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Abstract

Few ideas have enjoyed as large an impact on deep learning as convolution. For any
problem involving pixels or spatial representations, common intuition holds that
convolutional neural networks may be appropriate. In this paper we show a striking
counterexample to this intuition via the seemingly trivial coordinate transform
problem, which simply requires learning a mapping between coordinates in (x, y)
Cartesian space and coordinates in one-hot pixel space. Although convolutional
networks would seem appropriate for this task, we show that they fail spectacularly.
We demonstrate and carefully analyze the failure first on a toy problem, at which
point a simple fix becomes obvious. We call this solution CoordConv, which
works by giving convolution access to its own input coordinates through the use of
extra coordinate channels. Without sacrificing the computational and parametric
efficiency of ordinary convolution, CoordConv allows networks to learn either
complete translation invariance or varying degrees of translation dependence, as
required by the end task. CoordConv solves the coordinate transform problem with
perfect generalization and 150 times faster with 10–100 times fewer parameters
than convolution. This stark contrast raises the question: to what extent has this
inability of convolution persisted insidiously inside other tasks, subtly hampering
performance from within? A complete answer to this question will require further
investigation, but we show preliminary evidence that swapping convolution for
CoordConv can improve models on a diverse set of tasks. Using CoordConv in
a GAN produced less mode collapse as the transform between high-level spatial
latents and pixels becomes easier to learn. A Faster R-CNN detection model
trained on MNIST detection showed 24% better IOU when using CoordConv, and
in the Reinforcement Learning (RL) domain agents playing Atari games benefit
significantly from the use of CoordConv layers.

1 Introduction
Convolutional neural networks (CNNs) [17] have enjoyed immense success as a key tool for enabling
effective deep learning in a broad array of applications, like modeling natural images [36, 16], images
of human faces [15], audio [33], and enabling agents to play games in domains with synthetic imagery
like Atari [21]. Although straightforward CNNs excel at many tasks, in many other cases progress
has been accelerated through the development of specialized layers that complement the abilities
of CNNs. Detection models like Faster R-CNN [27] make use of layers to compute coordinate
transforms and focus attention, spatial transformer networks [13] make use of differentiable cameras
to transform data from the output of one CNN into a form more amenable to processing with another,
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Figure 1: Toy tasks considered in this paper. The *conv block represents a network comprised of
one or more convolution, deconvolution (convolution transpose), or CoordConv layers. Experiments
compare networks with no CoordConv layers to those with one or more.

and some generative models like DRAW [8] iteratively perceive, focus, and refine a canvas rather
than using a single pass through a CNN to generate an image. These models were all created by
neural network designers that intuited some inability or misguided inductive bias of standard CNNs
and then devised a workaround.

In this work, we expose and analyze a generic inability of CNNs to transform spatial representations
between two different types: from a dense Cartesian representation to a sparse, pixel-based represen-
tation or in the opposite direction. Though such transformations would seem simple for networks
to learn, it turns out to be more difficult than expected, at least when models are comprised of the
commonly used stacks of convolutional layers. While straightforward stacks of convolutional layers
excel at tasks like image classification, they are not quite the right model for coordinate transform.

The main contributions of this paper are as follows:

1. We define a simple toy dataset, Not-so-Clevr, which consists of squares randomly positioned
on a canvas (Section 2).

2. We define the CoordConv operation, which allows convolutional filters to know where they
are in Cartesian space by adding extra, hard-coded input channels that contain coordinates
of the data seen by the convolutional filter. The operation may be implemented via a couple
extra lines of Tensorflow (Section 3).

3. Throughout the rest of the paper, we examine the coordinate transform problem starting
with the simplest scenario and ending with the most complex. Although results on toy
problems should generally be taken with a degree of skepticism, starting small allows us to
pinpoint the issue, exploring and understanding it in detail. Later sections then show that
the phenomenon observed in the toy domain indeed appears in more real-world settings.
We begin by showing that coordinate transforms are surprisingly difficult even when the
problem is small and supervised. In the Supervised Coordinate Classification task, given a
pixel’s (x, y) coordinates as input, we train a CNN to highlight it as output. The Supervised
Coordinate Regression task entails the inverse: given an input image containing a single
white pixel, output its coordinates. We show that both problems are harder than expected
using convolutional layers but become trivial by using a CoordConv layer (Section 4).

4. The Supervised Rendering task adds complexity to the above by requiring a network to paint
a full image from the Not-so-Clevr dataset given the (x, y) coordinates of the center of a
square in the image. The task is still fully supervised, but as before, the task is difficult to
learn for convolution and trivial for CoordConv (Section 4.3).

5. We show that replacing convolutional layers with CoordConv improves performance in a
variety of tasks. On two-object Sort-of-Clevr [29] images, Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs) using CoordConv exhibit less mode collapse,
perhaps because ease of learning coordinate transforms translates to ease of using latents
to span a 2D Cartesian space. Larger GANs on bedroom scenes with CoordConv offer
geometric translation that was never observed in regular GAN. Adding CoordConv to a
Faster R-CNN produces much better object boxes and scores. Finally, agents learning to
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Figure 2: The Not-so-Clevr dataset. (a) Example one-hot center images Pi from the dataset. (b) The
pixelwise sum of the entire train and test splits for uniform vs. quadrant splits. (c) and (d) Analagous
depictions of the canvas images Ii from the dataset. Best viewed electronically with zoom.

play Atari games obtain significantly higher scores on some but not all games, and they
never do significantly worse (Section 5).

6. To enable other researchers to reproduce experiments in this paper, and benefit from using
CoordConv as a simple drop-in replacement of the convolution layer in their models, we
release our code at https://github.com/uber-research/coordconv.

With reference to the above numbered contributions, the reader may be interested to know that the
course of this research originally progressed in the 5→ 2 direction as we debugged why progressively
simpler problems continued to elude straightforward modeling. But for ease of presentation, we give
results in the 2→ 5 direction. A progression of the toy problems considered is shown in Figure 1.

2 Not-so-Clevr dataset
We define the Not-so-Clevr dataset and make use of it for the first experiments in this paper. The
dataset is a single-object, grayscale version of Sort-of-CLEVR [29], which itself is a simpler version
of the Clevr dataset of rendered 3D shapes [14]. Note that the series of Clevr datasets have been
typically used for studies regarding relations and visual question answering, but we here use them
for supervised learning and generative models. Not-so-Clevr consists of 9× 9 squares placed on a
64 × 64 canvas. Square positions are restricted such that the entire square lies within the 64 × 64
grid, so that square centers fall within a slightly smaller possible area of 56× 56. Enumerating these
possible center positions results in a dataset with a total of 3,136 examples. For each example square
i, the dataset contains three fields:

• Ci ∈ R2, its center location in (x, y) Cartesian coordinates,
• Pi ∈ R64×64, a one-hot representation of its center pixel, and
• Ii ∈ R64×64, the resulting 64× 64 image of the square painted on the canvas.

We define two train/test splits of these 3,136 examples: uniform, where all possible center locations
are randomly split 80/20 into train vs. test sets, and quadrant, where three of four quadrants are in the
train set and the fourth quadrant in the test set. Examples from the dataset and both splits are depicted
in Figure 2. To emphasize the simplicity of the data, we note that this dataset may be generated in
only a line or two of Python using a single convolutional layer with filter size 9 × 9 to paint the
squares from a one-hot representation.1

3 The CoordConv layer
The proposed CoordConv layer is a simple extension to the standard convolutional layer. We assume
for the rest of the paper the case of two spatial dimensions, though operators in other dimensions
follow trivially. Convolutional layers are used in a myriad of applications because they often work
well, perhaps due to some combination of three factors: they have relatively few learned parameters,
they are fast to compute on modern GPUs, and they learn a function that is translation invariant (a
translated input produces a translated output).

1For example, ignoring import lines and train/test splits:
onehots = np.pad(np.eye(3136).reshape((3136, 56, 56, 1)), ((0,0), (4,4), (4,4), (0,0)), "constant");
images = tf.nn.conv2d(onehots, np.ones((9, 9, 1, 1)), [1]*4, "SAME")
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Figure 3: Comparison of 2D convolutional and CoordConv layers. (left) A standard convolutional
layer maps from a representation block with shape h × w × c to a new representation of shape
h′ × w′ × c′. (right) A CoordConv layer has the same functional signature, but accomplishes the
mapping by first concatenating extra channels to the incoming representation. These channels contain
hard-coded coordinates, the most basic version of which is one channel for the i coordinate and one
for the j coordinate, as shown above. Other derived coordinates may be input as well, like the radius
coordinate used in ImageNet experiments (Section 5).

The CoordConv layer keeps the first two of these properties—few parameters and efficient
computation—but allows the network to learn to keep or to discard the third—translation invariance—
as is needed for the task being learned. It may appear that doing away with translation invariance
will hamper networks’ abilities to learn generalizable functions. However, as we will see in later
sections, allocating a small amount of network capacity to model non-translation invariant aspects of
a problem can enable far more trainable models that also generalize far better.

The CoordConv layer can be implemented as a simple extension of standard convolution in which
extra channels are instantiated and filled with (constant, untrained) coordinate information, after
which they are concatenated channel-wise to the input representation and a standard convolutional
layer is applied. Figure 3 depicts the operation where two coordinates, i and j, are added. Concretely,
the i coordinate channel is an h×w rank-1 matrix with its first row filled with 0’s, its second row with
1’s, its third with 2’s, etc. The j coordinate channel is similar, but with columns filled in with constant
values instead of rows. In all experiments, we apply a final linear scaling of both i and j coordinate
values to make them fall in the range [−1, 1]. For convolution over two dimensions, two (i, j)
coordinates are sufficient to completely specify an input pixel, but if desired, further channels can be
added as well to bias models toward learning particular solutions. In some of the experiments that
follow, we have also used a third channel for an r coordinate, where r =

√
(i− h/2)2 + (j − w/2)2.

The full implementation of the CoordConv layer is provided in Section S9. Let’s consider next a few
properties of this operation.

Number of parameters. Ignoring bias parameters (which are not changed), a standard convolu-
tional layer with square kernel size k and with c input channels and c′ output channels will contain
cc′k2 weights, whereas the corresponding CoordConv layer will contain (c+ d)c′k2 weights, where
d is the number of coordinate dimensions used (e.g. 2 or 3). The relative increase in parameters is
small to moderate, depending on the original number of input channels. 2

Translation invariance. CoordConv with weights connected to input coordinates set by initializa-
tion or learning to zero will be translation invariant and thus mathematically equivalent to ordinary
convolution. If weights are nonzero, the function will contain some degree of translation dependence,
the precise form of which will ideally depend on the task being solved. Similar to locally connected
layers with unshared weights, CoordConv allows learned translation dependence, but by contrast

2A CoordConv layer implemented via the channel concatenation discussed entails an increase of dc′k2

weights. However, if k > 1, not all k2 connections from coordinates to each output unit are necessary, as
spatially neighboring coordinates do not provide new information. Thus, if one cares acutely about minimizing
the number of parameters and operations, a k × k conv may be applied to the input data and a 1× 1 conv to the
coordinates, then the results added. In this paper we have used the simpler, if marginally inefficient, channel
concatenation version that applies a single convolution to both input data and coordinates. However, almost all
experiments use 1× 1 filters with CoordConv.
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it requires far fewer parameters: (c + d)c′k2 vs. hwcc′k2 for spatial input size h × w. Note that
all CoordConv weights, even those to coordinates, are shared across all positions, so translation
dependence comes only from the specification of coordinates; one consequence is that, as with
ordinary convolution but unlike locally connected layers, the operation can be expanded outside the
original spatial domain if the appropriate coordinates are extrapolated.

Relations to other work. CoordConv layers are related to many other bodies of work. Composi-
tional Pattern Producing Networks (CPPNs) [31] implement functions from coordinates in arbitrarily
many dimensions to one or more output values. For example, with two input dimensions and N
output values, this can be thought of as painting N separate grayscale pictures. CoordConv can then
be thought of as a conditional CPPN where output values depend not only on coordinates but also
on incoming data. In one CPPN-derived work [11], researchers did train networks that take as input
both coordinates and incoming data for their use case of synthesizing a drum track that could derive
both from a time coordinate and from other instruments (input data) and trained using interactive
evolution. With respect to that work, we may see CoordConv as a simpler, single-layer mechanism
that fits well within the paradigm of training large networks with gradient descent on GPUs. In a
similar vein, research on convolutional sequence to sequence learning [7] has used fixed and learned
position embeddings at the input layer; in that work, positions were represented via an overcomplete
basis that is added to the incoming data rather than being compactly represented and input as separate
channels. In some cases using overcomplete sine and cosine bases or learned encodings for locations
has seemed to work well [34, 24]. Connections can also be made to mechanisms of spatial attention
[13] and to generative models that separately learn what and where to draw [8, 26]. While such works
might appear to provide alternative solutions to the problem explored in this paper, in reality, similar
coordinate transforms are often embedded within such models (e.g. a spatial transformer network
contains a localization network that regresses from an image to a coordinate-based representation
[13]) and might also benefit from CoordConv layers.

Moreover, several previous works have found it necessary or useful to inject geometric information
to networks, for example, in prior networks to enhance spatial smoothness [32], in segmentation
networks [2, 20], and in robotics control through a spatial softmax layer and an expected coordinate
layer that map scenes to object locations [18, 5]. However, in those works it is often seen as a
minor detail in a larger architecture which is tuned to a specific task and experimental project, and
discussions of this necessity are scarce. In contrast, our research (a) examines this necessity in depth
as its central thrust, (b) reduces the difficulty to its minimal form (coordinate transform), leading
to a simple single explanation that unifies previously disconnected observations, and (c) presents
one solution used in various forms by others as a unified layer, easily included anywhere in any
convolutional net. Indeed, the wide range of prior works provide strong evidence of the generality of
the core coordinate transform problem across domains, suggesting the significant value of a work
that systematically explores its impact and collects together these disparate previous references.

Finally, we note that challenges in learning coordinate transformations are not unknown in machine
learning, as learning a Cartesian-to-polar coordinate transform forms the basis of the classic two-
spirals classification problem [4].

4 Supervised Coordinate tasks
4.1 Supervised Coordinate Classification
The first and simplest task we consider is Supervised Coordinate Classification. Illustrated at the top
of Figure 1, given an (x, y) coordinate as input, a network must learn to paint the correct output pixel.
This is simply a multi-class classification problem where each pixel is a class. Why should we study
such a toy problem? If we expect to train generative models that can transform high level latents like
horizontal and vertical position into pixel data, solving this toy task would seem a simple prerequisite.
We later verify that performance on this task does in fact predict performance on larger problems.

In Figure 4 we depict training vs. test accuracy on the task for both uniform and quadrant train/test
splits. For convolutional models3(6 layers of deconvolution with stride 2, see Section S1 in the
Supplementary Information for architecture details) on uniform splits, we find models that generalize
somewhat, but 100% test accuracy is never achieved, with the best model achieving only 86% test

3For classification, convolutions and CoordConvs are actually deconvolutional on certain layers when
resolutions must be expanded, but we refer to the models as conv or CoordConv for simplicity.
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Convolution

CoordConv
Perfect test accuracy 
takes 10–20 seconds

Convergence to 80% test 
accuracy takes 4000 seconds

Figure 4: Performance of convolution and CoordConv on Supervised Coordinate Classification.
(left column) Final test vs. train accuracy. On the easier uniform split, convolution never attains
perfect test accuracy, though the largest models memorize the training set. On the quadrant split,
generalization is almost zero. CoordConv attains perfect train and test accuracy on both splits. One
of the main results of this paper is that the translation invariance in ordinary convolution does not
lead to coordinate transform generalization even to neighboring pixels! (right column) Test accuracy
vs. training time of the best uniform-split models from the left plot (any reaching final test accuracy
≥ 0.8). The convolution models never achieve more than about 86% accuracy, and training is slow:
the fastest learning models still take over an hour to converge. CoordConv models learn several
hundred times faster, attaining perfect accuracy in seconds.

accuracy. This is surprising: because of the way the uniform train/test splits were created, all test
pixels are close to multiple train pixels. Thus, we reach a first striking conclusion: learning a smooth
function from (x, y) to one-hot pixel is difficult for convolutional networks, even when trained with
supervision, and even when supervision is provided on all sides. Further, training a convolutional
model to 86% accuracy takes over an hour and requires about 200k parameters (see Section S2 in the
Supplementary Information for details on training). On the quadrant split, convolutional models are
unable to generalize at all. Figure 5 shows sums over training set and test set predictions, showing
visually both the memorization of the convolutional model and its lack of generalization.

In striking contrast, CoordConv models attain perfect performance on both data splits and do so with
only 7.5k parameters and in only 10–20 seconds. The parsimony of parameters further confirms they
are simply more appropriate models for the task of coordinate transform [28, 10, 19].

4.2 Supervised Coordinate Regression
Because of the surprising difficulty of learning to transform coordinates from Cartesian to a pixel-
based, we examine whether the inverse transformation from pixel-based to Cartesian is equally
difficult. This is the type of transform that could be employed by a VAE encoder or GAN discriminator
to transform pixel information into higher level latents encoding locations of objects in a scene.

We experimented with various convolutional network structures, and found a 4-layer convolutional
network with fully connected layers (85k parameters, see Section S3 for details) can fit the uniform
training split and generalize well (less than half a pixel error on average), but that same architecture
completely fails on the quadrant split. A smaller fully-convolutional architecture (12k parameters, see
Section S3) can be tuned to achieve limited generalization on the quadrant split (around five pixels
error on average) as shown in Figure 5 (right column), but it performs poorly on the uniform split.

A number of factors may have led to the observed variation of performance, including the use of
max-pooling, batch normalization, and fully-connected layers. We have not fully and separately
measured how much each factor contributes to poor performance on these tasks; rather we report
only that our efforts to find a workable architecture across both splits did not yield any winners. In
contrast, a 900 parameter CoordConv model, where a single CoordConv layer is followed by several
layers of standard convolution, trains quickly and generalizes in both the uniform and quadrant splits.
See Section S3 in Supplementary Information for more details. These results suggest that the inverse
transformation requires similar considerations to solve as the Cartesian-to-pixel transformation.
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Convolution 
prediction

CoordConv 
prediction

Ground 
truth

Supervised Coordinate Classification Supervised Coordinate Regression
Train Test Train Test

Figure 5: Comparison of convolutional and CoordConv models on the Supervised Coordinate
Classification and Regression tasks, on a quadrant split. (left column) Results on the seemingly
simple classification task where the network must highlight one pixel given its (x, y) coordinates as
input. Images depict ground truth or predicted probabilities summed across the entire train or test set
and then normalized to make use of the entire black to white image range. Thus, e.g., the top-left
image shows the sum of all train set examples. The conv predictions on the train set cover it well,
although the amount of noise in predictions hints at the difficulty with which this model eventually
attained 99.6% train accuracy by memorization. The conv predictions on the test set are almost
entirely incorrect, with two pixel locations capturing the bulk of the probability for all locations in
the test set. By contrast, the CoordConv model attains 100% accuracy on both the train and test
sets. Models used: conv–6 layers of deconv with strides 2; CoordConv–5 layers of 1×1 conv, first
layer is CoordConv. Details in Section S2. (right column) The regression task poses the inverse
problem: predict real-valued (x, y) coordinates from a one-hot pixel input. As before, the conv
model memorizes poorly and largely fails to generalize, while the CoordConv model fits train and
test set perfectly. Thus we observe the coordinate transform problem to be difficult in both directions.
Models used: conv–9-layer fully-convolution with global pooling; CoordConv–5 layers of conv with
global pooling, first layer is CoordConv. Details in Section S3.

4.3 Supervised Rendering

Moving beyond the domain of single pixel coordinate transforms, we compare performance of
convolutional vs. CoordConv networks on the Supervised Rendering task, which requires a network
to produce a 64× 64 image with a square painted centered at the given (x, y) location. As shown in
Figure 6, we observe the same stark contrast between convolution and CoordConv. Architectures
used for both models can be seen in Section S1 in the Supplementary Information, along with further
plots, details of training, and hyperparameter sweeps given in Section S4.

5 Applicability to Image Classification, Object Detection, Generative
Modeling, and Reinforcement Learning

Given the starkly contrasting results above, it is natural to ask how much the demonstrated inability
of convolution at coordinate transforms infects other tasks. Does the coordinate transform hurdle
persist insidiously inside other tasks, subtly hampering performance from within? Or do networks
skirt the issue by learning around it, perhaps by representing space differently, e.g. via non-Cartesian
representations like grid cells [1, 6, 3]? A complete answer to this question is beyond the scope of this
paper, but encouraging preliminary evidence shows that swapping Conv for CoordConv can improve
a diverse set of models — including ResNet-50, Faster R-CNN, GANs, VAEs, and RL models.
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Figure 6: Results on the Supervised Rendering task. As with the Supervised Coordinate Classification
and Regression tasks, we see the same vast separation in training time and generalization between
convolution models and CoordConv models. (left) Test intersection over union (IOU) vs Train
IOU. We show all attempted models on the uniform and quadrant splits, including some CoordConv
models whose hyperparameter selections led to worse than perfect performance. (right) Test IOU
vs. training time of the best uniform-split models from the left plot (any reaching final test IOU
≥ 0.8). Convolution models never achieve more than about IOU 0.83, and training is slow: the fastest
learning models still take over two hours to converge vs. about a minute for CoordConv models.

ImageNet Classification As might be expected for tasks requiring straightforward translation
invariance, CoordConv does not help significantly when tested with image classification. Adding a
single extra 1×1 CoordConv layer with 8 output channels improves ResNet-50 [9] Top-5 accuracy by
a meager 0.04% averaged over five runs for each treatment; however, this difference is not statistically
significant. It is at least reassuring that CoordConv doesn’t hurt the performance since it can always
learn to ignore coordinates. This result was obtained using distributed training on 100 GPUs with
Horovod [30]; see Section S5 in Supplementary Information for more details.

Object Detection In object detection, models look at pixel space and output bounding boxes in
Cartesian space. This creates a natural coordinate transform problem which makes CoordConv
seemingly a natural fit. On a simple problem of detecting MNIST digits scattered on a canvas, we
found the test intersection-over-union (IOU) of a Faster R-CNN network improved by 24% when
using CoordConv. See Section S6 in Supplementary Information for details.

Generative Modeling Well-trained generative models can generate visually compelling images
[23, 15, 36], but careful inspection can reveal mode collapse: images are of an attractive quality, but
sample diversity is far less than diversity present in the dataset. Mode collapse can occur in many
dimensions, including those having to do with content, style, or position of components of a scene.
We hypothesize that mode collapse of position may be due to the difficulty of learning straightforward
transforms from a high-level latent space containing coordinate information to pixel space and that
using CoordConv could help. First we investigate a simple task of generating colored shapes with,
in particular, all possible geometric locations, using both GANs and VAEs. Then we scale up the
problem to Large-scale Scene Understanding (LSUN) [35] bedroom scenes with DCGAN [25],
through distributed training using Horovod [30].

Using GANs to generate simple colored objects, Figure 7a-d show sampled images and model
collapse analyses. We observe that a convolutional GAN exhibits collapse of a two-dimensional
distribution to a one-dimensional manifold. The corresponding CoordConv GAN model generates
objects that better cover the 2D Cartesian space while using 7% of the parameters of the conv GAN.
Details of the dataset and training can be seen in Section S7.1 in the Supplementary Information. A
similar story with VAEs is discussed in Section S7.2.

With LSUN, samples are shown in Figure 7e, and more in Section S7.3 in the Supplementary
Information. We observe (1) qualitatively comparable samples when drawing randomly from each
model, and (2) geometric translating behavior during latent space interpolation.

Latent space interpolation4 demonstrates that in generating colored objects, motions through latent
space generate coordinated object motion. In LSUN, while with convolution we see frozen objects
fading in and out, with CoordConv, we instead see smooth geometric transformations including
translation and deformation.

4https://www.youtube.com/watch?v=YefMbLqS7Jg
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Figure 7: Real images and generated images by GAN and CoordConv GAN. Both models learn the
basic concepts similarly well: two objects per image, one red and one blue, their size is fixed, and
their positions can be random (a). However, plotting the spread of object centers over 1000 samples,
we see that CoordConv GAN samples cover the space significantly better (average entropy: Data red
4.0, blue 4.0, diff 3.5; GAN red 3.13, blue 2.69, diff 2.81; CoordConv GAN red 3.30, blue 2.93, diff
2.62), while GAN samples exhibit mode collapse on where objects can be (b). In terms of relative
locations between the two objects, both model exhibit a certain level of model collapse, CoordConv
is worse (c). The averaged image of CoordConv GAN is smoother and closer to that of data (d). With
LSUN, sampled images are shown (e). All models used in generation are the best out of many runs.

Figure 8: Results using A2C to train on Atari games. Out of 9 games, (a) in 6 CoordConv improves
over convolution, (b) in 2 performs similarly, and (c) on 1 it is slightly worse.

Reinforcement Learning Adding a CoordConv layer to an actor network within A2C [22] pro-
duces significant improvements on some games, but not all, as shown in Figure 8. We also tried
adding CoordConv to our own implementation of Distributed Prioritized Experience Replay (Ape-X)
[12], but we did not notice any immediate difference. Details of training are included in Section S8.

6 Conclusions and Future Work
We have shown the curious inability of CNNs to model the coordinate transform task, shown a simple
fix in the form of the CoordConv layer, and given results that suggest including these layers can
boost performance in a wide range of applications. Future work will further evaluate the benefits of
CoordConv in large-scale datasets, exploring its ability against perturbations of translation, its impact
in relational reasoning [29], language tasks, video prediction, with spatial transformer networks [13],
and with cutting-edge generative models [8].
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Supplementary Information for:
An intriguing failing of convolutional neural networks

and the CoordConv solution

S1 Architectures used for supervised painting tasks

Figure S1 depicts architectures used in each of the two supervised tasks going from coordinates to
images: Supervised Coordinate Classification (Section 4.1), and Supervised Rendering (Section 4.3).

In the case of convolution, or, in this case, transposed convolution (deconvolution), the same archi-
tecture is used for both tasks, as shown in the top row of Figure S1, but we generally found the
Supervised Rendering tasks requires wider layers (more channels). Top performing deconvolutional
models in Supervised Coordinate Classification have c = 1 or 2, while in Supervised Rendering we
usually need c = 2, 3. In terms of convolutional filter size, filter sizes of 2 and 4 seem to outperform
3 in Coordinate Classification, while in Rendering the difference is less distinctive.

Note that the CoordConv model only replaces the first layer with CoordConv (shown in green in
Figure S1 ).

Figure S1: Deconvolutional and CoordConv architectures used in each of the two supervised tasks.
“fs" stands for filter size, and “c" for channel size. We use a grid search on different ranges of them
as displayed underneath each model, while allowing deconvolutional models a wider range in both.
Green indicates a CoordConv layer.
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Figure S2: Model size vs. test accuracy for the Supervised Coordinate Classification subtask on
the uniform split and quadrant split. Deconv models (blue) of many sizes achieve 80% or a little
higher — but never perfect — test accuracy on the uniform split. On the quadrant split, while many
models perform slightly better than chance (1/4096 = .000244) no model generalizes significantly.
CoordConv model achieves perfect accuracy on both splits.

Because of the usage of different filter sizes and channel sizes, we end up training models with a
range of sizes. Each is combined with further grid searches on hyperparameters including the learning
rate, weight decay, and minibatch sizes. Therefore at the same size we end up with multiple models
with a spread of performances, as shown in Figure S2 for the Supervised Coordinate Classification
task. We repeat the same exact setting of experiments on both uniform and quadrant splits, which
result in the same number of experiments. It is not obviously shown in Figure S2 because quadrant
trainings are mostly poorly (at the bottom of the figure).

As can be seen, it seems unlikely that even larger models would perform better. They all basically
struggle to get to a good test accuracy. This (1) confirms that performance is not simply being
limited by model size, as well as (2) shows that working CoordConv models are one to two orders of
magnitude smaller (7553 as opposed to 50k-1.6M parameters) than the best convolutional models.
The model size vs. test performance plot on Supervised Rendering is similar (not shown), except
CoordConv model in that case has a slightly larger number of parameters: 9490. CoordConv achieves
perfect test IOU there while deconvolutional models struggle at sizes 183k to 1.6M.

S2 Further Supervised Coordinate Classification details

For deconvolutional models, we use the model structure as depicted in the top row in Figure S1, while
varying the choice of filter size ({2, 3, 4}) and channel size multipliers ({1,2,3}), and each combined
with a hyperparameter sweep of learning rate {0.001, 0.002, 0.005, 0.01, 0.02, 0.05}, and weight
decay {0.001, 0.01}. Models are trained using a softmax output with cross entropy loss with Adam
optimizer. We train 1000 epochs with minibatch size of 16 and 32. The learning rate is dropped to
10% every 200 epochs for four times.

For CoordConv models, because it converges so fast and easy, we did not have to try a lot of settings
— only 3 learning rates {0.01 0.001, 0.005} and they all learned perfectly well. There’s also no need
for learning rate schedules as it quickly converges in 10 seconds.

Figure S3 demonstrates how accurate and smooth the learned probability mass is with CoordConv,
and not so much with Deconv. We first show the overall 64 × 64 map of logits, one for a training
example and one for a test example just right next to the train. Then we zoom in to a smaller
region to examine the intricacies. We can see that convolution, even though designed to act in a
translation-invariant way, shows artifacts of not being able to accomplish so.
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Figure S3: Comparison of behaviors between Deconv model and CoordConv model on the Supervised
Coordinate Classification task. We select five horizontally neighboring pixels, containing samples in
both train and test splits, and zoom in on a 5× 9 section of the 64× 64 canvas so the detail of the
logits and predicted probabilities may be seen. The full 64× 64 map of logits of the first two samples
(first in train, second in test) are also shown. The deconvolutional model outputs probabilities in a
decidedly non-translation-invariant manner.

S3 Further Supervised Coordinate Regression details

Exact architectures applied in the Supervised Coordinate Regression task are described in table
S1. For the uniform split, the best-generalizing convolution architecture consisted of a stack of
alternating convolution and max-pooling layers, followed by a fully-connected layer and an output
layer. This architecture was fairly robust to changes in hyperparameters. In contrast, for the quandrant
split, the best-generalizing network consisted of strided convolutions feeding into a global-pooling
output layer, and good performance was delicate. In particular, training and generalization was
sensitive to the number of batch normalization layers (2), weight decay strength (5e-4), and optimizer
(Adam, learning rate 5e-4). A single CoordConv architecture generalized perfectly with the same
hyperparameters over both splits, and consisted of a single CoordConv layer followed by additional
layers of convolution, feeding into a global pooling output layer.

Table S1: Model Architectures for Supervised Coordinate Regression. FC: Fully-connected, MP:
Max Pooling, GP: Global Pooling, BN: Batch normalization, s2: stride 2.

Conv CoordConv

Uniform
Split

3×3, 16 - MP 2×2 - 3×3, 16 - MP 2×2 - 3×3,
16 - MP 2×2 - 3×3, 16 - FC 64 - FC 2 1×1, 8 - 1×1, 8 - 1×1, 8 - 3×3,

8 - 3×3, 2 - GPQuadrant
Split

5×5 (s2), 16 - 1×1, 16 - BN - 3×3, 16 - 3×3
(s2), 16 - 3×3 (s2), 16 - BN - 3×3 (s2), 16 -
1×1, 16 - 3×3 (s2), 16 - 3×3, 2 - GP

S4 Further Supervised Rendering details

Both the architectural and experimental settings are similar to Section S2 except the loss used is
pixelwise sigmoid output with cross entropy loss. We also tried mean squared error loss but the
performance is even weaker. We performed heavy hyperparameter sweeping and deliberate learning
rate annealing for Deconv models (same as said in Section S2), while in CoordConv models it is fairly
easy to find a good setting. All models trained with learning rates {0.001, 0.005}, weight decay {0,
0.001}, filter size {1, 2} turned out to perform well after 1–2 minutes of training. Take the best model
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obtained, Figure S4 and Figure S5 show the learned logits and pixelwise probability distributions for
three samples each, in the uniform and quadrant cases, respectively. We can see that the CoordConv
model learns a much smoother and precise distribution. All samples are test samples.

Figure S4: Output comparison between Deconv and CoordConv models on three test samples. Models
are trained on a uniform split. Logits are model’s direct output; pixelwise probability (pw-prob)
is logits after Sigmoid. Conv outputs (middle columns) manage to get roughly right. CoordConv
outputs (right columns) are precisely correct and its logit maps are smooth.

Figure S5: Output comparison between Deconv and CoordConv models on three test samples. Models
are trained on a quadrant split. Logits are model’s direct output; pixelwise probability (pw-prob)
is logits after Sigmoid. Conv outputs (middle columns) failed mostly. Even with such a difficult
generalization problem, CoordConv outputs (right columns) are precisely correct and its logit maps
are smooth.

S5 Further ImageNet classification details

We evaluate the potential of CoordConv in image classification with ImageNet experiments. We take
ResNet-50 and run the baseline on distributed framework using 100 GPUs, with the open-source
framework Horovod. For CoordConv variants, we add an extra CoordConv layer only in the beginning,
which takes a 6-channel tensor containing image RBG, i, j coordinates and pixel distance to center r,
and output 8 channels with 1×1 convolution. The increase of parameters is negligible. It then goes in
with the rest of ResNet-50.

Each model is run 5 times on the same setting to account for experimental variances. Table. S2 lists
the test result from each run in the end of 90 epochs. CoordConv model obtains better average result
on two of the three measures, however a one-sided t-test tells that the improvement on Top 5 accuracy
is not quite statistically significant with p = .11.
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Of all vision tasks, we might expect image classification to show the least performance change when
using CoordConv instead of convolution, as classification is more about what is in the image than
where it is. This tiny amount of improvement validates that.

Table S2: ImageNet classification result comparison between a baseline ResNet-50 and CoordConv
ResNet-50. For each model three experiments are run, listed in three separate rows below.

Test loss Top-1 Accuracy Top-5 Accuracy

Baseline
ResNet-50

1.43005 0.75722 0.92622

1.42385 0.75844 0.9272

1.42634 0.75782 0.92754

1.42166 0.75692 0.92756

1.42671 0.75724 0.92708

Average 1.425722 0.757528 0.92712

CoordConv
ResNet-50

1.42335 0.75732 0.92802

1.42492 0.75836 0.92754

1.42478 0.75774 0.92818

1.42882 0.75702 0.92694

1.42438 0.75668 0.92714

Average 1.42525 0.757424 0.927564

S6 Further object detection details

The object detection experiments are on a dataset containing randomly rescaled and placed MNIST
digits on a 64× 64 canvas. To make it more akin to natural images, we generate a much larger canvas
and then center crop it to be 64× 64, so that digits can be partially outside of the canvas. We kept
images that contain 5 digit objects whose centers are within the canvas. In the end we use 9000
images as the training set and 1000 as test.

A schematic of the model architecture is illustrated in Figure S6. We use number of anchors A = 9,
with sizes (15, 15), (20, 20), (25, 25), (15, 20), (20, 25), (20, 15), (25, 20), (15, 25), (25, 15). In
box sampling (training mode), p_size and n_size are 6. In box non-maximum suppression (NMS)
(test mode), the IOU threshold is 0.8 and maximum number of proposal boxes is 10. After the boxes
are proposed and shifted, we do not have a downstream classification task, but just calculate the loss
from the boxes. The training loss include box loss and score loss. As evaluation metric we also
calculate IOUs between proposed boxes and ground truth boxes. Table. S3 lists those metrics obtained
the test dataset, by both Conv and CoordConv models. We found that every metric is improved by
CoordConv, and the average test IOU improved by about 24 percent.
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Figure S6: Faster R-CNN architecture used for object detection on scattered MNIST digits. Green
indicates where coordinates are added. Note that the input image is used for demonstration purpose.
The real dataset contains 5 digits on a canvas and allows overlapping. (Left) train mode with box
sampler. (Right) test mode with box NMS.

Table S3: MNIST digits detection result comparison between a Faster R-CNN model with regular
convolution vs. with CoordConv. Metrics are all on test set. Train IOU: average IOU between
sampled positive boxes (train mode) and ground truth; Test IOU-average): average IOU between 10
selected boxes (test mode) and ground truth; Test IOU-select: average IOU between the best scored
box and its closest ground truth.

Conv CoordConv % Improvement

Box loss 0.1003 0.0854 17.44

Score loss 0.5270 0.2526 108.63

Total loss (sum of the two above) 0.6271 0.3383 85.37

Train IOU 0.6388 0.6612 3.38

Test IOU-average 0.1508 0.1868 23.87

Test IOU-select 0.4965 0.6359 28.08

S7 Further generative modeling details

S7.1 GANs on colored shapes

Data. The dataset used to train the generative models is 50k red-and-blue-object images of size
64× 64. We follow the same mechanism as Sort-of-Clevr, in that objects appear at random positions
on a white background without overlapping, only limiting the number of objects to be 2 per image.
The objects are always one red and one blue, of a randomly chosen shape out of {circle, square}.
Examples of images from this dataset can be seen in the top row, leftmost column in Figure 7, at the
intersection of “Real images" and “Random samples".

Architecture and training details. The z dimension to both regular GAN and CoordConv GAN
is 256. In GAN, the generator uses 4 layers of deconvolution with strides of 2 to project z to a
64 × 64 image shape. The parameter size of the generator is 6,413,315. In CoordConv GAN, we
add coordinate channels only at the beginning, making the first layer CoordConv, and then continue
with normal Conv.. The generator in this case uses mostly (1,1) convolutions and has only 444,931
parameters. The same discriminator is used for both models. In the case where we also turn the
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discriminator to be CoordConv like, its first Conv layer is replaced by CoordConv, and the parameter
size increases from 4,316,545 to 4,319,745. The details of both architectures can be seen in Table. S4.
We trained two CoordConv GAN versions where CoordConv applies: 1) only in generator, and 2)
in both generator and discriminator. They end up performing similarly well. The demonstrated
examples in all figures are from one in the latter case.

The change needed to make a generator whose first layer is fully-connected CoordConv is trivial.
Instead of taking image tensors which already have Cartesian dimensions, the CoordConv generator
first tiles z vector into a full 64× 64 space, and then concatenate it with coordinates in that space.

To train each model we use a fixed learning rate 0.0001 for the discriminator and 0.0005 for the
generator. In each iteration discriminator is trained once followed by generator trained twice. The
random noise vector z is drawn from a uniform distribution between [−1, 1]. We train each model
for 50 epochs and save the model in the end of every epoch. We repeat the training with the same
hyperparameters 5 to 10 times for each, and pick the best model for each to show a fair comparison
in all figures.

Table S4: Model Architectures for GAN and CoordConv GAN used in the colored shape generation.
In the case of CoordConv GAN, only the first layer is changed from regular Conv to CoordConv. FC:
fully connected layer; s2: stride 2.

Generator Discriminator

GAN FC 8192 (reshape 4×4×512) - 5×5, 256 (s2)
- 5×5, 128 (s2) - 5×5, 64 (s2) - 5×5, 3 (s2) -
Tanh

5×5, 64 (s2) - 5×5, 128 (s2)
- 5×5, 256 (s2) - 5×5, 512
(s2) - 1CoordConv

GAN
1×1, 512 - 1×1, 256 - 1×1, 256 - 1×1, 128 -
1×1, 64 - 3×3, 64 - 3×3, 64 - 1×1, 3

Latent interpolation. Latent interpolation is conducted by randomly choosing two noise vectors,
each from a uniform distribution, and linearly interpolate in between with an α factor that indicates
how close it is to the first vector. Figure S7 and Figure S8 each show, on regular GAN and CoordConv
GAN, respectively, five random samples of pairs to conduct interpolation with. In addition to
Figure S8, Figure S9 shows deliberately picked examples that exhibit a special moving effect that has
only been seen in CoordConv GAN.

Figure S7: Regular GAN samples with a series of interpolation between 5 random pairs of z. Also
observed position and shape transitioning but are different.

Measure of entropy. In Figure 7, we reduce generated red and blue objects to their centers and plot
the coverage of space in column (b) and relative locations in (c). To make the comparison quantitative,
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Figure S8: CoordConv GAN samples with a series of interpolation between 5 random pairs of z. Top
row: at the position in the manifold, the model has learned a smooth circular motion. The rest of
the rows: the circular relation between two objets is still observed, while some object shapes also
undergo a smooth transition.

Figure S9: A special effect only observed in CoordConv GAN latent space interpolation: two objects
stay constant in relative positions to each other but move together in space. They even move out of
the scene which is never present in the real data — learned to extrapolate. These 3 examples are
picked from many random drawings of z pairs, as opposed to Figure S8 and Figure S7, where first 5
random drawings are shown.

we can further calculate the entropy in each case, reducing each figure in (b) and (c) to an entropy
value shown as a bar in Figure S10. Confidence intervals of each bar is also shown by repeating the
experiment 10 times. We can see that CoordConv (red) is closer to data (green) in objects’ coverage
of space, but has more of a mode collapse in objects’ relative position.

S7.2 VAEs on colored shapes

We train both convolutional and CoordConv VAEs on the same dataset of 50k 64 x 64 images of
blue and red non-overlapping squares and circles, as described in Section S7.1. Convolutional VAEs
exhibit many of the same problems that we observed in GANs, and adding CoordConv confers many
of the same benefits.

A VAE is composed of an encoder that maps data to a latent and a decoder that maps the latent back to
data. With minor exceptions our VAE’s encoder architecture is the same as our GAN’s discriminator
and it’s decoder is the same as our GAN’s generator. The important difference is of course that the
output shape of the encoder is the size of the latent (in this case 8), not two as in a discriminator.
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Figure S10: Entropy values and confidence intervals of the sampled results in Figure 7, column (b)
and (c).

Architectures are shown in Table. S5. The decoder architectures of the convolutional control and
CoordConv experiments are similar aside from kernel size - the CoordConv decoder uses 1x1 kernels
while the convolutional decoder uses 5x5 kernels.

Due to the pixel sparsity of images in the dataset we found it important to weight reconstruction
loss more heavily than latent loss by a factor of 50. Doing so didn’t interfere with the quality of the
encoding. We used Adam with a learning rate of 0.005 and no weight decay.

Table S5: Model Architectures: Convolutional VAE and CoordConv VAE

Decoder Encoder

VAE FC 8192 (reshape 4×4×512) - 5×5, 256 (s2)
- 5×5, 128 (s2) - 5×5, 64 (s2) - 5×5, 3 (s2) -
Sigmoid

5×5, 64 (s2) - 5×5, 128 (s2)
- 5×5, 256 (s2) - 5×5, 512
(s2) - Flatten - FC, 10CoordConv

VAE
1×1, 512 - 1×1, 256 - 1×1, 256 - 1×1, 128 -
1×1, 64 - 1×1, 3 - Sigmoid
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Figure S11: Latent space interpolations from a VAE without CoordConv. The red and blue shapes
are mostly stationary. When they do move they do so by disappearing and appearing elsewhere in
pixel space. Smooth changes in the latent don’t translate to smooth geometric changes in pixel space.
The latents we interpolated between were sampled randomly from a uniform distribution.

Figure S12: Latent space interpolations from a VAE with CoordConv in the encoder and decoder.
The red and blue shapes span pixel space more fully and smooth changes in latent space map to
smooth changes in pixel space. Like the CoordConv GAN, the CoordConv VAE is able to extrapolate
beyond the borders of the frame it was trained on. The latents we interpolated between were sampled
randomly from a uniform distribution.

S7.3 GANs on LSUN

The dataset used to train the generative models is LSUN bedroom, composed of 3,033,042 images of
size 64× 64.
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The architectures adopted (see Table. S6) are similar to the ones adopted for generating the colored
shape results in Section S7.1, with a few noticeable differences:

• We use CoordConv layers instead of regular Conv layers not only in the first layer of the
discriminator, but in each layer. z is of dimension 100.

• The GAN generator includes a layer mapping from z to a 4x4x1024 tensor and the other
layers have double the number of channels.

• CoordConv GAN generator has more channels for each layer.

Table S6: Model Architectures for GAN and CoordConv GAN for LSUN. FC: fully connected layer;
s2: stride 2.

Generator Discriminator

GAN FC 16384 (reshape 4×4×1024) - 5×5, 512 (s2)
- 5×5, 256 (s2) - 5×5, 128 (s2) - 5×5, 3 (s2) -
Tanh

5×5, 64 (s2) - 5×5, 128 (s2)
- 5×5, 256 (s2) - 5×5, 512
(s2) - 1CoordConv

GAN
1×1, 1024 - 1×1, 512 - 1×1, 256 - 1×1, 256 -
1×1, 128 - 3×3, 128 - 3×3, 64 - 1×1, 3

Figure S13: Samples from the regular GAN (left) and the CoordConv GAN (right).

Samples from both models are provided in Figure S13. One peculiar property of the CoordConv
GAN model with respect to the regular GAN one is the geometric interpolation. As shown in
Figure Figure S14 in regular GAN interpolations objects appear and disappear, while in CoordConv
GAN interpolations in Figure S15 objects move around, translating, enlarging, squashing and doing
geometric transformations over them.
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Figure S14: Samples of regular GAN trained on LSUN with a series of interpolation between 5
random pairs of z.

Figure S15: Samples of CoordConv GAN trained on LSUN with a series of interpolation between 5
random pairs of z.

The regular GAN has been trained for 11000 steps of batch size 128, while the CoordConv GAN has
been trained 22000 steps of batch size 64 (because the available memory on the GPUs did not allow
for 128). Both models have been trained using Horovod to distribute the training on 16 GPUs.
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S8 Further reinforcement learning details

We used OpenAI baselines 5 implementation and default parameters on all experiments. Table. S7
shows the average scores obtained at the end of game over 10 runs of each.

Table S7: All games with final scores and p-values.

Game Conv CoordConv p-value

Alien 1462.5 2005.0 0.0821

Bank Heist 932.5 1330.0 0.1736

Ms. Pacman 2557.5 3945.0 0.0065

Robotank 2.75 3.5 0.2899

Centipede 3359.5 3424.5 0.8703

Asterix 16250.0 35300.0 0.0003

Asteroids 2082.5 1912.5 0.1124

Amidar 1092.75 1137.5 0.2265

Seaquest 1780.0 1780.0 0.4057

S9 The CoordConv layer implementation

from tensorflow.python.layers import base
import tensorflow as tf

class AddCoords(base.Layer):
"""Add coords to a tensor"""
def __init__(self, x_dim=64, y_dim=64, with_r=False):

super(AddCoords, self).__init__()
self.x_dim = x_dim
self.y_dim = y_dim
self.with_r = with_r

def call(self, input_tensor):
"""
input_tensor: (batch, x_dim, y_dim, c)
"""
batch_size_tensor = tf.shape(input_tensor)[0]
xx_ones = tf.ones([batch_size_tensor, self.x_dim],

dtype=tf.int32)
xx_ones = tf.expand_dims(xx_ones, -1)
xx_range = tf.tile(tf.expand_dims(tf.range(self.y_dim), 0),

[batch_size_tensor, 1])
xx_range = tf.expand_dims(xx_range, 1)

xx_channel = tf.matmul(xx_ones, xx_range)
xx_channel = tf.expand_dims(xx_channel, -1)

yy_ones = tf.ones([batch_size_tensor, self.y_dim],
dtype=tf.int32)

yy_ones = tf.expand_dims(yy_ones, 1)
yy_range = tf.tile(tf.expand_dims(tf.range(self.x_dim), 0),

[batch_size_tensor, 1])

5https://github.com/openai/baselines/
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yy_range = tf.expand_dims(yy_range, -1)

yy_channel = tf.matmul(yy_range, yy_ones)
yy_channel = tf.expand_dims(yy_channel, -1)

xx_channel = tf.cast(xx_channel, ’float32’) / (self.x_dim - 1)
yy_channel = tf.cast(yy_channel, ’float32’) / (self.y_dim - 1)
xx_channel = xx_channel*2 - 1
yy_channel = yy_channel*2 - 1

ret = tf.concat([input_tensor,
xx_channel,
yy_channel], axis=-1)

if self.with_r:
rr = tf.sqrt( tf.square(xx_channel)

+ tf.square(yy_channel)
)

ret = tf.concat([ret, rr], axis=-1)

return ret

class CoordConv(base.Layer):
"""CoordConv layer as in the paper."""
def __init__(self, x_dim, y_dim, with_r, *args, **kwargs):

super(CoordConv, self).__init__()
self.addcoords = AddCoords(x_dim=x_dim,

y_dim=y_dim,
with_r=with_r)

self.conv = tf.layers.Conv2D(*args, **kwargs)

def call(self, input_tensor):
ret = self.addcoords(input_tensor)
ret = self.conv(ret)
return ret
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