
Brain Computer Interfacing

Klaus-Robert Müller, Carmen Vidaurre, Matthias Treder, Siamac Fazli, Jan 

Mehnert, Stefan Haufe, Frank Meinecke, Felix Biessmann, Michael 

Tangermann, Gabriel Curio, Benjamin Blankertz et al.



BCI MLSSP 2012 Topics

Part I

- Physiology, Signals and Challenges

- Event-Related Desynchronization and BCI

Part II

- Nonstationarity SSA et al. 

- Multimodal data

Part III

- Event Related Potentials and BCI

- Applications



Some BCI Groups (not an exhaustive list!) from !2003!

Schwarz, Pittsburg: Invasive

Chapin, Rochester: Invasive

Nicolelis, Duke: Invasive

Kennedy, Atlanta: Invasive

Levine, Michigan: Invasive

Wolpaw, Albany: BCI 2000, 2D, Patients

Donchin, Beckman: P300: Spelling

Anderson, UC, CSU: NN for BCI, invasive

Sadja and Parra, NY: SP, Rapid Visual   

Stimulation 

Birbaumer, Kübler TÜ: SCPs, TTD, Patients

• Pfurtscheller, Graz: ERD, Patients

• Bayliss, Rochester: P300 & VR

• Penny, Roberts, Sykacek, Oxford: Bayes & BCI

• Birch and Mason, UBC BCI

• Moore, Georgia BCI

• Allison, UCSD

• Millan, EPFL: brain states control robot

• Donoghue, Brown U, invasive patient study

• Cuntai Guan, Singapore: P300

• Gao, Beijing: P300

• BBCI: Let the machines learn

!Note that this is historical slide and MOST groups are missing!



Increasing Interest by Scientists

Courtesy of Dr. Jon Wolpaw, Wadsworth Center



The origins of EEG and MEG (short recap.)

EPSP‟s and IPSP‟s

[From Vigario]



From single units to patch of dipoles

[From Vigario]



From single units to patch of dipoles (cont.)

[From Vigario]



A glance at the cerebrum

Motor cortex

[From Vigario]



From dipole patches to EEG

[From Vigario]



Invasive vs noninvasive Brain Computer Interfacing

[From Schalk]



Invasive BCI at it’s best

[From Schwartz]



ECOG

• presurgical localization of

area causing epilepsy

• excellent possibilty to learn

about brain for human subject

[From Schalk]



Invasive vs noninvasive Brain Computer Interfacing

[From Birbaumer et al., Nicolelis et al]



Noninvasive Brain-Computer Interface

DECODING



‚Brain Pong‘ with BBCI



[From Birbaumer et al.] [From Pfurtscheller et al.]

Noninvasive BCI: clinical applications

Brain-Computer Interface

Signal Processing

EEG
Acquisition

EEG
Acquisition

Application
Interface

Application
Interface

FES Device
Grasp-Pattern

3 channel
Stimulation

BBCI: Leitmotiv: ›let the machines learn‹



The cerebral cocktail party problem

• use ICA/NGCA 

projections for artifact 

and noise removal

• feature extraction and 

selection  

[cf. Ziehe et al. 2000, Blanchard et al. 2006]



Towards imaginations: Modulation of Brain Rhythms

IMAGINATION of left arm

Single channel



Variance I: Single-trial vs. Averaging

Single channel



Variance II: Session to Session Variability

maps



Variance III: inter subject variability [l vs r]



BCI with machine learning: training



BBCI paradigms

- healthy subjects untrained for BCI

A:  training 20min: right/left hand imagined movements

→ infer the respective brain acivities (ML & SP)

B:  online feedback session

Leitmotiv: ›let the machines learn‹



BBCI paradigms

- healthy subjects (BCI untrained)  perform "imaginary” movements (ERD/ERS)

- instruction: imagine 

- squezzing a ball, 

- kicking a ball, 

- feel touch

Leitmotiv: ›let the machines learn‹



Playing with BCI: training session (20 min)



Machine learning approach to BCI: infer prototypical pattern

Inference by CSP Algorithm



Average topology of idle SMR



Spatial Smearing



The need for spatial filtering



Analysis of motor imagery conditions: spectra



ERD curves of motor imagery



Common Spatial Pattern Analysis



Common Spatial Patterns for 2 classes

[cf. Blankertz et al. 2008, Lemm et al. 2005, Dornhege et al. 2006, 

Tomioka & Müller 2010]



CSP at work



Distribution of EEG features



BBCI Set-up

Artifact removal

[cf. Müller et al. 2001, 2007, 2008, Dornhege et al. 2003, 2007, Blankertz et al. 2004, 2005, 2006, 2007, 2008]



What can Machine Learning tell us about physiology?

[cf. Blankertz et al. 2001, 2006]
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BCI with machine learning: feedback



Spelling with BBCI: a communication for the disabled I



Spelling with BBCI: a communication for the disabled II 



Variance IV: Shifting distributions within experiment



Interlude: Caveats in Validation

[cf. Blankertz et al 2011]



Hall of pitfalls in single-trial EEG analysis (and beyond)



Block design



Slowly varying variables



A validation test



Results of validation test



Further remarks & summary



Part II ML challenges

• Aleviating non-stationarity

• Multimodal sources



Recap: BBCI Set-up

Artifact removal

[cf. Müller et al. 2001, 2007, 2008, Dornhege et al. 2003, 2007, Blankertz et al. 2004, 2005, 2006, 2007, 2008]



Nonstationarity in BCI



Variance IV: Shifting distributions within experiment



Mathematical flavors of non-stationarity

- Bias adaptation between training and test

- Covariate shift

- SSA: projecting to stationary subspaces

- Nonstationarity due to subject dependence: Mixed effects model

- Co-adaptation



Neurophysiological analysis

[cf. Krauledat et al. 07]



Weighted Linear Regression for covariate shift compensation

yields unbiased estimator even under

covariate shift
, choosing

[cf. Sugiyama & Müller 2005, Sugiyama et al. JMLR 2007, see next week MLSS12]



Projection Methods: recap



Splitting into stationary and nonstationary subspace: SSA 

invert
[cf. Bünau, Meinecke, Kiraly, Müller PRL 09]



SSA



Inverting the SSA Mixing Model



SSA: Algorithm idea



Algorithm idea



Using Symmetries and Invariances



SSA: Objective Function



Optimzing



Spurious stationarity



SSA: how many epochs?



How many epochs? Theoretical results



Simulations: toy data



Application to Brain-Computer-Interfacing



Real Man Machine Interaction



Towards a subject independent BCI decoder



Model formulation



Linear Mixed Effects Model: intuition

[Fazli, Müller et al. 2011]



Approach to „Cure“ BCI Illiteracy
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• Direct feedback -> Unspecific LDA classifier.

• Each trial, perform adaptation of the cls.

• Features: log band power (alpha and beta).

• Laplacian channels C3, C4 and Cz.

• Compute CSP and sel. Laps. from runs 1-3.

• Fixed CSP filters, automated laps. selection.

• Each trial retrain the classifier.

• Compute CSP from runs 4-6.

• Perform unsupervised adaptation of pooled mean.

• Update the bias of the classifier.

[cf. Vidaurre, Blankertz, Müller et al. Neural Comp. to appear]



Results (Grand Averages)



Example: one subject of Cat. III

!Runs 1 and 2 Runs 7 and 8

[cf. Vidaurre, Blankertz, Müller et al. 2009]



Multimodal



• Slow Features, e.g.

• Event Related Potential/Slow Cortical

Potentials (ERP/SCP)

• Oscillatory Features, e.g.

• Event Related Desynchronization/ 

Synchronization (ERD/ERS)

Different physiological Features

Independent???

Neurophysiology: YES

…

EEG signals

Maps

[Dornhege, et al. 2006]



Different physiological Features



Independent Features
Covariance matrix 

between features

Distribution of 

misclassified and 

classified trials for 

different features (loo)

Correlation of 

classifier output 

(continuous/ 

label)

from left to right, top to

bottom: MRP, AR,CSP



Combination Results



Combination Results

The figures show the Information Transfer Rate per decision for the best single feature compared to the suggested algorithms on all subset of classes out of

the experiments we have done. Above each figure a histogram is plotted. For points right of the middle line the suggested algorithm outperforms the best

single feature performance.
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Example: NIRS-EEG Brain Computer 
Interfaces

[Fazli et al. Neuroimage 2012]
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Photon Transport in the Human Brain Tissue

• Near-Infrared light can penetrate the brain

• ‚banana-shaped„ measurement volume for non-invasive NIRS
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Experimental Setup and Paradigm

EEG: 37 electrodes

NIRS 26 channels (frontal, parietal, occipital)

EEG-based cursor feedback (ISI = 15 s)

Executed movement vs imagery movements

Imagery movements: EEG-feedback for left and right motor 
imagery

Number of subjects: 14

Fazli et al. 2012

Can a simultaneous measurement of NIRS and EEG during 
Brain Computer Interfacing enhance the classification accuracy?

Are the results physiologically reliable?
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Temporal Dependency of Classification in Executed Movements

EEG peaks earlier as compared to HbO and HbR

Physiological reliability: HRF shaped classification accuracies over time

Classification accuracy higher for EEG

Fazli et al. 2012

EEG HbO HbR
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Temporal Dependency of Classification in Motor Imagery

EEG peaks earlier as compared to HbO and HbR

Physiological reliability: HRF shaped classification accuracies over time

Classification accuracy higher for EEG

Classification accuracy lower than in executed movements
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Topography for Executed Movements

EEG earlier

NIRS has clear lateralization

HbO goes up, HbR down

EEG

HbO

HbR
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Topography for Imagery Movements

Similar results

EEG earlier

NIRS has clear lateralization

HbO goes up, HbR up (reason unsolved)

EEG

HbO

HbR
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Combination of EEG and NIRS

LDA classifier estimated for EEG, HbO and HbR (individually)

Meta-classifier estimated for combination in each subject

All within cross-validation (8 chronological splits)

Fazli et al. 2012
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Feature Combination

NIRS-EEG combinations have higher classification accuracies for vast majority of subjects

Fazli et al. 2012
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Feature Combination

t-tests reveal a significant increase of classification accuracy for combination
Fazli et al. 2012
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Feature Combination

Some subjects, which were not classifiable with EEG become classifiable by a meta-
classifier in combination with NIRS
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Mutual Information

NIRS features for all correct EEG trials (EEG+) and incorrect EEG trials (EEG-)

Pattern is similar although the significance drops

NIRS can complement the EEG with physiological meaningful information
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Discussion

Problems

• Different temporal properties of the measurement devices (e.g. EEG: 1000 Hz, NIRS: 
max. 10 Hz)

• Temporal lag between parameters

• Different signal qualities

Ideas to Overcome the Temporal Lag

• NIRS as a measure of subjects‟ attention to predict EEG-based performance

• NIRS as a localizer of the source of EEG signals

• NIRS as a „stop‟, e.g. to discard a EEG-based classified trial when not confirmed by NIRS
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Correlating apples and oranges

[Biessmann et al. Neuroimage 2012, Machine Learning 2010]



CCA: correlating apples and oranges



kCCA: solving CCA on data kernels



tkCCA: correlating apples and oranges over time



CCA: correlating apples and oranges



Experimental Setup



Temporal Kernel CCA



Results tkCCA: spatial dependencies and HRF



Conclusion II

FOR INFORMATION SEE: 

www.bbci.de



Part III ERP analysis & applications beyond communication



Neurophysiological Background for ERPs



Experimental Design



P300 in action: Hex-o-spell



Single subject ERPs for Hex-o-spell



Topographies of ERP components



Classification of temporal features



Extraction of spatial features



The r^2 matrix of differences



Spatial features



A linear classifier as a spatial filter



Classification results of spatial features



Extraction of spatio-temporal features



Spatio-temporal features



Classification results for spatio-temporal features



Bias in estimating covariances



Bias in estimating covariances II



A remedy for classification



Modelselection



Regularized LDA at work



Investigating the impact of shrinkage



ERP and noise



Spatial structure of noise



Understanding spatial filters



Understanding spatial filters II



Impact of shrinkage on the spatial filters



Optimal selection of shrinkage parameters



Result of Classification with shrinkage



Summary spatio-temporal classification



Applications



Clinical Applications



Towards industrial applications of BCI Technology

[Blankertz et al 2010 Front. Neurosci.]

Technology



Operant conditioning: Tübingen Group
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Non-Invasive: Tübingen. Birbaumer Lab: Slow Cortical potentials

[From Birbaumer et al.]



SCP[From Birbaumer et al.]



[From Birbaumer et al.]



[From Birbaumer et al.]



ECOG Decoding



ECOG

• presurgical localization of

area causing epilepsy

• excellent possibilty to learn

about brain for human subject

[From Schalk]



Thumb vs rest

Index vs rest

[From Schalk]



ECOG Analysis

[From Schalk]



fMRI Decoding



Example: Which Video are you watching?

• Study: Reconstructing Visual Experience from Brain Activity Evoked by Natural 
Movies (Nishimoto 2011)

• Aim: validation of neurovascular coupling in the visual cortex

• Models of hemodynamics elicited by a movie for each voxel in early visual areas

• fMRI measurement of subjects watching movies

• Reconstruction of movies from the brains„ activity





Example: Which Video are you watching?

Motion energy of the pictures were calculated and fed to hemodynamic modeling



Example: Which Video are you watching?

• Bayesian fit to acquired data of 3 subjects watching 12 movie (each once)

• Test the approach on subject watching 9 other movies (each 10 times)



Example: Which Video are you watching?

The accuracy becomes worse when more films are included for 
decoding (not watched by the subjects) but remains high



Towards industrial applications of BCI Technology

[Blankertz et al 2010 Front. Neurosci.]

Technology



BCI for Assessing

Signal Quality perception



Why Quality Assessment?

• Ensure user satisfaction

• Develop better compression algorithms

profitability

quality assessment

© www.eftrends.com

signal quality



Approaches

Behavioral tests 

(standard)

EEG + BCI methods

(novel) 

• Continuous signal

• Objective measure

• Capture

> subtle differences

> non-conscious processing



EEG Studies

Domain Stimuli Cooperation Partner

Auditory Phonemes Telekom Laboratories

Words - “ -

Visual Flickering light Philips Research

Video Fraunhofer (HHI)



Audio Quality

• Discrimination task: Is stimulus disturbed? 

• Recording: button press, 64-channel EEG

• Stimuli: 

– 4 levels of degradation: strong (T1) – weak (T4),

– undisturbed stimulus (NT)

Phoneme Study Word Study

stimulus /a/ /Haus/, /Schild/ 

by female/male speaker

disturbed by signal-correlated noise bit rate limitation



Audio Quality

• Hits:

The more subtle the noise, the lower 

the amplitude and the higher the 

latency of P3 component

 „Neural effort‟

 Quantification of hits

Grand average EEG signal (ERP): 

stimulus T1 (strong degradation), T3 (weak degradation), NT (undisturbed).



Audio Quality

Phonemes Words



Audio Quality

• Misses:

Similarity to hits at the 

threshold of perception

 Non-conscious processing

 Quantified by linear 

classification

Difference topographies at the threshold of perception: 

hits / misses (low quality) – correct rejections (high quality)

(one participant, phonemes)



Visual Quality

• Discrimination task: Does the stimulus flicker?

• Recording: 64-channel EEG, button press

• Stimuli: 

– Constant wave light (CW)

– 4 levels of flicker frequency: 

slow (S1) – fast (S4)
red diodeLED light source



Visual Quality

• Added value of EEG

Stimulation frequencies [Hz] per participant; colored cells: significant neural response

- Orange: shown by EEG (t-test, univariate)



Visual Quality

• Added value of EEG and ML

Stimulation frequencies [Hz] per participant; colored cells: significant neural response

- Yellow + orange: shown by ML (CSP+LDA, multivariate)



Visual Quality Gain by NT

• Discrimination task: Does the stimulus flicker?

• Stimuli: slow (S1) – fast (S4) flfr & CW red diodeLED light source



Video Quality

• Detection task: Does the quality change in the video?

• Stimuli: 

– artificially generated 

videos (8 sec) with a 

quality change

– Undistorted baseline (BL),

8 levels of distortion (S1-8)

• Recording: 

64-channel EEG, 

button press



Video Quality



Video Quality

• P3 component is a

graded neural index

of quality perception

(left)

• Effect depends on 

subjective perception

(right)

• Non-conscious 

processing in 3 out 

of 11 participants



Summary

• Audio Quality

- Neuronal effort:
loss of quality is reflected in P3 latency/amplitude

- Non-Conscious Processing.
use classification to single out trials where misses resemble hits

• Visual Quality

- Non-Conscious Processing:
high-frequency flicker can still elicit a neural response, even if it is 
not noticed behaviorally

- Machine Learning:
classification reveals effect for additional participants and stimuli



BCI for Assessing

Workload



Nonclinical Application: tiredness monitoring

[Kohlmorgen, Müller et al 2007]



Application: Cognitive workload and drowsyness assessment

[Kohlmorgen, Müller et al 2007]

Assess workload with

BCI and balance it by

smart driver assistent

system

Assess cognitive

alertness



BCI for Assessing

Upcoming decisions



0

-0.5

-1.0

-1.5

Bereitschaftspotential over C3 (primary motor cortex of the right hand)

- 0.25 s

reactive
µV

- 0.60 s 

spontaneous

movement right hand



EEG single-trial preprocessing



Regularized Fisher Discriminant



Fisher’s Discriminant: Assumptions correct?



Linear Classification

2) Projection line: 'best' discriminating dimension

3) Linear classifications determine a projection line

on a training set such that a specific objective is

satisfied for the projected distributions.

1) Binary linear classification separates the feature 

space by a hyperplane. 

projection line µV at C3

µV at C4

E.g. Fisher Discriminant (FD) maximizes margin 

between means of the projected class 

distributions and minimizes intra-class variance.

• Linear classifications yields good generalisation in case of limited training data.
• BUT Regularize!

hyperplane



Robustness against outliers is mandatory



Time development of classification error (FDA)

keystrokeendpoint of classification window

EEG error  ≤ 10%  after -230 ms before keystroke

keystroke

At an average keystroke interval of 2.1 sec   22.9 bit/min



Steps towards online classification

• no usage of information about event timing (keystrokes)

• continuous classification in sliding windows + graded output

• ternary decision: right – left – no movement

online 2-classifier combination: 10% error rate corresponding to 29 bits/min.

detect upcoming movements predict movement laterality







The  shape of thoughts to come

LEFT hand RIGHT hand



- Highly specific sequence of EEG potentials 500 
ms before breaking

1) Perception of breaklight stimulus  
(„visual evoked potentials‟)

2) Identification of emergency („P300‟ 
component)

3) Preparation of breaking movement 
(„Bereitschaftspotential‟)

- EEG (+EMG) features improve the pedal based 
breaking detector by 150 ms

- 4 m less breaking space at speed100 km/h

[Haufe et al., EEG potentials predict upcoming emergency brakings

during simulated driving. J Neural Eng. 2011]

Study: emergency breaking in driving simulator





Car Safety: Improving emergency braking



Conclusion

•  BBCI: Untrained, Calibration < 10min, data analysis <<5min, BCI experiment

•  5-8 letters/min mental typewriter CeBit 06,10. Brain2Robot@Medica 07, lNdW 09

•  Machine Learning and modern data analysis is of central importance for BCI et al

•  Important issue of this talk: How to learn under nonstationarity?

•  Solutions: 

•  SSA, i.e. project on stationary subspace and learn there, linear, sound & fast

•  Modeling: covariate shift based CV: special

•  mixed effects model

•  co-adaptation, Multimodal

•  tracking, invariant features etc

FOR INFORMATION SEE: 

www.bbci.de



Before-after

Future issues: sensors

Popescu et al 2007



Before-after
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BCI Competitions

For BCI IV Competition see www.bbci.de 



FOR INFORMATION SEE: www.bbci.de

Machine Learning open 

source software initiative: 

MLOSS see

www.jmlr.org
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