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We introduce a novel training principle for generative probabilistic models that is an alternative to maxi-
mum likelihood. The proposed Generative Stochastic Networks (GSNs) framework generalizes Denois-
ing Auto-Encoders (DAEs), and is based on learning the transition operator of a Markov chain whose
stationary distribution estimates the data distribution. The transition distribution is a conditional distribu-
tion that generally involves a small move, so it has fewer dominant modes and is unimodal in the limit of
small moves. This simplifies the learning problem, making it less like density estimation and more akin
to supervised function approximation, with gradients that can be obtained by backprop. The theorems
provided here provide a probabilistic interpretation for DAEs and generalize them; seen in the context
of this framework, auto-encoders that learn with injected noise are a special case of GSNs and can be
interpreted as generative models. The theorems also provide an interesting justification for dependency
networks and generalized pseudolikelihood, and define an appropriate joint distribution and sampling
mechanism, even when the conditionals are not consistent. GSNs can be used with missing inputs and
can be used to sample subsets of variables given the others. Experiments validating these theoretical
results are conducted on both synthetic datasets and image datasets. The experiments employ a particular
architecture that mimics the Deep Boltzmann Machine Gibbs sampler, but that allows training to proceed
with backprop through a recurrent neural network with noise injected inside and without the need for
layerwise pretraining.
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1. Introduction

Research in deep learning (see Bengio, 2009; Bengio et al., 2013a for reviews) grew from breakthroughs
in unsupervised learning of representations, based mostly on the restricted Boltzmann machine (RBM)
(Hinton et al., 2006), auto-encoder variants (Bengio et al., 2007; Vincent et al., 2008) and sparse coding
variants (Lee et al., 2007; Ranzato et al., 2007). However, the most impressive recent results have
been obtained with purely supervised learning techniques for deep networks, in particular for speech
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recognition (Dahl et al., 2010; Deng et al., 2010; Seide et al., 2011) and object recognition (Krizhevsky
et al., 2012). The latest breakthrough in object recognition (Krizhevsky et al., 2012) was achieved with
fairly deep convolutional networks with a form of noise injection in the input and hidden layers during
training, called dropout (Hinton et al., 2012).

In all of these cases, the availability of large quantities of labelled data was critical.
On the other hand, progress with deep unsupervised architectures has been slower, with the estab-

lished approaches with a probabilistic footing being the Deep Belief Network (DBN) (Hinton et al.,
2006) and the deep Boltzmann machine (DBM) (Salakhutdinov & Hinton, 2009). Although single-
layer unsupervised learners are fairly well developed and used to pre-train these deep models, jointly
training all the layers with respect to a single unsupervised criterion remains a challenge, with a few
techniques arising to reduce that difficulty (Goodfellow et al., 2013; Montavon & Muller, 2012). In con-
trast to recent progress towards joint supervised training of models with many layers, joint unsupervised
training of deep models remains a difficult task.

In particular, the normalization constant involved in complex multimodal probabilistic models is
often intractable, and this is dealt with using various approximations (discussed below) whose lim-
itations may be an important part of the difficulty for training and using deep unsupervised, semi-
supervised or structured output models.

Though the goal of training large unsupervised networks has turned out to be more elusive than
its supervised counterpart, the vastly larger available volume of unlabelled data still beckons for effi-
cient methods to model it. Recent progress in training supervised models raises the question: can we
take advantage of this progress to improve our ability to train deep, generative, unsupervised, semi-
supervised (Goodfellow et al., 2015), transfer learning (Galanti et al., 2016; Yosinski et al., 2014) or
structured output (Li et al., 2013) models?

This paper lays theoretical foundations for a move in this direction through the following main
contributions:

1. Intuition: In Section 2, we discuss what we view as basic motivation for studying alternate ways
of training unsupervised probabilistic models, i.e. avoiding the intractable sums or maximization
involved in many approaches.

2. Training Framework: We start Section 3 by presenting our recent work on the generative view
of denoising auto-encoders (DAEs) (Section 3.1). We present the walkback algorithm which
addresses some of the training difficulties with DAEs (Section 3.2).

We then generalize those results by introducing latent variables in the framework to define Genera-
tive Stochastic Networks (GSNs) (Section 3.4). GSNs aim to estimate the data-generating distribution
indirectly, by parametrizing the transition operator of a Markov chain rather than directly parametriz-
ing a model P(X ) of the observed random variable X . Most critically, this framework transforms the
unsupervised density estimation problem into one which is more similar to supervised function approx-
imation. This enables training by (possibly regularized) maximum likelihood and gradient descent
computed via simple back-propagation, avoiding the need to compute intractable partition functions.
Depending on the model, this may allow us to draw from any number of recently demonstrated super-
vised training tricks. For example, one could use a convolutional architecture with max-pooling for para-
metric parsimony and computational efficiency, or dropout (Hinton et al., 2012) to prevent co-adaptation
of hidden representations. See also the work on learning invariant representations in this issue (Anselmi
et al., 2016; Cheng et al., 2016).
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Fig. 1. Top: A denoising auto-encoder defines an estimated Markov chain where the transition operator first samples a corrupted
X̃ from C(X̃ |X ) and then samples a reconstruction from Pθ (X | X̃ ), which is trained to estimate the ground truth P(X | X̃ ). Note
how, for any given X̃ , P(X | X̃ ) is a much simpler (roughly unimodal) distribution than the ground truth P(X ) and its partition
function is thus easier to approximate. Bottom: More generally, a GSN allows the use of arbitrary latent variables H in addition
to X , with the Markov chain state (and mixing) involving both X and H . Here H is the angle about the origin. The GSN inherits
the benefit of a simpler conditional and adds latent variables, which allow more powerful deep representations in which mixing
is easier (Bengio et al., 2013b).

3. General theory: Training the generative (decoding/denoising) component of a GSN P(X | h) with
noisy representation h is often far easier than modelling P(X ) explicitly (compare the blue and
red distributions in Fig. 1). We prove that if our estimated P(X | h) is consistent (e.g. through
maximum likelihood), then the stationary distribution of the resulting Markov chain is a consis-
tent estimator of the data-generating density, P(X ) (Section 3.1 and Appendix A).

4. Consequences of theory: We show that the model is general and extends to a wide range of
architectures, including sampling procedures whose computation can be unrolled as a Markov
Chain, i.e. architectures that add noise during intermediate computation in order to produce
random samples of a desired distribution (Theorem 3). An exciting frontier in machine learning
is the problem of modelling so-called structured outputs, i.e. modelling a conditional distribution
where the output is high-dimensional and has a complex multimodal joint distribution (given the
input variable). We show how GSNs can be used to support such structured output and missing
values (Section 3.6).
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Table 1 Test set log-likelihood lower bound (LL) obtained by a Parzen density estimator constructed
using 10,000 generated samples, for different generative models trained on MNIST. The LL is not
directly comparable to AIS likelihood estimates because we use a Gaussian mixture rather than a
Bernoulli mixture to compute the likelihood, but we can compare with Bengio et al. (2013b,c), and
Rifai et al. (2012) (from which we took the last three columns). A DBN-2 has two hidden layers, a CAE-
1 has one hidden layer and a CAE-2 has two. The DAE is basically a GSN-1, with no injection of noise
inside the network. The last column uses 10,000 MNIST training examples to train the Parzen density
estimator

GSN-2 DAE RBM DBM-3 DBN-2 MNIST

Log-likelihood lower bound 214 −152 −244 32 138 24
Standard error 1.1 2.2 54 1.9 2.0 1.6

5. Example application: In Section 5.2, we show an example application of the GSN theory to
create a deep GSN whose computational graph resembles the one followed by Gibbs sampling in
DBMs (with continuous latent variables), but that can be trained efficiently with back-propagated
gradients and without layerwise pretraining. Because the Markov Chain is defined over a state
(X , h) that includes latent variables, we reap the dual advantage of more powerful models for a
given number of parameters, and better mixing in the chain as we add noise to variables repre-
senting higher-level information, first suggested by the results obtained by Bengio et al. (2013b)
and Luo et al. (2013). The experimental results show that such a model with latent states indeed
mixes better than shallower models without them (Table 1).

6. Dependency networks: Finally, an unexpected result falls out of the GSN theory: it allows us to
provide a novel justification for dependency networks (Heckerman et al., 2000) and for the first
time define a proper joint distribution between all the visible variables that is learned by such
models (Section 3.7).

2. Summing over too many major modes

The approach presented in this paper is motivated by a difficulty often encountered with probabilistic
models, especially those containing anonymous latent variables. They are called anonymous because no
a priori semantics are assigned to them, like in Boltzmann machines, and unlike in many knowledge-
based graphical models. Whereas inference over non-anonymous latent variables is required to make
sense of the model, anonymous variables are only a device to capture the structure of the distribution
and need not have a clear human-readable meaning.

However, graphical models with latent variables often require dealing with either or both of the
following fundamentally difficult problems in the inner loop of training, or to actually use the model for
making decisions: inference (estimating the posterior distribution over latent variables h given inputs x)
and sampling (from the joint model of h and x). However, if the posterior P(h | x) has a huge number of
modes that matter, then the approximations made may break down.

Many of the computations involved in graphical models (inference, sampling and learning) are
made intractable and difficult to approximate because of the large number of non-negligible modes in
the modelled distribution (either directly P(x) or a joint distribution P(x, h) involving latent variables h).
In all of these cases, what is intractable is the computation or approximation of a sum (often weighted
by probabilities), such as a marginalization or the estimation of the gradient of the normalization
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constant. If only a few terms in this sum dominate (corresponding to the dominant modes of the
distribution), then many good approximate methods can be found, such as Monte-Carlo Markov chains
(MCMCs) methods.

DBMs (Salakhutdinov & Hinton, 2009) combine the difficulty of inference (for the positive phase
where one tries to push the energies associated with the observed x down) and also that of sampling
(for the negative phase where one tries to push up the energies associated with xs sampled from P(x)).
Sampling for the negative phase is usually done by MCMC, although some unsupervised learning algo-
rithms (Bordes et al., 2013; Collobert & Weston, 2008; Gutmann & Hyvarinen, 2010) involve ‘negative
examples’ that are sampled through simpler procedures (like perturbations of the observed input, in a
spirit reminiscent of the approach presented here). Unfortunately, using an MCMC method to sample
from P(x, h) in order to estimate the gradient of the partition function may be seriously hurt by the
presence of a large number of important modes, as argued below.

To evade the problem of highly multimodal joint or posterior distributions, the currently known
approaches to dealing with the above intractable sums make very strong explicit assumptions (in the
parametrization) or implicit assumptions (by the choice of approximation methods) on the form of the
distribution of interest. In particular, MCMC methods are more likely to produce a good estimator if the
number of non-negligible modes is small: otherwise the chains would require at least as many MCMC
steps as the number of such important modes times a factor that accounts for the mixing time between
modes. Mixing time itself can be very problematic as a trained model becomes sharper, as it approaches
a data-generating distribution that may have well-separated and sharp modes (i.e. manifolds) (Bengio
et al., 2013b).

We propose to make another assumption that might suffice to bypass this multimodality problem:
the effectiveness of function approximation. As is typical in machine learning, we postulate a rather
large and flexible family of functions (such as deep neural nets) and then use all manner of tricks to pick
a member from that combinatorially large family (i.e. to train the neural net) that both fits observed data
and generalizes to unseen data well.

In particular, the GSN approach presented in the next section relies on estimating the transi-
tion operator of a Markov chain, e.g. P(xt | xt−1) or P(xt, ht | xt−1, ht−1). Because each step of the
Markov chain is generally local, these transition distributions will often include only a very small
number of important modes (those in the neighbourhood of the previous state). Hence, the gradi-
ent of their partition function will be easy to approximate. For example, consider the denoising
transitions studied by Bengio et al. (2013c) and illustrated in Fig. 1, where x̃t−1 is a stochasti-
cally corrupted version of xt−1, and we learn the denoising distribution P(x | x̃). In the extreme case
(studied empirically here) where P(x | x̃) is approximated by a unimodal distribution, the only form
of training that is required involves function approximation (predicting the clean x from the cor-
rupted x̃).

Although having the true P(x | x̃) turn out to be unimodal makes it easier to find an appropriate
family of models for it, unimodality is by no means required by the GSN framework itself. One may
construct a GSN using any multimodal model for output (e.g. mixture of Gaussians, RBMs, NADE,
etc.), provided that gradients for the parameters of the model in question can be estimated (e.g. log-
likelihood gradients).

The approach proposed here thus avoids the need for a poor approximation of the gradient of the par-
tition function in the inner loop of training, but still has the potential of capturing very rich distributions
by relying mostly on ‘function approximation’.

Besides the approach discussed here, there may well be other very different ways of evading this
problem of intractable marginalization, discussed in Section 4.
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3. Generative stochastic networks

In this section, we work our way from DAEs to GSNs. We illustrate the usefulness of DAEs being
applied iteratively as a way to generate samples (and model a distribution). We introduce the walkback
training algorithm and show how it can facilitate the training.

We generalize the theory to GSNs, and provide a theorem that serves as a recipe as to how they can
be trained. We also reference a classic result from matrix perturbation theory to analyse the behaviour
of GSNs in terms of their stationary distribution.

We then study how GSNs may be used to fill missing values and theoretical conditions for estimating
associated conditional samples. Finally, we connect GSNs to dependency nets, and show how the GSN
framework fixes one of the main problems with the theoretical analysis of dependency nets, and propose
a particular way of sampling from them.

3.1 DAEs to model probability distributions

Assume that the problem we face is to construct a model for some unknown data-generating distribution
P(X ) given only examples of X drawn from that distribution. In many cases, the unknown distribution
P(X ) is complicated, and modelling it directly can be difficult.

A recently proposed approach using DAEs transforms the difficult task of modelling P(X ) into
a supervised learning problem that may be much easier to solve. The basic approach is as follows:
given a clean example data point X from P(X ), we obtain a corrupted version X̃ by sampling from
some corruption distribution C(X̃ |X ). For example, we might take a clean image, X , and add random
white noise to produce X̃ . We then use supervised learning methods to train a function to recon-
struct, as accurately as possible, any X from the data set given only a noisy version X̃ . As shown in
Fig. 1, the reconstruction distribution P(X | X̃ ) may often be much easier to learn than the data dis-
tribution P(X ), because P(X | X̃ ) tends to be dominated by a single or few major modes (such as the
roughly Gaussian shaped density in the figure). What we call a major mode is one that is surrounded
by a substantial amount of probability mass. There may be a large number of minor modes that can
be safely ignored in the context of approximating a distribution, but the major modes should not be
missed.

But how does learning the reconstruction distribution help us solve our original problem of
modelling P(X )? The two problems are clearly related, because if we knew everything about P(X ), then
our knowledge of the C(X̃ |X ) that we chose would allow us to precisely specify the optimal reconstruc-
tion function via Bayes rule: P(X | X̃ )= (1/z)C(X̃ |X )P(X ), where z is a normalizing constant that does
not depend on X . As one might hope, the relation is also true in the opposite direction: once we pick a
method of adding noise, C(X̃ |X ), knowledge of the corresponding reconstruction distribution P(X | X̃ )

is sufficient to recover the density of the data P(X ).
In the later Section 3.4, we will define a variable H to stand in the place of X̃ , and H will correspond

to something more general (due to its usage in the context of a Markov chain, and the addition of other
dependencies). Until then, for the current purposes we will use the notation X̃ , which suggests that it
corresponds to the intuitive idea of the ‘noisy version of X ’.

In a recent paper, Alain & Bengio (2013) showed that DAEs with small Gaussian corruption
and squared error loss estimated the score (derivative of the log-density with respect to the input) of
continuous observed random variables, thus implicitly estimating P(X ). The following Proposition 1
generalizes this to arbitrary variables (discrete, continuous or both), arbitrary corruption (not necessar-
ily asymptotically small) and arbitrary loss function (so long as they can be seen as a log-likelihood).
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Proposition 1 Let P(X ) be the training distribution for which we only have empirical samples. Let
C (

X̃ |X)
be the fixed corruption distribution and Pθ

(
X | X̃)

be the trained reconstruction distribution
(assumed to have sufficient capacity). We define a Markov chain that starts at some X0 ∼ P(X ) and
then iteratively samples pairs of values (Xk , X̃k) by alternatively sampling from C(X̃k |Xk) and from
Pθ (Xk+1 | X̃k).

Let π be the stationary distribution of this Markov chain when we consider only the sequence of
values of {Xk}∞k=0.

If we assume that this Markov chain is irreducible, that its stationary distribution exists, and if we
assume that Pθ

(
X | X̃)

is the distribution that minimizes optimally the following expected loss,

L=
∫

X̃

∫
X

P(X )C (
X̃ |X)

log Pθ

(
X | X̃)

dX dX̃ ,

then we have that the stationary distribution π is the same as the training distribution P(X ).

Proof. If we look at the density P(X̃ )= ∫
P(X )C(X̃ |X ) dX̃ that we get for X̃ by applying C(X̃ |X ) to

the training data from P(X ), we can rewrite the loss as a KL divergence
∫

X̃

∫
X

P(X )C(X̃ |X ) log Pθ

(
X | X̃)

dX dX̃ =−KL
(
P(X )C(X̃ |X )‖Pθ

(
X | X̃)

P(X̃ )
)+ cst,

where the constant is independent of Pθ

(
X | X̃)

. This expression is maximized when we have a
Pθ

(
X | X̃)

that satisfies

P(X )C(X̃ |X )= Pθ

(
X | X̃)

P(X̃ ). (1)

In that case, we have that

Pθ∗
(
X | X̃)= P(X )C (

X̃ |X)
P(X̃ )

= P
(
X | X̃)

,

where P
(
X | X̃)

represents the true conditional that we get through the usual application of Bayes’ rule.
Now, when we sample iteratively between C(X̃k |Xk) and Pθ∗(Xk+1 | X̃k) to get the Markov chain

illustrated above, we are performing Gibbs sampling. We understand what Gibbs sampling does, and
here we are sampling using the two possible ways of expressing the joint from equation (1). This means
that the stationary distribution π of the Markov chain will have P(X ) as marginal density when we look
only at the Xk component of the chain. �

Beyond proving that P
(
X | X̃)

is sufficient to reconstruct the data density, Proposition 1 also demon-
strates a method of sampling from a learned, parametrized model of the density, Pθ (X ), by running a
Markov chain that alternately adds noise using C (

X̃ |X)
, and denoises by sampling from the learned

Pθ (X | X̃ ), which is trained to approximate the true P(X | X̃ ).
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Before moving on, we should pause to make an important point clear. Alert readers may have noted
that P(X | X̃ ) and P(X ) can each be used to reconstruct the other, given knowledge of C (

X̃ |X)
. Further,

if we assume that we have chosen a simple C (
X̃ |X)

(say, a uniform Gaussian with a single width
parameter), then P

(
X | X̃)

and P(X ) must both be of approximately the same complexity. Put another
way, we can never hope to combine a simple C (

X̃ |X)
and a simple P

(
X | X̃)

to model a complex
P(X ). Nonetheless, it may still be the case that P

(
X | X̃)

is easier to model than P(X ), due to reduced
computational complexity in computing or approximating the partition functions of the conditional
distribution mapping corrupted input X̃ to the distribution of corresponding clean input X . Indeed,
because that conditional is going to be mostly assigning probability to X locally around X̃ , P

(
X | X̃)

has only one or a few major modes, while P(X ) can have a very large number of them.
So where did the complexity go? P

(
X | X̃)

has fewer major modes than P(X ), but the location of
these modes depends on the value of X̃ . It is precisely this mapping from X̃→mode location that allows
us to trade a difficult density modelling problem for a supervised function approximation problem that
admits application of many of the usual supervised learning tricks.

In the Gaussian noise example, what happens is that the tails of the Gaussian are exponentially
damping all, but the modes that are near X , thus preserving the actual number of modes, but considerably
changing the number of major modes. In the Appendix, we also present one alternative line of reasoning
based on a corruption process C

(
X̃ |X)

that has finite local support, thus completely removing the
modes that are not in the neighbourhood of X . We argue that even with such a corruption process, the
stationary distribution π will match the original P(X ), so long as one can still visit all the regions of
interest through a sequence of such local jumps.

Two potential issues with Proposition 1 are that: (1) we are learning distribution Pθ

(
X | X̃)

based
on experimental samples, so it is only asymptotically minimizing the desired loss; and (2) we may not
have enough capacity in our model to estimate Pθ

(
X | X̃)

perfectly.
The issue is that, when running a Markov chain for infinitely long using a slightly imperfect

Pθ

(
X | X̃)

, these small differences may affect the stationary distribution π and compound over time.
We are not allowed to ‘adjust’ the Pθ

(
X | X̃)

as the chain runs.
This is addressed by Theorem 4 cited in the later Section 3.4. That theorem gives us a result about

continuity, so that, for ‘well-behaved’ cases, when Pθ

(
X | X̃)

is close to P
(
X | X̃)

we must have that
the resulting stationary distribution π is close to the original P(X ).

3.2 Walkback algorithm for training DAEs

In this section, we describe the walkback algorithm, which is very similar to the method from Proposi-
tion 1, but helps training to converge faster. It differs in the training samples that are used, and the fact
that the solution is obtained through an iterative process. The parameter update changes the corruption
function, which changes the X̃ in the training samples, which influences the next parameter update, and
so on.

Sampling in high-dimensional spaces (like in experiments in Section 5.1) using a simple local
corruption process (such as Gaussian or salt-and-pepper noise) suggests that if the corruption is too
local, the DAE’s behaviour far from the training examples can create spurious modes in the regions
insufficiently visited during training. More training iterations or increasing the amount of corruption
noise helps to substantially alleviate that problem, but we discovered an even bigger boost by training
the Markov chain to walk back towards the training examples (see Fig. 2). We exploit knowledge of
the currently learned model Pθ

(
X | X̃)

to define the corruption, so as to pick values of X̃ that would
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Fig. 2. Walkback samples get attracted by spurious modes and contribute to removing them. Segment of data manifold in violet
and example walkback path in red dotted line, starting on the manifold and going towards a spurious attractor. The vector field
represents expected moves of the chain, for a unimodal P(X | X̃ ), with arrows from X̃ to X . The name walkback is because this
procedure forces the model to learn to walk back from the random walk it generates, towards the X ’s in the training set.

be obtained by following the generative chain: wherever the model would go if we sampled using the
generative Markov chain starting at a training example X , we consider to be a kind of ‘negative exam-
ple’ X̃ from which the auto-encoder should move away (and towards X ). The spirit of this procedure
is thus very similar to the CD-k (Contrastive Divergence with k MCMC steps) procedure proposed to
train RBMs (Hinton, 1999; Hinton et al., 2006).

We start by defining the modified corruption process Ck
(
X̃ |X)

that samples k times alternating
between C (

X̃ |X)
and the current Pθ

(
X | X̃)

.
We can express this recursively if we let C1

(
X̃ |X)

be our original C (
X̃ |X)

, and then define

Ck+1
(
X̃ |X)=

∫
X̃ ′

∫
X ′
C(X̃ |X ′)Pθ (X

′ | X̃ ′)Ck(X̃
′ |X ) dX ′ dX̃ ′. (2)

Note that this corruption distribution Ck
(
X̃ |X)

now involves the distribution Pθ

(
X | X̃)

that we are
learning.

With the help of the above definition of Ck
(
X̃ |X)

, we define the walkback corruption process
Cwb

(
X̃ |X)

. To sample from Cwb, we first draw a k distributed according to some distribution, e.g.
a geometric distribution with parameter p= 0.5 and support on k ∈ {1, 2, . . .}), and then we sample
according to the corresponding Ck(X̃ |X ). Other values than p= 0.5 could be used, but we just want
something convenient for that hyperparameter. Conceptually, the corruption process Cwb means that,
from a starting point X we apply iteratively the original C and Pθ , and then we flip a coin to determine
if we want to do it again. We re-apply until we lose the coin flip, and then this gives us a final value for
the sample X̃ based on X .

The walkback loss is given by

Lwb 
 1

N

N∑
i=1

log Pθ

(
X (i) | X̃ (i)

)
(3)

for samples (X (i), k(i), X̃ (i)) drawn from X ∼ P(X ), k ∼Geometric(0.5) and X̃ ∼ Ck(X̃ |X ). Minimizing
this loss is an iterative process, because the samples used in the empirical expression depend on the
parameter θ to be learned. This iterated minimization is what we call the walkback algorithm. Samples
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are generated with the current parameter value θt, and then the parameters are modified to reduce the
loss and yield θt+1. We repeat until the process stabilizes. In practical applications, we do not have
infinite-capacity models, and we do not have a guarantee that the walkback algorithm should converge
to some θ∗.

3.2.1 Reparametrization trick Note that we do not need to analytically marginalize over the latent
variables involved: we can back-propagate through the chain, considering it like a recurrent neural
network with noise (the corruption) injected in it. This is an instance of the so-called reparametrization
trick, already proposed in Bengio (2013), Kingma (2013) and Kingma & Welling (2014). The idea is
that we can consider sampling from a random variable conditionally on others (such as X̃ given X ) as
equivalent to applying a deterministic function, taking as argument the conditioning variables as well as
some i.i.d. noise sources. This view is particularly useful for the more general GSNs introduced later, in
which we typically choose the latent variables to be continuous, i.e. allowing to back-propagate through
their sampling steps when exploiting the reparametrization trick.

3.2.2 Equivalence of the walkback procedure With the walkback algorithm, one can also decide to
include or not in the loss function all the intermediate reconstruction distributions through which the
trajectories pass. That is, starting from some X0, we sample

X0 ∼ P (X ) X̃0 ∼ C (
X̃0 |X0

)
,

X1 ∼ Pθ

(
X1 | X̃0

)
X̃1 ∼ C (

X̃1 |X1
)

,

X2 ∼ Pθ

(
X2 | X̃1

)
X̃2 ∼ C (

X̃2 |X2
)

,

...
...

Xk−1 ∼ Pθ

(
Xk−1 | X̃k−2

)
X̃k−1 ∼ C (

X̃k−1 |Xk−1
)

and we use all the pairs (X , X̃k) as training data for the walkback loss at equation (3).
The following proposition looks very similar to Proposition 1, but it uses the walkback corruption

instead of the original corruption C (
X̃ |X)

. It is also an iterated process through which the current value
of the parameter θt sets the loss function that will be minimized by the updated θt+1.

Proposition 2 Let P(X ) be the training distribution for which we only have empirical samples. Let
π(X ) be the implicitly defined asymptotic distribution of the Markov chain alternating sampling from
Pθ

(
X | X̃)

and C (
X̃ |X)

, where C is the original local corruption process.
If we assume that Pθ

(
X | X̃)

has sufficient capacity and that the walkback algorithm converges
(in terms of being stable in the updates to Pθ

(
X | X̃)

), then π(x)= P(X ).
That is, the Markov chain defined by alternating Pθ (X | X̃ ) and C (

X̃ |X)
gives us samples that are

drawn from the same distribution as the training data.

Proof. Consider that during training, we produce a sequence of estimators Pθt

(
X | X̃)

, where Pθt cor-
responds to the tth training iteration (modifying the parameters after each iteration). With the walkback
algorithm, Pθt−1 is used to obtain the corrupted samples X̃ from which the next model Pθt−1 is produced.
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If training converges in terms of θt→ θ∗, it means that we have found a value of Pθ∗(X | X̃ ) such
that

θ∗ = argminθ

1

N

N∑
i=1

log Pθ (X
(i) | X̃ (i))

for samples (X (i), X̃ (i)) drawn from X ∼ P(X ), X̃ ∼ Cwb
(
X̃ |X)

.
By Proposition 1, we know that, regardless of the corruption Cany

(
X̃ |X)

used, when we have a
Pθ

(
X | X̃)

that minimizes optimally the loss

∫
X̃

∫
X

P(X )Cany
(
X̃ |X)

log Pθ

(
X | X̃)

dX dX̃ ,

then we can recover P(X ) by alternating between Cany
(
X̃ |X)

and Pθ

(
X | X̃)

.
Therefore, once the model is trained with walkback, the stationary distribution π of the Markov

chain that it creates has the same distribution P(X ) as the training data.
Hence, if we alternate between the original corruption C(X̃ |X ) and the walkback solution

Pθ∗(X | X̃ ), then the stationary distribution with respect to X is also P(X ). �

Note that this proposition applies regardless of the value of geometric distribution used to determine
how many steps of corruption will be used. It applies whether we keep all the samples along the way, or
only the one at the last step. It applies regardless if we use a geometric distribution to determine which
Ck to select, or any other type of distribution.

A consequence is that the walkback training algorithm estimates the same distribution as the origi-
nal denoising algorithm, but may do it more efficiently (as we observe in the experiments), by exploring
the space of corruptions in a way that spends more time where it most helps the model to kill off spurious
modes.

The Markov chain that we get with walkback should also generally mix faster, be less susceptible
to getting stuck in bad modes, but it will require a Pθ∗(X | X̃ ) with more capacity than originally. This
is because Pθ∗(X | X̃ ) is now less local, covering the values of the initial X that could have given rise to
the X̃ resulting from several steps of the Markov chain.

3.3 Walkbacks with individual scaling factors to handle uncertainty

The use of the proposed walkback training procedure is effective in suppressing the spurious modes in
the learned data distribution. Although the convergence is guaranteed asymptotically, in practice, given
limited model capacity and training data, it has been observed that the more walkbacks in training, the
more difficult it is to maximize Pθ (X | X̃ ). This is simply because more and more noise is added in
this procedure, resulting in X̃ that is further away from X , therefore a potentially more complicated
reconstruction distribution.

In other words, Pθ (X | X̃ ) needs to have the capacity to model increasingly complex reconstruction
distributions. As a result of training, a simple, or usually unimodal Pθ (X | X̃ ) is most likely to learn a
distribution with a larger uncertainty than the one learned without walkbacks, in order to distribute some
probability mass to the more complicated and multimodal distributions implied by the walkback training
procedure. One possible solution to this problem is to use a multimodal reconstruction distribution such
as in Ozair et al. (2014), Larochelle & Murray (2011) or Dinh et al. (2015). We propose here another
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solution, which can be combined with the above, that consists in allowing a different level of entropy
for different steps of the walkback.

3.3.1 Scaling trick in binary X In the case of binary X , the most common choice of the recon-
struction distribution is the factorized Multinoulli distribution, where Pθ (X | X̃ )=∏d

i=1 Pθ (X i | X̃ ) and
d is the dimensionality of X . Each factor Pθ (X i | X̃ ) is modelled by a Bernoulli distribution that has
its parameter pi = sigmoid(fi(X̃ )), where fi(·) is a general nonlinear transformation realized by a neu-
ral network. We propose to use a different scaling factor αk for different walkback steps, resulting in
a new parametrization pk

i = sigmoid(αkfi(X̃ )) for the kth walkback step, with αk > 0 being learned.
αk effectively scales the pre-activation of the sigmoid function according to the uncertainty or entropy
associated with different walkback steps. Naturally, later reconstructions in the walkback sequence are
less accurate because more noise has been injected. Hence, given the kith and kjth walkback steps that
satisfy ki < kj, the learning will tend to result in αki > αkj because larger αk correspond to less entropy.

3.3.2 Scaling trick in real-valued X In the case of real-valued X , the most common choice of
Pθ (X | X̃ ) is the factorized Gaussian. In particular, each factor Pθ (X i | X̃ ) is modelled by a normal dis-
tribution with its parameters μi and σi. Using the same idea of learning separate scaling factors, we can
parametrize it as Pθ (X i | X̃ )=N (μi, αkσ

2
i ) for the kth walkback step. We see that αk is positive and

also learned. However, given the kith and kjth walkback steps that satisfy ki < kj, the learning will result
αki < αkj , since, in this case, larger αk indicates larger entropy.

3.3.3 Sampling with the learned scaling factors After learning the scaling factors αk for k different
walkback steps, the sampling is straightforward. One noticeable difference is that we have learned k
Markov transition operators. Although asymptotically all k Markov chains generate the same distribu-
tion of X , in practice they result in different distributions because of the different αk learned. In fact,
using α1 results in having samples that are sharper and more faithful to the data distribution. We verify
the effect of learning the scaling factor further in the experimental section.

3.4 Extending the denoising auto-encoder to more general GSNs

The denoising auto-encoder Markov chain is defined by X̃t ∼C(X̃ |Xt) and Xt+1 ∼ Pθ (X | X̃t), where Xt

alone can serve as the state of the chain. The GSN framework generalizes the DAE in two ways:

1. the ‘corruption’ function is not fixed anymore, but a parametrized function that can be learned
and corresponds to a ‘hidden’ state (so we write the output of this function H rather than X̃ ); and

2. that intermediate variable H is now considered part of the state of the Markov chain, i.e. its value
of Ht at step t of the chain depends, not just on the previous visible Xt−1, but also on the previous
state Ht−1.

For this purpose, we define the Markov chain associated with a GSN in terms of a visible Xt and a latent
variable Ht as state variables, of the form

Ht+1 ∼ Pθ1(H |Ht, Xt)

Xt+1 ∼ Pθ2(X |Ht+1).
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This definition makes DAEs a special case of GSNs. Note that, given that the distribution of Ht+1

may depend on a previous value of Ht, we find ourselves with an extra H0 variable added at the begin-
ning of the chain. This H0 complicates things when it comes to training, but when we are in a sampling
regime, we can simply wait for a sufficient number of steps to burn in.

3.4.1 Main result about GSNs The next theoretical results give conditions for making the stationary
distributions of the above Markov chain match a target data-generating distribution. It basically says
that in order to estimate the data-generating distribution P(X0), it is enough to achieve two conditions.

The first condition is similar to the one we obtain when minimizing denoising reconstruction error,
i.e. we must make sure that the reconstruction distribution P(X1 |H1) approaches the conditional distri-
bution P(X0 |H1), i.e. the X0s that could have given rise to H1.

The second condition is novel and regards the initial state H0 of the chain, which influences H1. It
says that P(H0 |X0) must match P(H1 |X0). One way to achieve that is to initialize H0 associated with a
training example X0 with the previous value of H1 that was sampled when example X0 was processed.
In the graphical model in the statement of Theorem 3, note how the arc relating X0 and H0 goes in
the X0→H0 direction, which is different from the way we would sample from the GSN (graphical
model above), where we have H0→ X0. Indeed, during training, X0 is given, forcing it to have the
data-generating distribution.

Note that Theorem 3 is there to provide us with a guarantee about what happens when those two
conditions are satisfied. It is not originally meant to describe a training method.

In Section 3.4.3, we explain how these conditions could be approximately achieved for practical
purposes.

Theorem 3 Let (Ht, Xt)
∞
t=0 be the Markov chain defined by the following graphical model.

If we assume that the chain has a stationary distribution πH ,X , and that, for every value of (x, h), we
have that

• all the P(Xt = x |Ht = h)= g(x | h) share the same density for t � 1;

• all the P(Ht+1 = h |Ht = h′, Xt = x)= f (h | h′, x) shared the same density for t � 0;
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• P(H0 = h |X0 = x)= P(H1 = h |X0 = x);

• P(X1 = x |H1 = h)= P(X0 = x |H1 = h);

then, for every value of (x, h), we get that

• P(X0 = x |H0 = h)= g(x | h) holds, which is something that was assumed only for t � 1;

• P(Xt = x, Ht = h)= P(X0 = x, H0 = h) for all t � 0;

• the stationary distribution πH ,X has a marginal distribution πX such that π(x)= P(X0 = x).

Those conclusions show that our Markov chain has the property that its samples in X are drawn from
the same distribution as X0.

Proof. The proof hinges on a few manipulations done with the first variables to show that
P(Xt = x |Ht = h)= g(x | h), which is assumed for t � 1, also holds for t= 0.

For all h we have that

P(H0 = h)=
∫

P(H0 = h |X0 = x)P(X0 = x) dx

=
∫

P(H1 = h |X0 = x)P(X0 = x) dx (by hypothesis)

= P(H1 = h).

The equality in distribution between (X1, H1) and (X0, H0) is obtained with

P(X1 = x, H1 = h)= P(X1 = x |H1 = h)P(H1 = h)

= P(X0 = x |H1 = h)P(H1 = h) (by hypothesis)

= P(X0 = x, H1 = h)

= P(H1 = h |X0 = x)P(X0 = x)

= P(H0 = h |X0 = x)P(X0 = x) (by hypothesis)

= P(X0 = x, H0 = h).

Then we can use this to conclude that

P(X0 = x, H0 = h)= P(X1 = x, H1 = h)

�⇒ P(X0 = x |H0 = h)= P(X1 = x |H1 = h)= g(x | h)

and so, despite the arrow in the graphical model being turned the other way, we have that the density of
P(X0 = x |H0 = h) is the same as for all other P(Xt = x |Ht = h) with t � 1.

Now, since the distribution of H1 is the same as the distribution of H0, and the transition probabil-
ity P(H1 = h |H0 = h′) is entirely defined by the (f , g) densities which are found at every step for all
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t � 0, then we know that (X2, H2) will have the same distribution as (X1, H1). To make this point more
explicitly,

P(H1 = h |H0 = h′)=
∫

P(H1 = h |H0 = h′, X0 = x)P(X0 = x |H0 = h′) dx

=
∫

f (h | h′, x)g(x | h′) dx

=
∫

P(H2 = h |H1 = h′, X1 = x)P(X1 = x |H1 = h′) dx

= P(H2 = h |H1 = h′).

This also holds for P(H3 |H2) and for all subsequent P(Ht+1 |Ht). This relies on the crucial step where
we demonstrate that P(X0 = x |H0 = h)= g(x | h). Once this is shown, then we know that we are using
the same transitions expressed in terms of (f , g) at every step.

Since the distribution of H0 was shown above to be the same as the distribution of H1, this forms a
recursive argument that shows that all the Ht are equal in distribution to H0. Because g(x | h) describes
every P(Xt = x |Ht = h), we have that all the joints (Xt, Ht) are equal in distribution to (X0, H0).

This implies that the stationary distribution πX ,H is the same as that of (X0, H0). Their marginals
with respect to X are thus the same. �

Intuitively, the proof of Theorem 3 achieves its objective by forcing all the (Ht, Xt) pairs to share the
same joint distribution, thus making the marginal over Xt as t→∞ (i.e. the stationary distribution of
the chain π ) be the same as P(X0), i.e. the data distribution. On the other hand, because it is a Markov
chain, its stationary distribution does not depend on the initial conditions, making the model generate
from an estimator of P(X0) for any initial condition.

To apply Theorem 3 in a context where we use experimental data to learn a model, we would like
to have certain guarantees concerning the robustness of the stationary density πX . When a model lacks
capacity, or when it has seen only a finite number of training examples, that model can be viewed as a
perturbed version of the exact quantities found in the statement of Theorem 3.

Note that we can modify the training suggested in Theorem 3 to use walkback as described in
Section 3.2 by unrolling the chain and using a contribution to the loss at every time step. This is explored
later in the experiment described by Fig. 5.

3.4.2 A note about consistency A good overview of results from perturbation theory discussing
stationary distributions in finite state Markov chains can be found in Cho et al. (2000). We reference
here only one of those results.

Theorem 4 Adapted from (Schweitzer, 1968).
Let K be the transition matrix of a finite state, irreducible, homogeneous Markov chain. Let π be

its stationary distribution vector so that Kπ = π . Let A= I − K and Z = (A+ C)−1, where C is the
square matrix whose columns all contain π . Then, if K̃ is any transition matrix (that also satisfies the
irreducible and homogeneous conditions) with stationary distribution π̃ , we have that

‖π − π̃‖1 � ‖Z‖∞
∥∥K − K̃

∥∥
∞ .
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This theorem covers the case of discrete data by showing how the stationary distribution is not dis-
turbed by a great amount when the transition probabilities that we learn are close to their correct values.
We are talking here about the transition between steps of the chain (X0, H0), (X1, H1), . . . , (Xt, Ht), which
are defined in Theorem 3 through the (f , g) densities.

In practice, we have not attempted to estimate how large would be the constant ‖Z‖∞ in the case of
a GSN featuring only discrete states. Theorem 4 serves more as a comforting reminder that, for a ‘good’
transition operator, i.e. one that does not yield unreachable states, if we have a close approximation to
that operator, then we will get a close approximation to the stationary state.

3.4.3 Training criterion for GSNs So far, we avoided discussing the training criterion for a GSN.
Various alternatives exist, but this analysis is for future work. Right now Theorem 3 suggests the fol-
lowing rules:

• Define g(x | h)= P(X1 = x |H1 = h), i.e. the decoder, to be the estimator for P(X0 = x |H1 = h),
e.g. by training an estimator of this conditional distribution from the samples (X0, H1), with
reconstruction likelihood, log P(X1 = x0 |H1), as this would asymptotically achieve the condition
P(X0 |H1)= P(X1 |H1). To see that this is true, consider the following.

We sample X0 from P(X0) (the data-generating distribution) and H1 from P(H1 |H0, X0). Refer
to one of the next bullet points for an explanation about how to get values for H0 to be used when
sampling from P(H1 |H0, X0) here. This creates a joint distribution over (X0, H1) that has P(X0 |H1)

as a derived conditional. Then we train the parameters of a model Pθ (X1 |H1) to maximize the
log-likelihood

Ex0∼P(X0),h1∼P(H1 | x0)[log Pθ (X1 = x0 | h1)]

=
∫

x0,h1

P(x0, h1) log Pθ (X1 = x0 |H1 = h1) dx0 dh1

=
∫

h1

P(h1)

∫
x0

P(X0 = x0 |H1 = h1) log Pθ (X1 = x0 |H1 = h1) dx0 dh1

=−EH1 [KL(P(X0 |H1)‖Pθ (X1 |H1))]+ const, (4)

where the constant does not depend on θ , and thus the log-likelihood is maximized when

Pθ (X1 = x |H1 = h)= P(X0 = x |H1 = h).

Note that Pθ (X1 = x |H1 = h) is not a typo. It represents the value of the density Pθ (X1 |H1) evalu-
ated at (X1, H1)= (x0, h1).

• Pick the transition distribution f (h | h′, x) to be useful, i.e. training it towards the same objective, i.e.
sampling an h′ that makes it easy to reconstruct x. One can think of f (h | h′, x) as the encoder, except
that it has a state which depends on its previous value in the chain.

• To approach the condition P(H0 = h |X0 = x0)= P(H1 = h |X0 = x0), one interesting possibility is
the following. For each X0 in the training set, iteratively sample H1 | (H0, X0) and substitute the
value of H1 as the updated value of H0. Repeat until you have achieved a kind of ‘burn in’. Note
that, after the training is completed, when we use the chain for sampling, the samples that we get
from its stationary distribution do not depend on H0. Another option is to store the value of H1 that
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was sampled for the particular training example x0, and reuse it as the initial H0 the next time that
x0 is presented during training. These techniques of substituting H1 into H0 are only required during
training. In our experiments, we actually found that a fixed H0 = 0 worked as well, so we have used
this simpler approach in the reported experiments. Bear in mind that this iterative trick satisfies the
equality P(H0 = h |X0 = x0)= P(H1 = h |X0 = x0) only approximately. That approximation might
be close enough for all practical purposes, but it is just a trick to satisfy a requirement that would
otherwise not be obvious to satisfy.

• The rest of the chain for t � 1 is defined in terms of (f , g).

3.5 Random variable as deterministic function of noise

There are several equivalent ways of expressing a GSN. One of the interesting formulations is to use
deterministic functions of random variables to express the densities (f , g) used in Theorem 3. With
that approach, we define Ht+1 = φθ1(Xt, Zt, Ht) for some independent noise source Zt, and we insist
that Xt cannot be recovered exactly from Ht+1, to avoid a situation in which the Markov chain would
not be ergodic. The advantage of that formulation is that one can directly backpropagate the recon-
struction log-likelihood log P(X1 = x0 |H1 = f (X0, Z0, H0)) into all the parameters of f and g, using the
reparametrization trick discussed above in Section 3.2.1. This method is described in (Williams, 1992).

In the setting described at the beginning of Section 3, the function playing the role of the ‘encoder’
was fixed for the purpose of the theorem, and we showed that learning only the ‘decoder’ part (but
a sufficiently expressive one) sufficed. In this setting, we are learning both, which can cause certain
broken behaviour.

One problem would be if the created Markov chain failed to converge to a stationary distribution.
Another such problem could be that the function φ(Xt, Zt, Ht) learned would try to ignore the noise Zt,
or not make the best use out of it. In that case, the reconstruction distribution would simply converge to
a Dirac at the input X . This is the analogue of the constraint on auto-encoders that is needed to prevent
them from learning the identity function. Here, we must design the family from which f and g are
learned such that when the noise Z is injected, there are always several possible values of X that could
have been the correct original input.

Another extreme case to think about is when φ(X , Z, H) is overwhelmed by the noise and has lost
all information about X . In that case, the theorems are still applicable while giving uninteresting results:
the learner must capture the full distribution of X in Pθ2(X |H) because the latter is now equivalent to
Pθ2(X ), since φ(X , Z, H) no longer contains information about X . This illustrates that when the noise
is large, the reconstruction distribution (parametrized by θ2) will need to have the expressive power to
represent multiple modes. Otherwise, the reconstruction will tend to capture an average output, which
would visually look like a fuzzy combination of actual modes. In the experiments performed here,
we have only considered unimodal reconstruction distributions (with factorized outputs), because we
expect that even if P(X |H) is not unimodal, it would be dominated by a single mode when the noise
level is small. However, future work should investigate multimodal alternatives.

A related element to keep in mind is that one should pick the family of conditional distributions
Pθ2(X |H) so that one can sample from them and one can easily train them when given (X , H) pairs,
e.g. by maximum likelihood.

Note that, in Algorithm 1, we return the value of ∇θ log gθ (x0 | hT ) on the last line. That value can be
computed with backpropagation through time if we consider the fact that hT inherently depends on the
parameter θ . The ability to backpropagate the derivative through the stochastic steps allows us to use
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Data: Training data x(n) ∈R
d for n= 1, . . . , N .

Input: Encoder distribution (chosen and fixed) with density f (h | h′, x) from which we can
sample efficiently.

Decoder distribution with density gθ (x | h) parameterized with θ ∈Θ .
Initial parameter θ0 ∈Θ for gθ (x | h).

Output: Optimized parameter θ∗ ∈Θ .

Function Main training loop
/* This is the standard SGD algorithm with learning rate α.
You can use your own version with mini-batches and
momentum/adagrad/rmsprop. */
s= 0
repeat

x← any example at random from the training set
/* the derivative ∇θLθ (x) can come from either the usual
loss or the walkback loss */
θs+1← θs − α∇θLθ (x)
s← s+ 1

until the solution θs is satisfactory
return θs

end

Function compute ∇θLθ (x(n)) /* usual SGD contribution for x(n)
*/

x0← x(n)

h1← any plausible initial value (e.g. (0, 0, . . . , 0))
for i= 1, . . . , nbr_of_burnin_steps do

h0← h1

h1← sampled from f (h1 | h0, x0)

end
return ∇θ log gθ (x0 | h1)

end

Function compute ∇θLθ (x(n)) /* walkback SGD contribution for x(n)
*/

x0← x(n)

h1← any plausible initial value (e.g. (0, 0, . . . , 0))
for i= 1, . . . , nbr_of_burnin_steps do

h0← h1

h1← sampled from f (h1 | h0, x0)

end
T← sampled from Geometric Distribution (p= 0.5)
for t= 1, . . . , T do

ht← sampled from f (ht | ht−1, xt−1)

xt← sampled from g(xt | ht)

end
return ∇θ log gθ (x0 | hT )

end

Algorithm 1: Description of the training procedure suggested by Theorem 3.
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∇θ log gθ (x0 | hT (θ)) as the training signal. Depending on the implementation language (i.e. whether it
features automatic differentiation or not), this step can be simple or very complicated.

3.6 Handling missing inputs or structured output

In general, a simple way to deal with missing inputs is to clamp the observed inputs and then run the
Markov chain with the constraint that the observed inputs are fixed and not resampled at each time
step, whereas the unobserved inputs are resampled each time, conditioned on the clamped inputs. This
procedure is illustrated later in Fig. 6 in the experimental section.

Part of the appeal of generative models over classifiers is that they allow us to get more information
out of the model, and here we focus on the possibility of asking questions to the model by clamping
certain values or certain components. For example, supposing for a moment that we had a generative
model of the population of the Earth, we could clamp the age to 30 and the city to New York, and then
look at the distribution of vacation days per year, or the number of siblings.

The theory in this section about clamping is mostly to confirm that it behaves as one would expect,
and that we indeed get samples drawn from the conditionals that we would expect to have. We are not
training the model with clamped variables. We are only running the chain with clamped variables after
the model has been trained.

In the context of the GSN described in Section 3.4 using the two distributions

Ht+1 ∼ Pθ1 (H |Ht, Xt),

Xt+1 ∼ Pθ2 (X |Ht+1),

we need to make some adjustments to Pθ2(X |Ht+1) to be able to sample X conditioned on some of
its components being clamped. We also focus on the case where there are no connections between the
Ht→Ht+1. That is, we study the more basic situation where we train an denoising auto-encoder instead
of a GSN that has connections between the hidden units.

Let S be a set of values that X can take. For example, S can be a subset of the units of X that are fixed
to given values. We can talk about clamping X ∈ S, or just ‘clamping S’ when the meaning is clear.

To give another example, if x= (xa, xb) has two components, that subset S can affect one of the
components by selecting something such as

S = {(xa, xb) | xb = 7},
or it can affect the two components by selecting an S such as

S = {(xa, xb) | xa + xb = 0}.
Both possibilities are compatible with the notation that we use. We encourage the reader to imagine
a choice S that affects only a subset of the components (such an certain pixels in an image) when
following through the reasoning, but to remember that the possibilities are more general than this.

In order to sample from a distribution with clamped S, we need to be able to sample from

Ht+1 ∼ Pθ1 (H |Xt),

Xt+1 ∼ Pθ2 (X |Ht+1, X ∈ S).

This notation might be strange at first, but it’s as legitimate as conditioning on 0 < X when sam-
pling from any general distribution. It involves only a renormalization of the resulting distribution
Pθ2(X |Ht+1, X ∈ S).
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In a general scenario with two conditional distributions (Pθ1 , Pθ2) playing the roles of f (x | h) and
g(h | x), i.e. the encoder and decoder, we can make certain basic assumptions so that the asymptotic
distributions of (Xt, Ht) and (Xt, Ht+1) both exist. There is no reason to think that those two distributions
are the same, and it is trivial to construct counter-examples where they differ greatly.

However, when we train a DAE with infinite capacity, Proposition 1 shows that the optimal solution
leads to those two joints being the same. That is, the two trained conditional distributions f (h | x) and
g(x | h) are mutually compatible. They form a single joint distribution over (X , H). We can sample from
it by the usual Gibbs sampling procedure. Moreover, the marginal distribution over X that we obtain
will match that of the training data. This is the motivation for Proposition 1.

Knowing that Gibbs sampling produces the desired joint distribution over (X , H), we can now see
how it would be possible to sample from (X , H) | (X ∈ S) if we are able to sample from f (h | x) and
g(x | h, x ∈ S). Note that it might be very hard to sample from g(x | h, x ∈ S), depending on the particular
model used. We are not making any assumption on the factorization of g(x | h), much like we are not
making any assumption on the particular representation (or implementation) of g(x | h).

In Section 3.4.2, we address a valid concern about the possibility that, in a practical setting, we
might not train g(x | h) to achieve an exact match of the density of X |H . That g(x | h) may be very
close to the optimum, but it might not be able to achieve it due to its finite capacity or its particular
parametrization. What does that imply about whether the asymptotic distribution of the Markov chain
obtained experimentally compared with the exact joint (X , H)?

We deal with this issue in the same way as we dealt with it when it arose in the context of Theorem 3.
The best that we can do is to refer to Theorem 4 and rely on an argument made in the context of discrete
states that would closely approximate our situation (which is in either discrete or continuous space).

Our Markov chain is homogeneous because it does not change with time. It can be made irreducible
by imposing very light constraints on f (h | x) so that f (h | x) > 0 for all (x, h). This happens automatically
when we take f (h | x) to be additive Gaussian noise (with fixed parameters) and we train only g(x | h).
In that case, the optimum g(x | h) will assign non-zero probability weight on all the values of x.

We cannot guarantee that a non-optimal g(x | h) will not be broken in some way, but we can often
get g(x | h) to be non-zero by selecting a parametrized model that cannot assign a probability of exactly
zero to an x. Finally, to use Theorem 4, we need to have the constant ‖Z‖∞ from Theorem 4 to be
non-zero. This is a bit more complicated to enforce, but it is something that we will get if the transition
matrix stays away from the identity matrix. That constant is zero when the chain is close to being
degenerate.

Theorem 4 says that, with those conditions verified, we have that an arbitrarily good g(x | h) will
lead to an arbitrarily good approximation of the exact joint (X , H).

Now that we know that this approach is grounded in sound theory, it is certainly reasonable to try
it in experimental settings in which we are not satisfying all the requirements, and see if the results are
useful or not. We would refer the reader to our experiment shown in Fig. 6, where we clamp certain
units and resample the rest.

To further understand the conditions for obtaining the appropriate conditional distributions on some
of the visible inputs when others are clamped, we consider below sufficient and necessary conditions
for making the stationary distribution of the clamped chain correspond to the normalized distribution
(over the allowed values) of the unclamped chain.

Proposition 5 Let f (h | x) and g(x | h) be the encoder and decoder functions such that they are mutually
compatible. That is, there exists a single join π(X , H) such that f (h | x)= π(h | x) and g(x | h)= π(x | h),
and we can sample from that joint using Gibbs sampling.
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Note that this happens when we minimize

EX

[
log

∫
g(x | h)f (h | x) dh

]

or when we minimize the walkback loss (see Proposition 2).
Let S ⊆X be a set of values that X can take (e.g. some components of X can be assigned cer-

tain fixed values), and such that P(X ∈ S) > 0. Let π(x | x ∈ S) denote the conditional distribution of
π(X , H) on which we marginalize over H and condition on X ∈ S. That is,

π(x | x ∈ S)= π(x)∫
S π(x′) dx′

∝ π(x)I(x ∈ S),

where I(x ∈ S) denotes an indicator function that takes the value 1 when x ∈ S, and 0 otherwise.
Let g(x | h, x ∈ S) denote a restriction of the decoder function that puts probability weight only on

the values of x ∈ S. That is,
g(x | h, x ∈ S)∝ g(x | h)I(x ∈ S).

If we start from some x0 ∈ S and we run a Markov chain by alternating between f (h | x) and
g(x | h, x ∈ S), then the asymptotic distribution of that chain with respect to X will be the same as
π(x | x ∈ S).

Proof. Proposition 5 follows almost automatically from applying Proposition 1 and restricting the
domain of X to S. The requirement that f (h | x) and g(x | h) be mutually compatible gives us the exis-
tence and unicity of π(X , H).

The fact that we can use Gibbs sampling to sample from π(X , H) tells us that we can sample from
π(X , H |X ∈ S) also with Gibbs sampling. By running a Markov chain as described in the statement
of the proposition, starting with some x0 ∈ S and alternating between f (h | x) and g(x | h, x ∈ S), we get
samples drawn from π(X , H |X ∈ S).

The marginal with respect to X of π(X , H |X ∈ S) is simply

π(x | x ∈ S)=
∫
H

π(x, h | x ∈ S) dh

which is just the original density π(X ) renormalized to its new domain S.

π(x | x ∈ S)= π(x)∫
S π(x′) dx′

.
�

Note that the assumption about mutually compatibility in Proposition 5 is not trivial to satisfy. We
address this situation in Section 6 of the Appendix.

3.7 Dependency Networks as GSNs

Dependency networks (Heckerman et al., 2000) are models in which one estimates conditionals
Pi(xi | x−i), where x−i denotes x \ xi, i.e. the set of variables other than the ith one, xi. Note that each
Pi may be parametrized separately, thus not guaranteeing that there exists a joint of which they are
the conditionals. Instead of the ordered pseudo-Gibbs sampler defined in Heckerman et al. (2000),
which resamples each variable xi in the order x1, x2, . . ., we can view dependency networks in the GSN
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framework by defining a proper Markov chain in which at each step one randomly chooses which
variable to resample. The corruption process therefore just consists of H = f (X , Z)= X−s, where X−s

is the complement of Xs, with s a randomly chosen subset of elements of X (possibly constrained
to be of size 1). Furthermore, we parametrize the reconstruction distribution as Pθ2(X = x |H)=
δx−s=X−s Pθ2,s(Xs = xs | x−s), where the estimated conditionals Pθ2,s(Xs = xs | x−s) are not constrained to
be consistent conditionals of some joint distribution over all of X .

Proposition 6 If the above GSN Markov chain has a stationary distribution, then the dependency
network defines a joint distribution (which is that stationary distribution), which does not have to be
known in closed form. Furthermore, if the conditionals P(Xs |X−s) are consistent estimators of the
ground truth conditionals, then that stationary distribution is a consistent estimator of the ground truth
joint distribution.

The proposition can be proved by immediate application of Proposition 1 with the above particular
GSN model definitions.

This joint stationary distribution can exist even if the conditionals are not consistent. To show that,
assume that some choice of (possibly inconsistent) conditionals gives rise to a stationary distribution π .
Now let us consider the set of all conditionals (not necessarily consistent) that could have given rise to
that π . Clearly, the conditionals derived from π by Bayes rule are part of that set, but there are infinitely
many others (a simple counting argument shows that the fixed point equation of π introduces fewer
constraints than the number of degrees of freedom that define the conditionals). To better understand
why the ordered pseudo-Gibbs chain does not benefit from the same properties, let us see how the
pseudo-Gibbs chain could be extended to become a Markov chain. For this, we need to add a component
of the state that remembers which of the variables we just resampled at each step. However, that Markov
chain could be periodic, because we cycle in a deterministic way through all the index values. This
would make it difficult to guarantee ergodicity or the existence of a stationary distribution, which is
required for our convergence theorem (Proposition 1).

However, by introducing randomness in the choice of which variable(s) to resample next, we obtain
aperiodicity and ergodicity, yielding as stationary distribution a mixture over all possible resampling
orders. These results also show in a novel way (see e.g. Hyvärinen (2006) for earlier results) that training
by pseudolikelihood or generalized pseudolikelihood provides a consistent estimator of the associated
joint, so long as the GSN Markov chain defined above is ergodic. This result can be applied to show
that the multi-prediction DBM (MP-DBM) training procedure introduced by Goodfellow et al. (2013)
also corresponds to a GSN. This has been exploited in order to obtain much better samples using the
associated GSN Markov chain than by sampling from the corresponding DBM (Goodfellow et al.,
2013).

4. Related work

GSNs and the Markov chain interpretation of DAEs are related to a number of other interesting deep
generative models that have been proposed, especially very recently. All these approaches attempt to
bypass the intractability of the likelihood that arises when introducing latent variables.

One option is to change the family of functions to guarantee that the likelihood is tractable, e.g.
with sum–product networks (Poon & Domingos, 2011). In that spirit, the extreme solution is to com-
pletely eliminate latent variables, with models that can, however, still perform very well, like NADE
(Larochelle & Murray, 2011) or even recurrent neural networks (if the stationarity assumption makes
sense).



GENERATIVE STOCHASTIC NETWORKS 23 of 40

Another is to perform or learn approximate inference or use an approximate method to estimate
the log-likelihood gradient, and most approaches follow such a path. Algorithms for training Boltz-
mann machines (especially the Restricted Boltzmann Machine or RBM) such as contrastive divergence
(Hinton, 2000; Hinton et al., 2006) and persistent contrastive divergence (Tieleman, 2008; Younes,
1998) directly aim at estimating the gradient of the log-likelihood using a MCMC. Exact inference in
a Deep Boltzmann Machine or DBM (Salakhutdinov & Hinton, 2009) is also intractable, but can be
approximated by MCMC or by a mean-field variational approximation. In terms of architecture, the
GSN with latent variable is to the denoising auto-encoder what the DBM is to the RBM. In fact, as
shown in the next section, we can design a GSN whose computations closely mimic the sampling (or
inference) process of a DBM.

Another approach that requires a sequence of sampling steps and that is maybe more related to
DAEs and GSNs, is the ‘non-equilibrium thermodynamics’ approach of Sohl-Dickstein et al. (2015).
In both papers, we find the idea of repeatedly introducing noise into the empirical distribution as well
as the idea of learning the probabilistic ‘noise inversion’ process, which ends up being the generative
process for the trained model. However, the details differ, especially regarding the training objective.

Another family of approaches regards directed generative models in which the approximate infer-
ence is computed and learned by a separate ‘encoder’ network, while the generative path corresponds to
a kind of ‘decoder’. This line of work started with the Helmholtz machine (Dayan et al., 1995; Hinton
et al., 1995) and its wake–sleep algorithm. More recently, it was followed up by the various variational
auto-encoders or VAEs (Gregor et al., 2014; Kingma & Welling, 2014; Mnih & Gregor, 2014; Rezende
et al., 2014), and related directed models (Bornschein & Bengio, 2014; Ozair & Bengio, 2014). No
MCMC is necessary in these approaches. Like in GSNs, these models parametrize P(X |H). The main
difference comes in the parametrization of P(H). In the VAE and other Helmholtz machines, the top-
level prior P(H) has a simple analytic parametric form, such as a Gaussian. In the GSN, we have instead
that P(H) is the stationary distribution of a Markov chain. It has no analytic formulation, but may rep-
resent a distribution with a more complex structure. This extra representational power may potentially
come at a price when the corresponding Markov chain does not mix well.

5. Experimental results

The theoretical results on GSNs open for exploration of a large class of possible parametrizations and
training procedures which share the property that they can capture the underlying data distribution
through the GSN Markov chain. What parametrizations will work well? Where and how should one
inject noise to best balance fast mixing with making the implied conditional easy to model? We present
results of preliminary experiments with specific selections for each of these choices, but the reader
should keep in mind that the space of possibilities is vast.

We start in Section 5.1 with results involving GSNs without latent variables (DAEs in Section 3.1
and the walkback algorithm presented in Section 3.2). Then in Section 5.2 we proceed with experiments
related to GSNs with latent variables (model described in Section 3.4). Section 5.3 extends experiments
of the walkback algorithm with the scaling factors discussed in Section 3.3. A Theano1 (Bergstra et al.,
2010) implementation is available,2 including the links of datasets.

1 http://deeplearning.net/software/theano/.
2 https://github.com/yaoli/GSN.

http://deeplearning.net/software/theano/
https://github.com/yaoli/GSN
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Fig. 3. Top left: histogram of a data-generating distribution (true, blue), the empirical distribution (red) and the estimated distri-
bution using a denoising maximum likelihood estimator. Other figures: pairs of variables (out of 10) showing the training samples
and the model-generated samples.

5.1 Experimental results regarding walkback in DAEs

We present here an experiment performed with a non-parametric estimator on two types of data and an
experiment done with a parametric neural network on the MNIST dataset.

Non-parametric case. The mathematical results presented here apply to any denoising training
criterion, where the reconstruction loss can be interpreted as a negative log-likelihood. This remains
true whether or not the denoising machine P

(
X | X̃)

is parametrized as the composition of an encoder
and decoder. This is also true of the asymptotic estimation results in Alain & Bengio (2013). We exper-
imentally validate the above theorems in a case where the asymptotic limit (of enough data and enough
capacity) can be reached, i.e. in a low-dimensional non-parametric setting. Figure 3 shows the distri-
bution recovered by the Markov chain for discrete data with only 10 different values. The conditional
P

(
X | X̃)

was estimated by multinomial models and maximum likelihood (counting) from 5000 training
examples. 5000 samples were generated from the chain to estimate the asymptotic distribution πn(X ).
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Fig. 4. Successive samples generated by Markov chain associated with the trained DAEs according to the plain sampling scheme
(top) and walkback sampling scheme (bottom). There are less ‘spurious’ samples with the walkback algorithm.

For continuous data, Fig. 3 also shows the result of 5000 generated samples and 500 original training
examples with X ∈R

10, with scatter plots of pairs of dimensions. The estimator is also non-parametric
(Parzen density estimator of P

(
X | X̃)

).
MNIST digits. We trained a DAE on the binarized MNIST data (thresholding at 0.5). The 784-

2000-784 auto-encoder is trained for 200 epochs with the 50,000 training examples and salt-and-pepper
noise (probability 0.5 of corrupting each bit, setting it to 1 or 0 with probability 0.5). It has 2000 tanh
hidden units and is trained by minimizing cross-entropy loss, i.e. maximum likelihood on a factorized
Bernoulli reconstruction distribution. With walkback training, a chain of five steps was used to generate
five corrupted examples for each training example. Figure 4 shows samples generated with and without
walkback. The quality of the samples was also estimated quantitatively by measuring the log-likelihood
of the test set under a non-parametric density estimator P̂(x)=meanX̃ P(x | X̃ ) constructed from 10,000
consecutively generated samples (X̃ from the Markov chain). The expected value of E[P̂(x)] over the
samples can be shown (Bengio et al., 2013d) to be a lower bound (i.e. conservative estimate) of the true
(implicit) model density P(x). The test set log-likelihood bound was not used to select among model
architectures, but visual inspection of samples generated did guide the preliminary search reported here.
Optimization hyper-parameters (learning rate, momentum and learning rate reduction schedule) were
selected based on the training objective. We compare against a state-of-the-art RBM (Cho et al., 2013)
with an AIS log-likelihood estimate of −64.1 (AIS estimates tend to be optimistic). We also drew
samples from the RBM and applied the same estimator (using the mean of the RBM’s P(x | h) with h
sampled from the Gibbs chain), and obtained a log-likelihood non-parametric bound of −233, skip-
ping 100 MCMC steps between samples (otherwise numbers are very poor for the RBM, which mixes
poorly). The DAE log-likelihood bound with and without walkback is, respectively, −116 and −142,
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Fig. 5. Left: Generic GSN Markov chain with state variables Xt and Ht . Right: GSN Markov chain inspired by the unfolded
computational graph of the DBM Gibbs sampling process, but with backprop-able stochastic units at each layer. The training
example X = x0 starts the chain. Either odd or even layers are stochastically updated at each step. All xts are corrupted by salt-
and-pepper noise before entering the graph (lightning symbol). Each xt for t > 0 is obtained by sampling from the reconstruction
distribution for that step, Pθ2 (Xt |Ht). The walkback training objective is the sum over all steps of log-likelihoods of target X = x0
under the reconstruction distribution. In the special case of a unimodal Gaussian reconstruction distribution, maximizing the
likelihood is equivalent to minimizing reconstruction error; in general one trains to maximum likelihood, not simply minimum
reconstruction error.

confirming visual inspection suggesting that the walkback algorithm produces less spurious samples.
However, the RBM samples can be improved by a spatial blur. By tuning the amount of blur (the spread
of the Gaussian convolution), we obtained a bound of −112 for the RBM. Blurring did not help the
auto-encoder.

5.2 Experimental results for GSNs with latent variables

We propose here to explore families of parametrizations which are similar to existing deep stochastic
architectures such as the DBM (Salakhutdinov & Hinton, 2009). Basically, the idea is to construct a
computational graph that is similar to the computational graph for Gibbs sampling or variational infer-
ence in DBMs. However, we have to diverge a bit from these architectures in order to accommodate the
desirable property that it will be possible to back-propagate the gradient of reconstruction log-likelihood
with respect to the parameters θ1 and θ2. Since the gradient of a binary stochastic unit is 0 almost
everywhere, we have to consider related alternatives. An interesting source of inspiration regarding this
question is a recent paper on estimating or propagating gradients through stochastic neurons (Bengio,
2013). Here we consider the following stochastic non-linearities: hi = ηout + tanh(ηin + ai), where ai is
the linear activation for unit i (an affine transformation applied to the input of the unit, coming from the
layer below, the layer above, or both) and ηin and ηout are zero-mean Gaussian noises.

To emulate a sampling procedure similar to Boltzmann machines in which the filled-in missing
values can depend on the representations at the top level, the computational graph allows information
to propagate both upward (from input to higher levels) and downward, giving rise to the computational
graph structure illustrated in Fig. 5, which is similar to that explored for deterministic recurrent auto-
encoders (Behnke, 2001; Savard, 2011; Seung, 1998). Downward weight matrices have been fixed to
the transpose of corresponding upward weight matrices. The multiple layers all have a different set of
parameters {W1, W2, W3, . . .}, and the two illustrations from Fig. 5 show how we can conceptually view
the model on the right as being equivalent to the model on the left. The correspondence between the
roles of the Ht on the left and the nodes on the right are highlighted with the ellipses.

With the walkback algorithm, a different reconstruction distribution is obtained after each step of
the short chain started at the training example X . It means that the computational graph from X to a
reconstruction probability at step k actually involves generating intermediate samples as if we were
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running the Markov chain starting at X . In the experiments, the graph was unfolded so that 2D sampled
reconstructions would be produced, where D is the depth (number of hidden layers). The training loss
is the sum of the reconstruction negative log-likelihoods (of target X ) over all 2D reconstructions.

Experiments evaluating the ability of the GSN models to generate good samples were performed on
the MNIST dataset and the Toronto Face Database (TFD), following the setup in Bengio et al. (2013b).

Theorem 3 requires H0 to have the same distribution as H1 (given X0) during training, and this
may be achieved by initializing each training chain with H0 set to the previous value of H1 when the
same example X0 was shown. However, it turned out that even with a dumb initialization of H0, good
results were obtained in the experiments below. In the Algorithm 1 that comes from Theorem 3, the
requirement that P(H0 = h |X0 = x0)= P(H1 = h |X0 = x0) is only satisfied approximately (by iterating
a number of burn-in steps), so a poor initialization of H0 can be seen as performing zero burn-in steps.

Networks with two and three hidden layers were evaluated and compared with regular DAEs. The
latter has just one hidden layer and no state to state transition, i.e. the computational graph can be
split into separate graphs for each reconstruction step in the walkback algorithm. They all have tanh
hidden units and pre- and post-activation Gaussian noise of standard deviation 2, applied to all hid-
den layers except the first. In addition, at each step in the chain, the input (or the resampled Xt) is
corrupted with salt-and-pepper noise of 40% (i.e. 40% of the pixels are corrupted, and replaced with
a 0 or a 1 with probability 0.5). Training is over 100–600 epochs at most, with good results obtained
after around 100 epochs, using stochastic gradient descent (minibatch size of one example). Hidden
layer sizes vary between 1000 and 1500 depending on the experiments, and a learning rate of 0.25 and
momentum of 0.5 were selected to approximately minimize the reconstruction negative log-likelihood.
The learning rate is reduced multiplicatively by 0.99 after each epoch. Following Breuleux et al. (2011),
the quality of the samples was also estimated quantitatively by measuring the log-likelihood of the
test set under a Parzen density estimator constructed from 10,000 consecutively generated samples
(using the real-valued mean-field reconstructions as the training data for the Parzen density estimator).
This can be seen as a lower bound on the true log-likelihood, with the bound converging to the true
likelihood as we consider more samples and appropriately set the smoothing parameter of the Parzen
estimator.3

Results are summarized in Table 1. As in Section 5.1, the test set Parzen log-likelihood bound was
not used to select among model architectures, but visual inspection of generated samples guided this
preliminary search. Optimization hyper-parameters (learning rate, momentum, and learning rate reduc-
tion schedule) were selected based on the reconstruction log-likelihood training objective. The Parzen
log-likelihood bound obtained with a two-layer model on MNIST is 214 (± standard error of 1.1), while
the log-likelihood bound obtained by a single-layer model (regular denoising auto-encoder, DAE in the
table) is substantially worse, at −152± 2.2.

In comparison, Bengio et al. (2013b) report a log-likelihood bound of −244± 54 for RBMs and
138± 2 for a two hidden layer DBN, using the same setup. We have also evaluated a three hidden
layer DBM (Salakhutdinov & Hinton, 2009), using the weights provided by the author, and obtained a
Parzen log-likelihood bound of 32± 2. See http://www.utstat.toronto.edu/∼rsalakhu/DBM.html. Last
Accessed March 1, 2015 for details.

3 However, in this paper, to be consistent with the numbers given in Bengio et al. (2013b), we used a Gaussian Parzen density,
which makes the numbers not comparable with the AIS log-likelihood upper bounds for binarized images reported in other papers
for the same data.

http://www.utstat.toronto.edu/~rsalakhu/DBM.html
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Fig. 6. Top: two runs of consecutive samples (one row after the other) generated from two layer GSN model, showing fast mixing
between classes and nice sharp images. Note: only every fourth sample is shown. Bottom: conditional Markov chain, with the
right half of the image clamped to one of the MNIST digit images and the left half successively resampled, illustrating the power
of the generative model to stochastically fill-in missing inputs. One of the examples of undesirable behaviours occurs on the last
row when the digit that we obtain is a mix between the digits 3, 7 and 9.

Interestingly, the GSN and the DBN-2 actually perform slightly better than when using samples
directly coming from the MNIST training set, perhaps because the mean-field outputs we use are more
‘prototypical’ samples.

Figure 6 shows two runs of consecutive samples from this trained model, illustrating that it mixes
quite well (faster than RBMs) and produces rather sharp digit images. The figure shows that it can also
stochastically complete missing values: the left half of the image was initialized to random pixels and
the right side was clamped to an MNIST image. The Markov chain explores plausible variations of the
completion according to the trained conditional distribution.
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Fig. 7. Left: consecutive GSN samples obtained after 10 training epochs. Right: GSN samples obtained after 25 training epochs.
This shows quick convergence to a model that samples well. The samples in Fig. 6 are obtained after 600 training epochs.

5.3 Experimental results for GSNs with the scaling factors for walkbacks

We present the experimental results regarding the discussion in Section 3.3. Experiments are done on
both MNIST and TFD. For TFD, only the unsupervised part of the dataset is used, resulting in 69,000
samples for train, 15,000 for validation, and 15,000 for test. The training examples are normalized to
have a mean 0 and a standard deviation 1.

For MNIST, the GSNs we used have two hidden layers with 1000 tanh units each. Salt-and-pepper
noise is used to corrupt inputs (Fig. 7). We have performed extensive hyperparameter search on both the
input noise level between 0.3 and 0.7, and the hidden noise level between 0.5 and 2.0. The number of
walkback steps is also randomly sampled between 2 and 6. All the experiments are done with learning
the scaling factors, following the parametrization in Section 3.3.1. Following previous experiments, the
log-probability of the test set is estimated by the same Parzen density estimator on consecutive 10,000
samples generated from the trained model. The σ parameter in the Parzen estimator is cross-validated
on the validation set. The sampling is performed with α1, the learned scaling factor for the first walkback
step. The best model achieves a log-likelihood LL= 237.44 on MNIST test set, which can be compared
with the best reported result LL= 225 from Goodfellow et al. (2014).

On TFD, we follow a similar procedure as in MNIST, but with larger model capacity (GSNs with
2000-2000 tanh units) and a wider hyperparameter range on the input noise level (between 0.1 and 0.7),
the hidden noise level (between 0.5 and 5.0), and the number of walkback steps (between 2 and 6). For
comparison, two types of models are trained, one with the scaling factor and one without. The evaluation
metric is the same as the one used in MNIST experiments. We compute the Parzen density estimation
on the first 10,000 test set examples. The best model without learning the scaling factor results in
LL= 1044, and the best model with learning the scaling factor results in 1215, when the scaling factor
from the first walkback step is used, and 1189 when all the scaling factors are used together with their
corresponding walkback steps. As two further comparisons, using the mean over training examples to
train the Parzen density estimator results in LL= 632, and using the validation set examples to train
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Fig. 8. Consecutive GSN samples from a model trained on the TFD dataset. The scaling factors are learned. The samples are
generated by using the scaling factor from the first walkback step. Samples are sharper compared with Fig. 9. This is also reflected
by an improvement of 140 in Parzen-estimated log-likelihood.

the Parzen estimator obtains LL= 2029 (this can be considered as an upper bound when the generated
samples are almost perfect). Figure 8 shows the consecutive samples generated with the best model,
compared with Fig. 9 that is trained without the scaling factor. In addition, Fig. 10 shows the learned
scaling factor for both datasets that confirms the hypothesis on the effect of the scaling factors made in
Section 3.3.

6. Conclusion

We have introduced a new approach to training generative models, called GSNs, which includes
generative DAEs as a special case (with no latent variable). It is an alternative to directly performing
maximum likelihood on an explicit P(X ), with the objective of avoiding the intractable marginaliza-
tions and partition function that such direct likelihood methods often entail. The training procedure is
more similar to function approximation than to unsupervised learning because the reconstruction dis-
tribution is simpler than the data distribution, often unimodal (provably so in the limit of very small
noise). This makes it possible to train unsupervised models that capture the data-generating distribution
simply using backprop and gradient descent in a computational graph that includes noise injection. The
proposed theoretical results state that under mild conditions (in particular that the noise injected in the
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Fig. 9. Consecutive GSN samples from a model trained on the TFD dataset. At the end of each row, we show the nearest example
from the training set to the last sample on that row to illustrate that the distribution is not merely copying the training set.

Fig. 10. Learned αk values for each walkback step k. Larger values of αk correspond to greater uncertainty for TFD (real-valued)
and less uncertainty for MNIST (binary), due to the differing methods of parametrization given in Section 3.3.1 and 3.3.2. Thus,
both learned factors reflect the fact that there is greater uncertainty after each consecutive walkback step.

networks prevents perfect reconstruction), training a sufficient-capacity model to denoise and recon-
struct its observations (through a powerful family of reconstruction distributions) suffices to capture
the data-generating distribution through a simple Markov chain. Another view is that we are training
the transition operator of a Markov chain whose stationary distribution estimates the data distribution,
which has the potential of corresponding to an easier learning problem because the normalization con-
stant for this conditional distribution is generally dominated by fewer modes. These theoretical results
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are extended to the case where the corruption is local, but still allows the chain to mix, and to the case
where some inputs are missing or constrained (thus allowing to sample from a conditional distribution
on a subset of the observed variables or to learned structured output models). The GSN framework is
shown to lend to dependency networks a valid estimator of the joint distribution of the observed vari-
ables even when the learned conditionals are not consistent, also allowing to prove in a new way the
consistency of generalized pseudolikelihood training, associated with the stationary distribution of a
corresponding GSN (that randomly chooses a subset of variables and then resamples it). Experiments
have been conducted to validate the theory, in the case where the GSN architecture is a simple denois-
ing auto-encoder, and in the case where the GSN emulates the Gibbs sampling process of a DBM. A
quantitative evaluation of the samples confirms that the training procedure works very well (in this case
allowing us to train a deep generative model without layerwise pretraining), and can be used to perform
conditional sampling of a subset of variables given the others. After early versions of this work were
published (Bengio et al., 2014), the GSN framework has been extended and applied to classification
problems in several different ways (Goodfellow et al., 2013; Zhou & Troyanskaya, 2014; Zöhrer &
Pernkopf, 2014) yielding very interesting results. In addition to providing a consistent generative inter-
pretation to dependency networks, GSNs have been used to provide one to MP-DBMs (Goodfellow
et al., 2013) and to provide a fast sampling algorithm for deep NADE (Yao et al., 2014).
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Appendix A. Argument for consistency based on local noise

This section presents one direction that we pursued initially to demonstrate that we had certain consis-
tency properties in terms of recovering the correct stationary distribution when using a finite training
sample. We discuss this issue when we cite Theorem 4 from the literature in Section 3.4 and thought it
would be a good idea to include our previous approach in this Appendix.

The main theorem in Bengio et al. (2013c) (stated in supplemental as Theorem S1) requires that the
Markov chain be ergodic. A set of conditions guaranteeing ergodicity is given in the aforementioned
paper, but these conditions are restrictive in requiring that C (

X̃ |X)
> 0 everywhere that P(X ) > 0. The

effect of these restrictions is that Pθ

(
X | X̃)

must have the capacity to model every mode of P(X ),
exactly the difficulty we were trying to avoid. We show here how we may also achieve the required
ergodicity through other means, allowing us to choose a C (

X̃ |X)
that only makes small jumps, which

in turn only requires Pθ

(
X | X̃)

to model a small part of the space around each X̃ .
Let Pθn

(
X | X̃)

be a denoising auto-encoder that has been trained on n training examples. Pθn

(
X | X̃)

assigns a probability to X , given X̃ , when X̃ ∼ C (
X̃ |X)

. This estimator defines a Markov chain Tn

obtained by sampling alternatively an X̃ from C (
X̃ |X)

and an X from Pθ

(
X | X̃)

. Let πn be the asymp-
totic distribution of the chain defined by Tn, if it exists. The following theorem is proved by Bengio et al.
(2013c).

Theorem A1 If Pθn(X | X̃ ) is a consistent estimator of the true conditional distribution P(X | X̃ ) and Tn

defines an ergodic Markov chain, then as n→∞, the asymptotic distribution πn(X ) of the generated
samples converges to the data-generating distribution P(X ).

In order for Theorem A1 to apply, the chain must be ergodic. One set of conditions under which this
occurs is given in the aforementioned paper. We slightly restate them here.

Corollary A2 If the support for both the data-generating distribution and denoising model is con-
tained in and non-zero in a finite-volume region V (i.e. ∀X̃ , ∀X /∈ V , P(X )= 0, Pθ (X | X̃ )= 0 and
∀X̃ , ∀X ∈ V , P(X ) > 0, Pθ (X | X̃ ) > 0, C(X̃ |X ) > 0) and these statements remain true in the limit
of n→∞, then the chain defined by Tn will be ergodic.

If conditions in Corollary A2 apply, then the chain will be ergodic and Theorem A1 will apply.
However, these conditions are sufficient, not necessary, and in many cases they may be artificially
restrictive. In particular, Corollary A2 defines a large region V containing any possible X allowed by
the model, and requires that we maintain the probability of jumping between any two points in a single
move to be greater than 0. While this generous condition helps us easily guarantee the ergodicity of the
chain, it also has the unfortunate side effect of requiring that, in order for Pθn(X | X̃ ) to converge to the
conditional distribution P

(
X | X̃)

, it must have the capacity to model every mode of P(X ), exactly the
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Fig. A1. If C (
X̃ |X)

is globally supported as required by Corollary A2 (Bengio et al., 2013c), then for Pθn

(
X | X̃)

to converge
to P

(
X | X̃)

, it will eventually have to model all of the modes in P(X ), even though the modes are damped (see ‘leaky modes’
on the left). However, if we guarantee ergodicity through other means, as in Corollary A3, we can choose a local C (

X̃ |X)
and

allow Pθn

(
X | X̃)

to model only the local structure of P(X ) (see right).

difficulty we were trying to avoid. The left two plots in Fig. A1 show this difficulty: because C (
X̃ |X)

>

0 everywhere in V , every mode of P(X ) will leak, perhaps attenuated, into P
(
X | X̃)

.
Fortunately, we may seek ergodicity through other means. The following corollary allows us to

choose a C (
X̃ |X)

that only makes small jumps, which in turn only requires Pθ

(
X | X̃)

to model a
small part of the space V around each X̃ .

Let Pθn(X | X̃ ) be a denoising auto-encoder that has been trained on n training examples and
C (

X̃ |X)
be some corruption distribution. Pθn

(
X | X̃)

assigns a probability to X , given X̃ , when
X̃ ∼ C (

X̃ |X)
and X ∼ P(X ). Define a Markov chain Tn by alternately sampling an X̃ from C (

X̃ |X)
and an X from Pθ (X | X̃ ).

Corollary A3 If the data-generating distribution is contained in and non-zero in a finite-volume
region V (i.e. ∀X /∈ V , P(X )= 0, and ∀X ∈ V , P(X ) > 0) and all pairs of points in V can be con-
nected by a finite-length path through V and for some ε > 0, ∀X̃ ∈ V ,∀X ∈ V within ε of each other,
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C(X̃ |X ) > 0 and Pθ

(
X | X̃)

> 0, and these statements remain true in the limit of n→∞, then the chain
defined by Tn will be ergodic.

Proof. Consider any two points Xa and Xb in V . By the assumptions of Corollary A3, there exists a
finite length path between Xa and Xb through V . Pick one such finite length path P. Chose a finite series
of points x= {x1, x2, . . . , xk} along P, with x1 = Xa and xk = Xb such that the distance between every
pair of consecutive points (xi, xi+1) is less than ε as defined in Corollary A3. Then the probability of
sampling X̃ = xi+1 from C(X̃ | xi) will be positive, because C (

X̃ |X)
> 0 for all X̃ within ε of X by the

assumptions of Corollary A3. Further, the probability of sampling X = X̃ = xi+1 from Pθ (X | X̃ ) will
be positive from the same assumption on P. Thus, the probability of jumping along the path from xi

to xi+1, Tn(Xt+1 = xi+1 |Xt = xi), will be greater than 0 for all jumps on the path. Because there is a
positive probability finite length path between all pairs of points in V , all states commute, and the chain
is irreducible. If we consider Xa = Xb ∈ V , by the same arguments Tn(Xt = Xa |Xt−1 = Xa) > 0. Because
there is a positive probability of remaining in the same state, the chain will be aperiodic. Because the
chain is irreducible and over a finite state space, it will be positive recurrent as well. Thus, the chain
defined by Tn is ergodic. �

Although this is a weaker condition that has the advantage of making the denoising distribution
even easier to model (probably having less modes), we must be careful to choose the ball size ε large
enough to guarantee that one can jump often enough between the major modes of P(X ) when these are
separated by zones of tiny probability. ε must be larger than half the largest distance one would have
to travel across a desert of low probability separating two nearby modes (which if not connected in this
way would make V not have a single connected component anymore). Practically, there is a trade-off
between the difficulty of estimating P

(
X | X̃)

and the ease of mixing between major modes separated
by a very low density zone.

Appendix B. General conditions for claiming inputs

In Proposition 5, we gave a sufficient condition for ‘clamping S’ to work in the context of a Markov
chain based on an encoder distribution with density f (h | x) and a decoder distribution with density
g(x | h), which was that f (h | x) and g(x | h) should be mutually compatible. In practice, however, the
mutually compatible condition is hard to satisfy.

In this section, we give a weaker sufficient condition for handling missing inputs by clamping
observed inputs instead of requiring f (h | x) and g(x | h) to be mutually compatible. In Propositions B1
and B2, we also discuss the case when such weaker sufficient condition becomes necessary. Finally,
Proposition B3 builds the connection between this weaker condition and the mutually compatible con-
dition.

Proposition B1 Assume that we have an ergodic Markov chain with state space in X ×H and tran-
sition operators having density f (h | x) and g(x | h). Its unique stationary distribution is π(x, h) over
X ×H, which satisfies:

∫
X×H

π(x, h)f
(
h′ | x) g

(
x′ | h′) dx dh= π

(
x′, h′

)
.

In other words, f (h′ | x)g(x′ | h′) defines the transition probability of the Markov chain from state (x, h) to
state (x′, h′). Assume that we start from (X0, H0)= (x0, h0), where x0 ∈ S, S ⊆X (S can be considered
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as a constraint over X ), and we sample (Xt+1, Ht+1) by first sampling Ht+1 with encoder f (Ht+1 |Xt)

and then sampling Xt+1 with decoder g(Xt+1 |Ht+1, Xt+1 ∈ S), the new stationary distribution we reach
is πS(x, h).

Then a sufficient condition for

πS(x)= π(x | x ∈ S)

is for π(x | x ∈ S) to satisfy

∫
S

π(x | x ∈ S)f
(
h′ | x) dx= π

(
h′ | x ∈ S)

, (B.1)

where π(x | x ∈ S) and π(h′ | x ∈ S) are conditional distributions

π(x | x ∈ S)= π(x)∫
S π(x′) dx′

, π
(
h′ | x ∈ S)=

∫
S π(x, h′) dx∫

S×H π(x, h) dx dh
.

Proof. Based on the assumption that the chain is ergodic, we have that πS(X , H) is the unique distri-
bution satisfying ∫

S×H
πS(x, h)f

(
h′ | x) g

(
x′ | h′, x′ ∈ S)

dx dh= πS(x′, h′). (B.2)

Now let us check if π(x, h | x ∈ S) satisfies the equation above.
The Markov chain described in the statement of the proposition is defined by looking at the slices

(Xt, Ht). Because the Xt is sampled using decoder g(x | h) given Ht, so the conditional distribution of Xt

given Ht is just g(Xt |Ht). Because this is also true when t goes to infinity where Xt and Ht reach the
stationary distribution, so for the stationary distribution we have g(x | h)= π(x | h). This relation still
holds even if we put the S constraint on x

g(x′ | h′, x′ ∈ S)= π(x′ | h′, x′ ∈ S).

Now if we substitute πS(x, h) by π(x, h | x ∈ S) in equation (B.2), the left-hand side of equation (B.2)
becomes ∫

S×H
π (x, h | x ∈ S) f

(
h′ | x) π

(
x′ | h′, x′ ∈ S)

dx dh

= π
(
x′ | h′, x′ ∈ S) ∫

S

(∫
H

π (x, h | x ∈ S) dh

)
f
(
h′ | x) dx

= π
(
x′ | h′, x′ ∈ S) ∫

S
π (x | x ∈ S) f

(
h′ | x) dx

= π
(
x′ | h′, x′ ∈ S)

π
(
h′ | x ∈ S)

(using equation (B.1))

= π
(
x′ | h′, x′ ∈ S)

π
(
h′ | x′ ∈ S)

= π
(
x′, h′ | x′ ∈ S)

.

This shows that π(x, h | x ∈ S) satisfies equation (B.2). Due to the ergodicity of the chain, the distribution
πS(x, h) that satisfies equation (B.2) is unique, so we have πS(x, h)= π(x, h | x ∈ S). By marginalizing
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over h, we get
πS(x)= π(x | x ∈ S). �

Proposition B1 gives a sufficient condition for dealing with missing inputs by clamping observed
inputs. Note that this condition is weaker than the mutually compatible condition discussed in
Section 3.6. Furthermore, under certain circumstances, this sufficient condition becomes necessary, and
we have the following proposition.

Proposition B2 Assume that the Markov chain in Proposition B1 has finite discrete state space for
both X and H . The condition in equation (B.1) in Proposition B1 becomes a necessary condition when
all discrete conditional distributions g(x | h, x ∈ S) are linearly independent.

Proof. We follow the same notions in Proposition B1 and now we have πS(x)= π(x | x ∈ S). Because
πS(x) is the marginal of the stationary distribution reached by alternatively sampling with encoder
f (H |X ) and decoder g(X |H , X ∈ S), we have that π(x | x ∈ S) satisfies

∫
S

π(x | x ∈ S)

(∫
H

f
(
h′ | x) π(x′ | h′, x′ ∈ S) dh′

)
dx= π(x′ | x′ ∈ S),

which is a direct conclusion from equation (B.2) when considering the fact that πS(x)= π(x | x ∈ S) and
g(x′ | h′, x′ ∈ S)= π(x′ | h′, x′ ∈ S). If we re-arrange the integral in the above equation, we get

∫
H

π(x′ | h′, x′ ∈ S)

(∫
S

π(x | x ∈ S)f
(
h′ | x) dx

)
dh′ = π(x′ | x′ ∈ S). (B.3)

Note that
∫
S π(x | x ∈ S)f (h′ | x) dx is the same as the left-hand side of equation (B.1) in Proposition B1

and it can be seen as some function F(h′) satisfying
∫
H F(h′) dh′ = 1. Because we have considered a

GSN over a finite discrete state space X = {x1, . . . , xN } and H= {h1, . . . , hM }, the integral in equation
(B.3) becomes the linear matrix equation

G · F= Px,

where G(i, j)= g(x′i | h′j, x′ ∈ S)= π(x′i | h′j, x′ ∈ S), F(i)= F(h′i) and Px(i)= π(x′i | x′ ∈ S). In other
words, F is a solution of the linear matrix equation

G · Z= Px.

From the definition of G and Px, it is obvious that Ph is also a solution of this linear matrix equation,
if Ph(i)= π(h′i | x′ ∈ S). Because all discrete conditional distributions g(x | h, x ∈ S) are linear indepen-
dent, which means that all the column vectors of G are linear independent, then this linear matrix
equation has no more than one solution. Since Ph is the solution, we have F= Ph, equivalently in
integral form

F(h′)=
∫
S

π(x | x ∈ S)f
(
h′ | x) dx= π

(
h′ | x ∈ S)

which is the condition equation (B.1) in Proposition B1. �

Proposition B2 says that at least in discrete finite state space, if the g(x | h, x ∈ S) satisfies some
reasonable condition like linear independence, then along with Proposition B1, the condition in
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equation (B.1) is the necessary and sufficient condition for handling missing inputs by clamping the
observed part for at least one subset S. If we want this result to hold for any subset S, we have the
following proposition.

Proposition B3 If the condition in equation (B.1) in Proposition B1 holds for any subset of S that
S ⊆X , then we have

f
(
h′ | x)= π

(
h′ | x).

In other words, f (h | x) and g(x | h) are two conditional distributions obtained by conditioning from a
single joint distribution π(x, h).

Proof. Because S can be any subset of X , of course that S can be a set which only has one element x0,
i.e. S = {x0}. Now the condition in equation (B.1) in Proposition B1 becomes

1 · f (
h′ | x= x0

)= π
(
h′ | x= x0

)
.

Because x0 can be an arbitrary element in X , we have

f
(
h′ | x)= π(h′ | x), or f (h | x)= π(h | x).

Since from Proposition B1 we already know that g(x | h) is π(x | h), we have that f (h | x) and g(x | h)

are mutually compatible, that is, they are two conditional distributions obtained by normalization from
a single joint distribution π(x, h). �

According to Proposition B3, if condition in equation (B.1) holds for any subset S, then f (h | x) and
g(x | h) must be mutually compatible to the single joint distribution π(x, h).


	Introduction
	Summing over too many major modes
	Generative stochastic networks
	DAEs to model probability distributions
	Walkback algorithm for training DAEs
	Reparametrization trick
	Equivalence of the walkback procedure

	Walkbacks with individual scaling factors to handle uncertainty
	Scaling trick in binary X
	Scaling trick in real-valued X
	Sampling with the learned scaling factors

	Extending the denoising auto-encoder to more general GSNs
	Main result about GSNs
	A note about consistency
	Training criterion for GSNs

	Random variable as deterministic function of noise
	Handling missing inputs or structured output
	Dependency Networks as GSNs

	Related work
	Experimental results
	Experimental results regarding walkback in DAEs
	Experimental results for GSNs with latent variables
	Experimental results for GSNs with the scaling factors for walkbacks

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
    /ENN ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


