al., 1997] ) 
  Potentially faster than logical inference (!) 



The MaxWalkSAT Algorithm 

for i ← 1 to max-tries do 
    solution = random truth assignment 
    for j ← 1 to max-flips do 
        if ∑ weights(sat. clauses) > threshold then 
            return solution 
        c ← random unsatisfied clause 
        with probability p 
            flip a random variable in c 
        else 
            flip variable in c that maximizes 
                ∑ weights(sat. clauses)                 
return failure, best solution found 



But … Memory Explosion 

  Problem:  
If there are n constants 
and the highest clause arity is c, 
the ground network requires O(n  ) memory 

  Solution: 
Exploit sparseness; ground clauses lazily 
→ LazySAT algorithm [Singla & Domingos, 2006] 

c 



Computing Probabilities 

  P(Formula|MLN,C) = ? 
  MCMC: Sample worlds, check formula holds 
  P(Formula1|Formula2,MLN,C) = ? 
  If Formula2 = Conjunction of ground atoms 

  First construct min subset of network necessary to 
answer query (generalization of KBMC) 

  Then apply MCMC (or other) 
  Can also do lifted inference [Braz et al, 2005] 



Ground Network Construction 

network ← Ø 
queue ← query nodes 
repeat 
    node ← front(queue)  
    remove node from queue 
    add node to network 
    if node not in evidence then 
        add neighbors(node) to queue     
until queue = Ø 



But … Insufficient for Logic 

  Problem: 
Deterministic dependencies break MCMC 
Near-deterministic ones make it very slow 

  Solution: 
Combine MCMC and WalkSAT 
→ MC-SAT algorithm  [Poon & Domingos, 2006] 



Learning 

  Data is a relational database 
  Closed world assumption (if not: EM) 
  Learning parameters (weights) 
  Learning structure (formulas) 



  Parameter tying: Groundings of same clause 

  Generative learning: Pseudo-likelihood 
  Discriminative learning: Cond. likelihood, 

use MC-SAT or MaxWalkSAT for inference 

Weight Learning 

No. of times clause i is true in data 

Expected no. times clause i is true according to MLN 



Structure Learning 
  Generalizes feature induction in Markov nets 
  Any inductive logic programming approach can be 

used, but . . . 
  Goal is to induce any clauses, not just Horn 
  Evaluation function should be likelihood 
  Requires learning weights for each candidate 
  Turns out not to be bottleneck 
  Bottleneck is counting clause groundings 
  Solution: Subsampling 



Structure Learning 

  Initial state: Unit clauses or hand-coded KB 
  Operators: Add/remove literal, flip sign 
  Evaluation function:  

Pseudo-likelihood + Structure prior 
  Search: Beam, shortest-first, bottom-up 

[Kok & Domingos, 2005; Mihalkova & Mooney, 2007]  



Alchemy 
Open-source software including: 
  Full first-order logic syntax 
  Generative & discriminative weight learning 
  Structure learning 
  Weighted satisfiability and MCMC 
  Programming language features 

alchemy.cs.washington.edu 



Alchemy Prolog BUGS 

Represent-
ation 

F.O. Logic + 
Markov nets 

Horn 
clauses 

Bayes 
nets 

Inference Model check- 
ing, MC-SAT 

Theorem 
proving 

Gibbs 
sampling 

Learning Parameters 
& structure 

No Params. 

Uncertainty Yes No Yes 

Relational Yes Yes No 
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Applications 
  Basics 
  Logistic regression 
  Hypertext classification 
  Information retrieval 
  Entity resolution 
  Hidden Markov models 
  Information extraction 

  Statistical parsing 
  Semantic processing 
  Bayesian networks 
  Relational models 
  Robot mapping 
  Planning and MDPs 
  Practical tips 



Running Alchemy 

  Programs 
  Infer 
  Learnwts 
  Learnstruct 

  Options 

  MLN file 
  Types (optional) 
  Predicates 
  Formulas 

  Database files 



Uniform Distribn.: Empty MLN 

Example: Unbiased coin flips 

Type:           flip = { 1, … , 20 } 
Predicate:   Heads(flip) 



Binomial Distribn.: Unit Clause 
Example: Biased coin flips 
Type:          flip = { 1, … , 20 } 
Predicate:  Heads(flip) 
Formula:    Heads(f) 
Weight:      Log odds of heads:  

By default, MLN includes unit clauses for all predicates 
(captures marginal distributions, etc.) 



Multinomial Distribution 
Example: Throwing die 

Types:       throw = { 1, … , 20 } 
                   face = { 1, … , 6 } 
Predicate:  Outcome(throw,face) 
Formulas:  Outcome(t,f) ^ f != f’ => !Outcome(t,f’). 
         Exist f Outcome(t,f). 

Too cumbersome! 



Multinomial Distrib.: ! Notation 
Example: Throwing die 

Types:       throw = { 1, … , 20 } 
                   face = { 1, … , 6 } 
Predicate:  Outcome(throw,face!) 
Formulas: 

Semantics: Arguments without “!” determine arguments with “!”. 
Also makes inference more efficient (triggers blocking). 



Multinomial Distrib.: + Notation 
Example: Throwing biased die 

Types:       throw = { 1, … , 20 } 
                   face = { 1, … , 6 } 
Predicate:  Outcome(throw,face!) 
Formulas:  Outcome(t,+f) 

Semantics: Learn weight for each grounding of args with “+”. 



Logistic regression: 

Type:                        obj = { 1, ... , n } 
Query predicate:     C(obj) 
Evidence predicates:  Fi(obj) 
Formulas:                        a  C(x) 
                   bi  Fi(x) ^ C(x) 

Resulting distribution:  

Therefore: 

Alternative form:     Fi(x) => C(x) 

Logistic Regression 



Text Classification 
page = { 1, … , n } 
word = { … } 
topic = { … } 

Topic(page,topic!) 
HasWord(page,word) 

!Topic(p,t) 
HasWord(p,+w) => Topic(p,+t) 



Text Classification 
Topic(page,topic!) 
HasWord(page,word) 

HasWord(p,+w) => Topic(p,+t) 



Hypertext Classification 
Topic(page,topic!) 
HasWord(page,word) 
Links(page,page) 

HasWord(p,+w) => Topic(p,+t) 
Topic(p,t) ^ Links(p,p') => Topic(p',t) 

Cf.  S. Chakrabarti, B. Dom & P. Indyk, “Hypertext Classification 
Using Hyperlinks,” in Proc. SIGMOD-1998. 



Information Retrieval 
InQuery(word) 
HasWord(page,word) 
Relevant(page) 

InQuery(w+) ^ HasWord(p,+w) => Relevant(p) 
Relevant(p) ^ Links(p,p’) => Relevant(p’) 

Cf.  L. Page, S. Brin, R. Motwani & T. Winograd, “The PageRank Citation 
Ranking: Bringing Order to the Web,” Tech. Rept., Stanford University, 1998. 



Problem: Given database, find duplicate records 

HasToken(token,field,record) 
SameField(field,record,record) 
SameRecord(record,record) 

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’) 
   => SameField(f,r,r’) 
SameField(f,r,r’) => SameRecord(r,r’) 
SameRecord(r,r’) ^ SameRecord(r’,r”) 
   => SameRecord(r,r”) 

Cf.  A. McCallum & B. Wellner, “Conditional Models of Identity Uncertainty 
with Application to Noun Coreference,” in Adv. NIPS 17, 2005. 

Entity Resolution 



Can also resolve fields: 

HasToken(token,field,record) 
SameField(field,record,record) 
SameRecord(record,record) 

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’) 
   => SameField(f,r,r’) 
SameField(f,r,r’) <=> SameRecord(r,r’) 
SameRecord(r,r’) ^ SameRecord(r’,r”) 
   => SameRecord(r,r”) 
SameField(f,r,r’) ^ SameField(f,r’,r”) 
   => SameField(f,r,r”) 

More: P. Singla & P. Domingos, “Entity Resolution with 
Markov Logic”, in Proc. ICDM-2006. 

Entity Resolution 



Hidden Markov Models 
obs = { Obs1, … , ObsN } 
state = { St1, … , StM } 
time = { 0, … , T } 

State(state!,time) 
Obs(obs!,time) 

State(+s,0) 
State(+s,t) => State(+s',t+1) 
Obs(+o,t) => State(+s,t) 



Information Extraction 

  Problem: Extract database from text or 
semi-structured sources 

  Example: Extract database of publications 
from citation list(s) (the “CiteSeer problem”) 

  Two steps: 
  Segmentation: 

Use HMM to assign tokens to fields 
  Entity resolution: 

Use logistic regression and transitivity 



Token(token, position, citation) 
InField(position, field, citation) 
SameField(field, citation, citation) 
SameCit(citation, citation) 

Token(+t,i,c) => InField(i,+f,c) 
InField(i,+f,c) <=> InField(i+1,+f,c) 
f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) 

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) 
   ^ InField(i’,+f,c’) => SameField(+f,c,c’) 
SameField(+f,c,c’) <=> SameCit(c,c’) 
SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) 
SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) 

Information Extraction 



Token(token, position, citation) 
InField(position, field, citation) 
SameField(field, citation, citation) 
SameCit(citation, citation) 

Token(+t,i,c) => InField(i,+f,c) 
InField(i,+f,c) ^ !Token(“.”,i,c) <=> InField(i+1,+f,c) 
f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) 

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) 
   ^ InField(i’,+f,c’) => SameField(+f,c,c’) 
SameField(+f,c,c’) <=> SameCit(c,c’) 
SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) 
SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) 

More: H. Poon & P. Domingos, “Joint Inference in Information 
Extraction”, in Proc. AAAI-2007. 

Information Extraction 



Statistical Parsing 
  Input: Sentence 
  Output: Most probable parse 
  PCFG: Production rules 

with probabilities 
E.g.:   0.7   NP → N 
          0.3    NP → Det N 

  WCFG: Production rules 
with weights (equivalent) 

  Chomsky normal form: 
 A → B C  or  A → a 

S 

John    ate   the   pizza 

NP 
VP 

N 
V 

NP 

Det N 



Statistical Parsing 
  Evidence predicate: Token(token,position) 

E.g.: Token(“pizza”, 3) 
  Query predicates: Constituent(position,position) 

E.g.: NP(2,4) 
  For each rule of the form A → B C: 

Clause of the form B(i,j) ^ C(j,k) => A(i,k) 
E.g.: NP(i,j) ^ VP(j,k) => S(i,k) 

  For each rule of the form A → a: 
Clause of the form  Token(a,i) => A(i,i+1) 
E.g.: Token(“pizza”, i) => N(i,i+1) 

  For each nonterminal: 
Hard formula stating that exactly one production holds 

  MAP inference yields most probable parse 



Semantic Processing 
  Weighted definite clause grammars: 

Straightforward extension 
  Combine with entity resolution: 

NP(i,j) => Entity(+e,i,j) 
  Word sense disambiguation: 

Use logistic regression 
  Semantic role labeling: 

Use rules involving phrase predicates 
  Building meaning representation: 

Via weighted DCG with lambda calculus 
(cf. Zettlemoyer & Collins, UAI-2005) 

  Another option: 
Rules of the form  Token(a,i) => Meaning 
and  MeaningB ^ MeaningC ^ … => MeaningA 

  Facilitates injecting world knowledge into parsing 



Semantic Processing 
Example: John ate pizza. 

Grammar:      S → NP VP       VP → V NP       V → ate 
                       NP → John        NP → pizza 

Token(“John”,0) => Participant(John,E,0,1) 
Token(“ate”,1) => Event(Eating,E,1,2) 
Token(“pizza”,2) => Participant(pizza,E,2,3) 
Event(Eating,e,i,j) ^ Participant(p,e,j,k) 
  ^ VP(i,k) ^ V(i,j) ^ NP(j,k) => Eaten(p,e) 
Event(Eating,e,j,k) ^ Participant(p,e,i,j) 
  ^ S(i,k) ^ NP(i,j) ^ VP(j,k) => Eater(p,e) 
Event(t,e,i,k) => Isa(e,t) 

Result: Isa(E,Eating), Eater(John,E), Eaten(pizza,E) 



Bayesian Networks 
  Use all binary predicates with same first argument 

(the object x). 
  One predicate for each variable A: A(x,v!) 
  One clause for each line in the CPT and 

value of the variable 
  Context-specific independence: 

One Horn clause for each path in the decision tree 
  Logistic regression: As before 
  Noisy OR: Deterministic OR + Pairwise clauses 



Relational Models 
  Knowledge-based model construction 

  Allow only Horn clauses 
  Same as Bayes nets, except arbitrary relations 
  Combin. function: Logistic regression, noisy-OR or external 

  Stochastic logic programs 
  Allow only Horn clauses 
  Weight of clause = log(p) 
  Add formulas: Head holds => Exactly one body holds 

  Probabilistic relational models 
  Allow only binary relations 
  Same as Bayes nets, except first argument can vary 



Relational Models 
  Relational Markov networks 

  SQL → Datalog → First-order logic 
  One clause for each state of a clique 
  * syntax in Alchemy facilitates this 

  Bayesian logic 
  Object = Cluster of similar/related observations 
  Observation constants + Object constants 
  Predicate  InstanceOf(Obs,Obj) and clauses using it 

  Unknown relations: Second-order Markov logic 
 S. Kok & P. Domingos, “Statistical Predicate Invention”, in 
Proc. ICML-2007.  (Tomorrow at 3:15pm in Austin Auditorium) 



Robot Mapping 

  Input: 
Laser range finder segments (xi, yi, xf, yf) 

  Outputs: 
  Segment labels (Wall, Door, Other) 
  Assignment of wall segments to walls 
  Position of walls (xi, yi, xf, yf) 



Robot Mapping 



MLNs for Hybrid Domains 

  Allow numeric properties of objects as nodes 
E.g.: Length(x), Distance(x,y) 

  Allow numeric terms as features 
E.g.: –(Length(x) – 5.0)2 
(Gaussian distr. w/ mean = 5.0 and variance = 1/(2w)) 

  Allow α = β as shorthand for –(α – β)2  
E.g.:  Length(x) = 5.0 

  Etc. 



Robot Mapping 
SegmentType(s,+t) => Length(s) = Length(+t) 
SegmentType(s,+t) => Depth(s) = Depth(+t) 
Neighbors(s,s’) ^ Aligned(s,s’) => 
   (SegType(s,+t) <=> SegType(s’,+t)) 
!PreviousAligned(s) ^ PartOf(s,l) => StartLine(s,l) 
StartLine(s,l) => Xi(s) = Xi(l) ^ Yi(s) = Yi(l) 

PartOf(s,l) =>             =  

Etc. 

Cf.  B. Limketkai, L. Liao & D. Fox, “Relational Object Maps for 
Mobile Robots”, in Proc. IJCAI-2005. 

Yf(s)-Yi(s)   Yi(s)-Yi(l) 
Xf(s)-Xi(s)   Xi(s)-Xi(l) 



Planning and MDPs 
  Classical planning 

Formulate as satisfiability in the usual way 
  Actions with uncertain effects 

Give finite weights to action axioms 
  Sensing actions 

Add clauses relating sensor readings to world states 
  Relational Markov Decision Processes 

  Assign utility weights to clauses  (coming soon!) 
  Maximize expected sum of weights of satisfied utility clauses 
  Classical planning is special case: 

Exist t GoalState(t) 



Practical Tips 
  Add all unit clauses (the default) 
  Implications vs. conjunctions 
  Open/closed world assumptions 
  How to handle uncertain data: 
R(x,y) => R’(x,y)   (the “HMM trick”) 

  Controlling complexity 
  Low clause arities 
  Low numbers of constants 
  Short inference chains 

  Use the simplest MLN that works 
  Cycle: Add/delete formulas, learn and test 



Summary 

  Most domains are non-i.i.d. 
  Much progress in recent years 
  SRL mature enough to be practical tool 
  Many old and new research issues 
  Check out the Alchemy Web site: 

alchemy.cs.washington.edu 


