
Understanding Innovation Engines:
Automated Creativity and Improved Stochastic

Optimization via Deep Learning

A. Nguyen anguyen8@uwyo.edu
University of Wyoming

J. Yosinski jason@geometricintelligence.com
Cornell University & Geometric Intelligence

J. Clune jeffclune@uwyo.edu
University of Wyoming

Abstract
The Achilles Heel of stochastic optimization algorithms is getting trapped on local op-
tima. Novelty Search mitigates this problem by encouraging exploration in all interest-
ing directions by replacing the performance objective with a reward for novel behav-
iors. This reward for novel behaviors has traditionally required a human-crafted, be-
havioral distance function. While Novelty Search is a major conceptual breakthrough
and outperforms traditional stochastic optimization on certain problems, it is not clear
how to apply it to challenging, high-dimensional problems where specifying a useful
behavioral distance function is difficult. For example, in the space of images, how do
you encourage novelty to produce hawks and heroes instead of endless pixel static?
Here we propose a new algorithm, the Innovation Engine, that builds on Novelty
Search by replacing the human-crafted behavioral distance with a Deep Neural Net-
work (DNN) that can recognize interesting differences between phenotypes. The key
insight is that DNNs can recognize similarities and differences between phenotypes
at an abstract level, wherein novelty means interesting novelty. For example, a DNN-
based novelty search in the image space does not explore in the low-level pixel space,
but instead creates a pressure to create new types of images (e.g. churches, mosques,
obelisks, etc.). Here we describe the long-term vision for the Innovation Engine algo-
rithm, which involves many technical challenges that remain to be solved. We then
implement a simplified version of the algorithm that enables us to explore some of
the algorithm’s key motivations. Our initial results, in the domain of images, suggest
that Innovation Engines could ultimately automate the production of endless streams
of interesting solutions in any domain: e.g. producing intelligent software, robot con-
trollers, optimized physical components, and art.

Keywords
Genetic algorithms, deep neural networks, CPPNs, MAP-Elites.

1 Introduction1

Stochastic optimization and search algorithms, such as simulated annealing and evolu-
tionary algorithms (EAs), often outperform human engineers in several domains (Koza

1This paper is an extended version of a conference paper (Nguyen et al., 2015b) that includes many new
analyses and experiments described in Section 5.

c©2016 by the Massachusetts Institute of Technology Evolutionary Computation 0(ja): xxx-xxx



A. Nguyen, J. Yosinski, and J. Clune

Figure 1: Images produced by an Innovation Engine that look like example target
classes. In each pair, an evolved image (left) is shown with a real image (right) from the
training set used to train the deep neural network that evaluates evolving images.

et al., 2005). However, there are other domains in which these algorithms cannot pro-
duce effective solutions yet. Their Achilles Heel is the trap of local optima (Woolley
and Stanley, 2011), where the objective given to an algorithm (e.g. a fitness function)
prevents the search from leaving sub-optimal solutions and reaching better ones. Nov-
elty Search (Lehman and Stanley, 2008, 2011a) addresses this problem by collecting
the stepping stones needed to ultimately lead to an objective instead of directly op-
timizing towards it. The algorithm encourages searching in all directions by replac-
ing a performance objective with a reward for novel behaviors, the novelty of which
is measured with a distance function in the behavior space (Li et al., 2014). This re-
cent conceptual breakthrough has been shown to outperform traditional stochastic op-
timization on deceptive problems where specifying distances between desired behav-
iors is easy (Lehman and Stanley, 2008, 2011a). Reducing a high-dimensional search
space to a low-dimensional one is essential to the success of Novelty Search, because
in high-dimensional search spaces there are too many ways to be novel without being
interesting (Cuccu and Gomez, 2011). For example, if novelty is measured directly in
the high-dimensional space of pixels in a 60,000 pixel image, being different can mean
different static patterns, which are not interestingly different types of images.

Here we propose a novel algorithm called an Innovation Engine that enables search-
ing in high-dimensional spaces for which it is difficult for humans to define what con-
stitutes interestingly different behaviors. The key insight is to use a deep neural network
(DNN) (Bengio, 2009) as the evaluation function to reduce a high-dimensional search
space to a low-dimensional search space where novelty means interesting novelty. State-
of-the-art DNNs have demonstrated impressive and sometimes human-competitive re-
sults on many pattern recognition tasks (Krizhevsky et al., 2012; Bengio, 2009). They
see past the myriad pixel differences, such as lighting changes, rotations, zooms, and
occlusions, to recognize abstract concepts in images, such as tigers, tables, and turnips.
Here we suggest harnessing the power of DNNs to recognize different types of things
in the abstract, high-level spaces they can make distinctions in. A second reason for
choosing DNNs is that they work by hierarchically recognizing features. In images, for
example, they recognize faces by combining edges into corners, then corners into eyes
or noses, and then they combine these features into even higher-level features such as
faces (Nguyen et al., 2016b; Yosinski et al., 2015; Zeiler and Fergus, 2014; Nguyen et al.,
2016a). Such a hierarchy of features is beneficial because those features can be produced
in different combinations to produce new types of ideas/solutions.

2 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

Despite their impressive performance, DNNs can also make mistakes. Szegedy
et al. (2014) found that it is possible to add imperceptible changes to an image originally
correctly classified (e.g. as a bell pepper) such that a DNN will label it as something
else entirely (e.g. an ostrich). Nguyen et al. (2015a) showed a different, but related,
problem: images can be synthesized from scratch that are completely unrecognizable
to human eyes as familiar objects, but that DNNs label with near-certainty as common
objects (e.g. DNNs will declare with certainty that a picture filled with white noise
static is an armadillo). While such shortcomings of DNNs impair Innovation Engines
a fraction of the time, in this paper we emphasize that remaining fraction of the time
wherein using DNNs as evaluators works well. Innovation Engines will only improve
as DNNs are redesigned to not be so easily fooled.

We first describe our long-term, ultimate vision for Innovation Engines that re-
quire no labeled data to endlessly innovate in any domain. Because there are many
technical hurdles to overcome to reach that vision, we also describe a simpler, version
1.0 Innovation Engine that harnesses labeled data to simulate how the ultimate Inno-
vation Engine might function. While Innovation Engines should work in any domain,
we test one in the image generating domain that originally inspired the Novelty Search
algorithm (Stanley and Lehman, 2015) and show that it can automatically produce a
diversity of interesting images (Fig. 1). We also confirm some expectations regarding
why Innovation Engines are expected to work.

2 Innovation Engines

The Innovation Engine algorithm seeks to abstract the process of curiosity and habitua-
tion that occurs in humans. Historically, humans create ideas based on combinations of,
or changes to, previous ideas, evaluate whether these ideas are interesting, and retain
the interesting ideas to create more advanced ideas (Fig. 2). We propose to automate
the entire process by having stochastic optimization (e.g. an evolutionary algorithm)
generate new behaviors and a DNN evaluate whether the behaviors are interestingly
new. The DNN will then be re-trained to learn all behaviors generated so far and evo-
lution will be asked to produce new behaviors that the network has not seen before.
This algorithm should be able to automatically create an endless stream of interesting
solutions in any domain, e.g. producing robot controllers, optimized electrical circuits,
and even art.

Creating an Innovation Engine requires generating and retaining “stepping stones
to everywhere.” The stepping stones on the path to any particular innovation are not
known ahead of time (Lehman and Stanley, 2011a). From the stone age, for example,
the path to create a telephone did not involve inventing only things that improved
long-distance communication, but instead involved accumulating all interesting inno-
vations (Fig. 2). In fact, had human culture been restricted to only producing inventions
that improve long-distance communication, it is likely that the telephone would never
have been developed. That is because many of the fundamental telephone-enabling
inventions were not invented because they enabled long-distance communication (e.g.
wires, electricity, electromagnets, etc.), but instead were invented at the time for other
purposes. The same is true for nearly every significant invention in human history:
many of the key enabling technologies were originally invented for other purposes
(Lehman and Stanley, 2011b). In art, just as in science, there is a similar accumulation
of interesting ideas over time and a pressure to “make something new”, which leads to
a steady discovery of new artistic ideas over time (Lehman and Stanley, 2011b). Human
culture, therefore, can be seen as an “Innovation Engine” that steadily produces new

Evolutionary Computation Volume 0, Number ja 3



A. Nguyen, J. Yosinski, and J. Clune

Figure 2: The Innovation Engine: Human culture creates amazing inventions, such
as the telephone, by accumulating a multitude of interesting innovations in all direc-
tions. These stepping stones are collected, improved and then combined to create new
innovations, which in turn, serve as the stepping stones for innovations in later gen-
erations. We propose to automate this process by having stochastic optimization (e.g.
evolutionary algorithms) generate candidate solutions from the current archive of step-
ping stones and Deep Neural Networks evaluate whether they are interestingly new and
should thus be archived.

inventions in many different domains, from math and science to art and engineering.

2.1 The ultimate goal

Our long-term vision is to create an Innovation Engine that does not require labeled
data, or perhaps is not even shown data from the natural or man-made world. It would
learn to classify the types of things it has produced so far and seeks to produce new
types of things. Technically, one way to implement this algorithm is by training gener-
ative deep neural network models with unsupervised learning algorithms: these gen-
erative models can learn to compress the types of data they have seen before (Bengio,
2009; Hinton and Salakhutdinov, 2006). One could thus measure if a newly generated
thing is a new type of thing by how well the generative DNN model can compress it.
Evolution will be rewarded for producing things that the DNN cannot compress well,
which should endlessly produce novel types of things.

Imagine such an Innovation Engine in the image domain. A network trained on all
images produced so far will attempt to compress each newly generated image, and it
will fail more on new types of images. We hypothesize that the DNN will continuously
become “bored” with (i.e. highly compress) easily produced classes of images (initially
static and solid colors, but soon more complex patterns), which will encourage evolu-
tion to generate increasingly complex images in order to produce new types of images.
The process thus becomes a coevolutionary innovation arms race.

This version of the Innovation Engine is motivated by Schmidhuber et. al. cu-
riosity works (Schmidhuber, 2006; Kompella et al., 2015) – which emphasizes the pro-
duction of things that are not compressed yet, but are most easily compressed next –
but our work involves modern compressors (state-of-the-art DNNs) and our algorithm
does not require the seemingly impossible task of predicting which classes of artifacts
are highly compressible. Our proposal is similar to (Liapis et al., 2013), but prevents
cycling by attempting to produce things different than everything produced so far, not
just the current population. If it works, this Innovation Engine could produce inno-
vations in the multitude of fields and problem domains that currently benefit from
stochastic optimization.

4 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

2.2 Version 1.0

Unsupervised learning algorithms for generative models do not yet scale well to high
dimensional data (Bengio et al., 2014); for example, they can handle 28 × 28 pixel
MNIST images (Hinton and Salakhutdinov, 2006) but not 256 × 256 pixel ImageNet
images (Deng et al., 2009). In this section we describe a simpler Innovation Engine ver-
sion that can be implemented with currently available algorithms. A key piece of the
ultimate Innovation Engine is automatically recognizing new types of classes, which
function as newly created niches for evolution to specialize on. We can emulate that
endless process of niche creation by simply starting with a lot of niches and letting
evolution exploit them all. To do that, we can take advantage of two recent develop-
ments in machine learning: (1) the availability of large, supervised datasets, and (2)
the ability of modern supervised Deep Learning algorithms to train DNNs to reach
near-human-competitive levels in classifying the things in these datasets (Hinton and
Salakhutdinov, 2006; Krizhevsky et al., 2012; Bengio, 2009). We can thus challenge op-
timization algorithms (e.g. evolution) to produce things that the DNN recognizes as
belonging to each class.

Innovation Engines require two key components: (1) a diversity-promoting EA
that generates and collects novel behaviors, and (2) a DNN capable of evaluating the
behaviors to determine if they are interesting and should be retained. The first criterion
could be fulfilled either by Novelty Search or the multi-dimensional archive of pheno-
typic elites (MAP-Elites) algorithm (Mouret and Clune, 2015; Cully et al., 2015). We
show below that both can work.

3 Test Domain: Generating Images

The test domain for the paper is generating a diverse set of interesting, recognizable
images. We chose this domain for four reasons. The first is because an experiment in
image generation served as the inspiration for Novelty Search (Stanley and Lehman,
2015). That experiment occurred on Picbreeder.org, a website that allowed visitors to
interactively evolve images (Secretan et al., 2011), resulting in a crowd of humans that
evolved a diverse, recognizable set of images. Key enablers of this diversity were (Sec-
retan et al., 2011; Stanley and Lehman, 2015): the fact that collectively there was no
goal; that individuals periodically had a target image type in mind, creating a local
pressure for high-performing (recognizable) images; users were open to the possibility
of switching to a new goal if the opportunity presented itself (e.g. if the eyes of a face
started to look like the wheels of a car); that users saved any image that they found
interesting (usually a new type of image, or an improvement upon a previous type of
image) and future users could branch off of any saved stepping stone to create a new
image. Critically, all of these elements should also occur in Innovation Engine 1.0; thus
one test of that hypothesis is whether Innovation Engine 1.0 can automatically produce
a diverse set of images like those generated by humans on Picbreeder. One attempt
was made to automatically recreate the diversity of recognizable images produced on
Picbreeder, but it produced only abstract patterns (Auerbach, 2012).

The second motivation for the image-generating domain is that DNNs are nearly
human-competitive at recognizing images (Krizhevsky et al., 2012; Karpathy, 2014;
Szegedy et al., 2015; Stallkamp et al., 2012). The third reason is that DNNs can recognize
and sensibly classify the type of images from Picbreeder (Fig. 3), specifically images en-
coded by compositional pattern producing networks (CPPNs) (Stanley, 2007). We also
encode images with CPPNs in our experiments (described below). The fourth reason
is because humans are natural pattern recognizers, making us quickly and intuitively

Evolutionary Computation Volume 0, Number ja 5



A. Nguyen, J. Yosinski, and J. Clune

Figure 3: CPPN-encoded images evolved and named (centered text) by Picbreeder.org
users. The DNN’s top three classifications and associated confidence (size of the pink
bar) are shown. The DNN’s classifications often relate to the human breeder’s label,
showing that DNNs can recognize CPPN-encoded, evolved images. Adapted from
(Nguyen et al., 2015a).

able to evaluate the diversity, interestingness, and recognizability of evolved solutions.
Additionally, while much of what we learn from this domain comes from subjective
results, there is also a quantitative aspect regarding the confidence a DNN ascribes to
the generated images. In future work we will test whether the conclusions reached in
this mostly subjective domain translate into more exclusively quantitative domains.

To experiment in this domain, we use a modern off-the-shelf DNN trained with
1.3 million images to recognize 1000 different types of objects from the natural world.
We then challenge evolution to produce images that the DNN confidently labels as
members of each of the 1000 classes. Evolution is therefore challenged to make increas-
ingly recognizable images for all 1000 classes. Generating CPPN-encoded images that
are recognizable is challenging (Woolley and Stanley, 2011), making recognizability a
notion of performance in this domain. Being recognizable is also related to being inter-
esting, as Picbreeder images that are recognizable are often the most highly rated (Sec-
retan et al., 2011).

4 Methods

4.1 Deep neural network models

The DNN in our experiments is the well-known convolutional “AlexNet” architecture
from (Krizhevsky et al., 2012). It is trained on the 1.3-million-image 2012 ImageNet
dataset (Deng et al., 2009; Russakovsky et al., 2015), and available for download via
the Caffe software package (Jia et al., 2014). The Caffe-provided AlexNet has small
architectural differences from Krizhevsky 2012 (Krizhevsky et al., 2012), but it performs
similarly (42.6% top-1 error rate vs. the original 40.7% (Krizhevsky et al., 2012)). For

6 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

each image, the DNN outputs a post-softmax, 1000-dimensional vector reporting the
probability that the image belongs to each ImageNet class. The softmax means that to
produce a high confidence value for one class, all the others must be low.

4.2 Generating images with evolution

To simultaneously evolve images that match all 1000 ImageNet classes, we use the new
multi-dimensional archive of phenotypic elites (MAP-Elites) algorithm (Mouret and
Clune, 2015; Cully et al., 2015). MAP-Elites keeps a map (archive) of the best individ-
uals found so far for each class. Each iteration, an individual is randomly chosen from
the map, mutated, and then it replaces the current champion for any class if it has a
higher fitness for that class. Fitness is the DNN’s confidence that an image is a member
of that class.

We also test another implementation of the Innovation Engine, but with Novelty
Search instead of MAP-Elites. Novelty Search encourages organisms to be different
from the current population and an archive of previously novel individuals. The behav-
ioral distance between two images is defined as the Euclidean distance between the two
1000-dimensional vectors output by the DNN for each image. Because all of our exper-
iments were performed with the Sferes evolutionary computation framework (Mouret
and Doncieux, 2010), we set all Novelty Search parameters to those in (Mouret, 2011),
which was also conducted in Sferes, but followed closely the parameters in (Lehman
and Stanley, 2008).

Images are encoded with compositional pattern producing networks
(CPPNs) (Stanley, 2007), which abstract the expressive power of developmental
biology to produce regular patterns (e.g. those with symmetry or repetition). CPPNs
encode the complex, regular, recognizable images on Picbreeder.org (e.g. Fig. 3) and
the 3D objects on EndlessForms.com (Clune and Lipson, 2011). The details of how
CPPNs encode images and are evolved have been repeatedly described elsewhere (Sec-
retan et al., 2011; Stanley, 2007). Briefly, a CPPN is like a neural network, but each
node’s activation function is one of a set (here: sine, sigmoid, Gaussian and linear).
The Cartesian coordinates of each pixel are input into the network and the network’s
outputs determine the color of that pixel. Importantly, evolved CPPN images can be
recognized by the DNN (Fig. 3), showing that evolution can produce CPPN images
that both humans and DNNs can recognize.

As is customary (Secretan et al., 2011; Stanley, 2007; Clune and Lipson, 2011) we
evolve CPPNs with the principles of the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm (Stanley and Miikkulainen, 2002), a version of which is provided in
Sferes. CPPNs start with no hidden nodes, and add nodes and connections over time,
forcing evolution to first search for simple, regular images before increasing complex-
ity (Stanley and Miikkulainen, 2002). All of our code and parameters are available at
http://EvolvingAI.org. Because each run required 128 CPU cores running con-
tinuously for ∼4 days, our number of runs is limited.

Evolutionary Computation Volume 0, Number ja 7

http://EvolvingAI.org


A. Nguyen, J. Yosinski, and J. Clune

5 Results

We conduct a variety of experiments to investigate Innovation Engines. First, we show
that Innovation Engines work well both quantitatively and qualitatively in the image
generation domain (Sec. 5.1): the algorithm produces images that are recognizable
to both humans and DNNs. Second, we investigate a key component of Innovation
Engines—the number of objectives—and show that the performance and evolvability
improves as the number of objectives increases (Sec. 5.2). Third, to support the hy-
pothesis that Innovation Engines should work with any diversity-promoting EA, we
demonstrate that Innovation Engines also work well with Novelty Search (Sec. 5.3).
Fourth, we show that the algorithm can be further improved by incorporating addi-
tional priors (Sec. 5.4).

5.1 Evolving images that are recognizable as members of ImageNet classes

If the Innovation Engine is a promising idea, then Innovation Engine 1.0 in the image
domain should produce the following: (1) images that the DNN gives high confidence
to as belonging to ImageNet classes and (2) a diverse set of interesting images that are
recognizable as members of ImageNet classes. Our results show that the Innovation
Engine accomplishes both of these goals.

1 200 400 600 800 1000

Category

0
1000
2000
3000
4000
5000

G
e
n
e
ra
ti
o
n

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
ce

Figure 4: The MAP-Elites evolutionary algorithm produces images that the DNN de-
clares with high confidence to belong to most ImageNet classes. Colors represent me-
dian confidence scores from 10 runs.

In 10 independent MAP-Elites runs, evolution produced high-confidence images
in most of the 1000 ImageNet categories (Fig. 4). It struggles most in classes 156-286,
which represent subtly different breeds of dogs and cats, where it is hard to look like
one type without also looking like other types. Note that because the confidence val-
ues are taken after a softmax transformation of the neural activations of the last layer,
to maximize its score in one class, an image not only has to have a high-confidence
in that class, but also has to have a low-confidence in all the other classes; that is es-
pecially difficult for the dog and cat classes given the number of similar cat and dog
breeds. While the reader must draw their own conclusions, in our opinion the images
exhibit a tremendous amount of interesting diversity, putting aside whether they are
recognizable. Selected examples are in Figs. 5, 1, and 6: all 10,000 evolved images are
shown at http://www.evolvingai.org/InnovationEngine. The diversity is es-
pecially noteworthy because many images are phylogenetically related, which should
curtail diversity.

8 Evolutionary Computation Volume 0, Number ja

http://www.evolvingai.org/InnovationEngine


Understanding Innovation Engines

Figure 5: Innovation Engines in the image domain generate a tremendous diversity of
interesting images. Shown are images selected to showcase diversity from 10 evolu-
tionary runs. The diversity results from the pressure to match 1000 different ImageNet
classes. In this and subsequent figures, the DNN’s top label for each evolved image is
shown below it.

In many cases, the evolved images are recognizable as members of the target
class (Fig. 6). This result is remarkable given that it has been shown that with the
same encoding (CPPN) and evolutionary algorithm (NEAT), it is impossible to evolve
an image to resemble a complex, target image (Woolley and Stanley, 2011). The lesson
from that paper is that if evolution is given a specific objective, such as to evolve a but-
terfly or skull, that it will not succeed because objective-driven evolution only rewards
images that increasingly look like butterflies or skulls, and that CPPN lineages that lead
to butterflies or skulls tend to pass through images that look nothing like either. Inno-
vation Engines, like crowds on Picbreeder, simultaneously collect improvements in a
large number of objectives. That allows evolutionary lineages to be rewarded for steps
that do not resemble butterflies or skulls (provided they resemble something else) and
then to be rewarded as butterflies or skulls if they subsequently resemble either. Thus,
a main result of this paper is that the problem with traditional stochastic optimization
is not that it is objective-driven, as is often argued (Lehman and Stanley, 2008, 2011a;

Evolutionary Computation Volume 0, Number ja 9



A. Nguyen, J. Yosinski, and J. Clune

Figure 6: Innovation Engines are capable of producing images that are not only given
high confidence scores by a deep neural network, but are also qualitatively interest-
ing and recognizable. To show the most interesting evolved images, we selected im-
ages from both the 10 main experiment runs and 10 preliminary experiments that had
slightly different parameters.

10 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

Figure 7: The Innovation Engine 1.0 evolved images that resemble those originally
evolved on Picbreeder, but that a previous paper (Woolley and Stanley, 2011) showed
were impossible to re-evolve with single-objective, target evolution. ImageNet has a
“Monarch butterfly” class; it does not have a “skull” class, but its “Ski mask” class
contains the key eyes, nose and mouth features. For each pair, the images shown are
evolved with an Innovation Engine 1.0 (left) and Picbreeder (right).

Figure 8: Final images evolved for the Car wheel and Tile roof classes from 7 independent
runs. Common features – here, circles (top) and waves (bottom) – tend to show up
consistently over different runs. The left column of images are from the ImageNet
training set.

Stanley and Lehman, 2015), but instead that it is driven by only a few objectives. The
key is to collect “stepping stones in all interesting directions”, which can be approx-
imated by simultaneously selecting for a vast number of objectives. Supporting this
argument, our algorithm was able to produce many complex structures (Figs. 5, 1, 6) ,
including some that are similar to butterflies and skulls (Fig. 7).

We also qualitatively observed common features shared between the images
evolved for the same target class over multiple runs of evolution (Fig. 8). For exam-
ple, the Car wheel images tend to have concentric circles representing the tire and the
rim. Images in Tile roof category tend to exhibit brownish terra-cotta color and the wavy
pattern of the roof. This result shows that for certain categories, Innovation Engines can
consistently produce images that are interesting and recognizable to both humans and
DNNs.

Some evolved images are not recognizable, but often do contain recognizable fea-
tures of the target class. For example, in Fig. 5, the remote control has a grid of buttons
and the zebra has black-and-white stripes. As was recently reported in our paper titled
“Deep neural networks are easily fooled: High confidence predictions for unrecogniz-
able images” (Nguyen et al., 2015a), this algorithm also produces many images that
DNNs assign high confidence scores to, but that are totally unrecognizable, even when

Evolutionary Computation Volume 0, Number ja 11



A. Nguyen, J. Yosinski, and J. Clune

Figure 9: Confirming that images evolved with Innovation Engines can be considered
art, they were not only accepted to a selective art competition (35% acceptance rate)
and displayed at the University of Wyoming Art Museum, but they also were amongst
the 21% of submissions that won an award. Additionally, they will be displayed in
art exhibits in galleries, fairs, and conventions in multiple European countries and the
United States.

their class labels are known (e.g. Fig. 5, tailed frog & soccer ball). That study emphasized
that the existence of such “fooling images” is problematic for anything that relies on
DNNs to accurately classify objects, because DNNs sometimes make mistakes. This
paper emphasizes the opposite, but not mutually exclusive, perspective: while using
DNN as evaluators sometime produces fooling examples, it also sometimes works re-
ally well, and can thus automatically drive the evolution of a diverse set of complex,
interesting, and sometimes recognizable images. Sec. 5.4 discusses a method for in-
creasing the percent of evolved images that are recognizable.

To test the hypothesis that the CPPN images generated by Innovation Engines
might actually be considered quality art, we submitted a selection of them to a selec-
tive art contest: the University of Wyoming’s 40th Annual Juried Student Exhibition,
which only accepted 35.5% of the submissions. Not only was the selection of Inno-
vation Engine-produced images we submitted accepted, but it was also amongst the
21.3% of submissions to be given an award (Fig. 9).

5.2 Investigating whether having more objectives improves performance and
evolvability

This section contains a number of experiments and analyses to probe a central hypoth-
esis motivating Innovation Engines, which is that having more objectives will tend to
improve performance (on each objective) and improve evolvability. We first present
results and analyses from the “one class vs. 1000 classes” experiment that were re-
ported in (Nguyen et al., 2015b), because they provide a nice illustration of the power
of having many objectives. Then, in the subsequent section, we take a deeper dive into
these questions, and do so across a range of objectives (1, 50, 100, 500, 1000) instead of
comparing only 1 to 1000.

12 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

5.2.1 One objective vs. 1000 objectives
As discussed in the previous section, a key hypothesis for why Innovation Engines
work is that evolving toward a vast number of objectives simultaneously is more ef-
fective than evolving toward each objective separately. In this section, we probe that
hypothesis directly by comparing how MAP-Elites performs on all 1000 objectives vs.
how evolution fares when evolving to each single-class objective separately. Because
we did not have the computational resources to perform 1000 single-class runs, we ran-
domly selected 100 classes from the ImageNet dataset and performed two single-class
MAP-Elites runs per category. We compare those data to how the 10 runs of 1000-class
MAP-Elites performed on the same 100-class subset.

0 1000 2000 3000 4000 5000
Generation

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
ce

medians

MAP-Elites vs Single-class
Novelty Search vs Single-class

MAP-Elites vs Novelty Search

p
 <

 0
.0

5

Novelty search

MAP-Elites

Single-class

Figure 10: Innovation Engines built with MAP-Elites or Novelty Search perform simi-
larly to each other, and both significantly outperform a single-class evolutionary algo-
rithm. Solid lines show median performance and shaded areas indicate the 95% boot-
strapped confidence interval of the median. The bottom three rows show statistical
significance. For more information on the experiments that generated the data plotted
here, see Sec. 5.2.1 for the MAP-Elites and single-class experiments, and Sec. 5.3 for the
Novelty Search experiment.

1000-class MAP-Elites produced images with significantly higher median DNN
confidence scores (Fig. 10, 90.3% vs. 68.3%, p < 0.0001 via Mann-Whitney U test).
The theory behind why more objectives helps is because a lineage that is currently the
champion in classX may be trapped on a local optima, such that mutations to it will not
improve its fitness on that objective (a phenomenon we observe in the single-class case:
Fig. 11 inset). With many objectives, however, a lineage that has been selected for other
objectives can mutate to perform better on classX , which occurs frequently with MAP-
Elites. For example, on the water tower class (Fig. 11 inset), the lineage of images that
produce a large, top-lit sphere do not improve for 250 generations, but at generation
1750 a descendant of an organism that was the champion for the cocker spaniel dog class
(Fig. 11) became a recognizable water tower and was then further refined.

Inspecting the phylogenetic tree of the 1000 images produced by MAP-Elites in
each run, we found that the evolutionary path to a final image often went through
other classes, a phenomenon we call goal switching. For example, the path to a beacon
involved stepping stones that were rewarded because they were at one point champi-
ons for the tench, abaya, megalith, clock, and cocker spaniel dog classes (Fig. 11). A dif-
ferent descendant of abaya traversed the stingray and boathouse classes en route to a
recognizable planetarium (Fig. 11). A related phenomenon occurs on Picbreeder, where
the evolutionary path to a final image often involves images that do not resemble the
target (Secretan et al., 2011).

Evolutionary Computation Volume 0, Number ja 13



A. Nguyen, J. Yosinski, and J. Clune

Figure 11: Inset Panel: The champions for the water tower class over evolutionary time
for a single-class evolutionary algorithm (top) and the MAP-Elites variant of the Inno-
vation Engine (bottom). Under each evolved image is the percent confidence the DNN
has that the image is a water tower (left) and the generation in which the image was cre-
ated (right). At the 1750th generation, when the offspring of a champion of the cocker
spaniel (dog) class (see main panel in this figure) becomes the best water tower pro-
duced so far. Its descendants are refined to produce a high-confidence, recognizable
image. Main Figure: A phylogenetic tree depicting how lineages evolve and goal switch
from one class to another in an Innovation Engine (here, version 1.0 with MAP-Elites).
Each image is displayed with the class the DNN placed it in, the associated DNN con-
fidence score (red), and the generation in which it was created. Connections indicate
ancestor-child relationships. One reason Innovation Engines work is because similar
types of things (e.g. various building structures) can be produced by phylogenetically
related genomes, meaning that the solution to one problem can be re-purposed for a
similar type of problem. Note the visual similarity between the related solutions. An-
other reason Innovation Engines work is because the path to a solution often involves
a series of things that do not increasingly resemble the final solution (at least, not with-
out the benefit of hindsight). For example, note the many unrelated classes that served
as stepping stones to recognizable objects (e.g. the path through cloaks and cocker
spaniels to arrive at a beacon).

14 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

We quantitatively measured the number of goal switches per class (the number
of times during a run that a new class champion was the offspring of a champion of
another class). Each class had a mean of 8.7 goal switches, which was 17.9% of the 48.6
mean new champions per class. Thus, a large percentage of improvements in a class
came not from refining the current class champion, but from a mutation to a different
class champion, helping to explain why Innovation Engines work.

Another expectation, which we observed, is that the evolved images for many se-
mantically related categories are also phylogenetically related. For example, according
to WordNet hierarchy (Deng et al., 2009), planetarium, mosque, church, obelisk, yurt and
beacon are subclasses of the structure class (Fig. 12). The evolved images for these classes
are often closely related phylogenetically and share visual similarities (Fig. 11).

Figure 12: Evolved images sorted according to WordNet hierarchy. Planetarium,
mosque, church, obelisk, and beacon images semantically belong to subclasses of the
structure category. Interestingly, the images also exhibit similar visual patterns.

If two CPPN genomes produce equivalent behaviors (here, images), it is taken
as a sign of increased evolvability if one has fewer nodes and connections (Lehman
and Stanley, 2008; Woolley and Stanley, 2011; Secretan et al., 2011). It has been shown
that objective-based search “corrupts” genomes by adding piecewise hacks that lead to
small fitness gains, and thus do not find the simple, elegant solutions produced by di-
vergent search processes (e.g. Novelty Search or Picbreeder crowds) (Woolley and Stan-
ley, 2011). If Innovation Engines behave like traditional single- or multi-objective algo-
rithms, one might expect them to produce large CPPN genomes. On the other hand,
if Innovation Engines, which are many-objective algorithms, are more divergent in na-
ture, they should produce smaller genomes like those reported for Picbreeder (Woolley
and Stanley, 2011). While the comparison is not apples to apples for many reasons,
Innovation Engine genomes are actually more compact than those for Picbreeder. The
10,000 MAP-Elites CPPN genomes contain a median of 27 nodes (SD = 5.9) and 37.5
connections (SD= 8.6) vs. the ∼7,500 Picbreeder image genomes analyzed in (Secre-
tan et al., 2011), which have 50.3 nodes and 146.7 connections (SD not reported).

Evolutionary Computation Volume 0, Number ja 15



A. Nguyen, J. Yosinski, and J. Clune

5.2.2 Additional analyses and a more extensive sweep across the number of
objectives

To further investigate how the number of objectives affects performance and evolvabil-
ity, we conducted MAP-Elites experiments for a range of numbers of objectives: 1, 50,
100, 500, and 1000. In each, we restricted the MAP-Elites archive to keep a champion for
N classes, where N = 1, 50, 100, 500, 1000. The classes are randomly selected from the
1000 ImageNet classes. In each generation, MAP-Elites produced 400 offspring by mu-
tating a randomly selected champion from the set ofN . Each of the 400 offspring would
then be compared against every current class champion, and the offspring would re-
place a champion if its confidence score for that class was higher. For each treatment,
the algorithmic hyperparameters were the same and we performed 10 independent
runs.

Performance increases with the number of objectives
We found that the median performance increases monotonically as the number of

objectives increases (Fig. 13a, ρ = 0.24, p < 0.0001 via Spearman’s rank-order correla-
tion). There are at least two potential explanations for this result. The first is our main
hypothesis for why Innovation Engines work well, which is that increasing the number
of objectives enables goal switching to occur more frequently (Fig. 13b). Supporting this
explanation is the fact that the number of goal-switches also monotonically increases
with the number of objectives (ρ = 0.95, p < 0.0001 via Spearman’s rank-order cor-
relation). A second possible explanation is that having fewer objectives results in less
diversity among the 400 offspring in each generation, because those offspring descend
from a smaller pool of parents. Having less diversity frequently hurts the performance
of stochastic optimization algorithms, including evolutionary algorithms (Floreano and
Mattiussi, 2008).

1 50 100 500 1000

Number of objectives

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
ce

(a) Performance monotonically increases with
the number of objectives.

1 50 100 500 1000

Number of objectives

0

2

4

6

8

10

G
o
a
l 
sw

it
ch

e
s 

p
e
r 

cl
a
ss

(b) The number of goal switches monotonically
increases with the number of objectives

Figure 13: As the number of objectives increases, both performance and the number of
goal-switches per class also increase. This helps explain why evolving towards many
objectives is effective. Orange lines show monotonically increasing relationships.

16 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

Are genomes more evolvable as the number of objectives increases?
As mentioned previously in section 5.2.1, it has previously been shown that in-

creased evolvability in CPPN-encoded organisms can be detected by fewer nodes in
CPPN genomes (Lehman and Stanley, 2008; Woolley and Stanley, 2011; Secretan et al.,
2011). We showed in that section that the CPPNs evolved by Innovation Engines had
fewer nodes and connections than the CPPNs from Picbreeder, although the compari-
son is not apples to apples. Here we test a related hypothesis: that having more objec-
tives leads to CPPNs having fewer nodes and connections, which would suggest that
they have more compact, elegant, evolvable representations.

Contrary to our hypothesis, the number of nodes and connections slightly, but
significantly, increases with the number of objectives (Fig. 14, ρconnections = 0.08,
ρnodes = 0.07, p < 0.0001 via Spearman’s rank-order correlation): The difference in
the median number of nodes and connections between the 1-objective and the 1000-
objective treatment is only 5 nodes and 5.5 connections, out of 27.7 nodes and 37.7
connections total on average. A study of Picbreeder genomes (Secretan et al., 2011)
found a similar result that the size of CPPNs only slightly correlates with the human
ratings for the evolved images (ρconnections = 0.11, ρnodes = 0.12).

1 50 100 500 1000

Number of objectives

10

20

30

40

50

60

70

N
u
m

b
e
r 

o
f 

n
o
d
e
s 

a
n
d
 c

o
n
n
s

Connections

Nodes

Figure 14: The size of CPPNs, in terms of nodes (blue) and connections (green), slightly,
but significantly (see text) increases with the number of objectives.

A second indicator of evolvability is the modularity of genomes (Clune et al., 2013),
because organisms designed in a modular fashion have been shown to adapt to new
environments faster than non-modular organisms (Kashtan and Alon, 2005; Kashtan
et al., 2007; Clune et al., 2013). Here, we test whether having a larger number of ob-
jectives produces CPPN genomes that are more modular. The structural modularity of
CPPNs is measured by calculating its Q score, which is the most commonly used mod-
ularity metric for networks (Newman, 2006). Specifically, we treat each CPPN genome
as a directed graph, and adopt the Q score metric for directed networks from (Leicht
and Newman, 2008). Q scores are calculated for all 16,510 champion CPPNs from all 10
runs of all 5 treatments, where each treatment had 1, 50, 100, 500, or 1000 objectives.

We found a significant, but very slight, monotonic relationship between the num-
ber of objectives and the Q score (Fig. 15a, ρ = 0.02, p < 0.01 via Spearman’s rank-order
correlation). The lack of a strong relationship could be because in this domain, genomic
modularity is not beneficial. Supporting that theory is the fact that there is only a very

Evolutionary Computation Volume 0, Number ja 17



A. Nguyen, J. Yosinski, and J. Clune

1 50 100 500 1000

Number of objectives

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
 s

co
re

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Confidence

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
 s

co
re

(b)

Figure 15: (a) There is only a slight monotonic relationship between the number of
objectives in a treatment and the Q score of the class-champion CPPNs that evolve in
that treatment, although that relationship is significant (see text). (b) Similarly, there is
only an extremely slight, but significant (see text), correlation between the Q score of a
CPPN and the confidence of the image that CPPN generates. Data points represent the
class-champion CPPNs from all runs of all 5 treatments.

slight correlation between the Q score of the genome of each image and the confidence
score of that image, although that relationship is also significant (Fig. 15b, ρ = 0.05,
p < 0.0001 via Spearman’s rank-order correlation). Using the same Q score metric, we
also found that CPPNs generated by the 1000-objective treatment are significantly more
modular than CPPNs evolved on Picbreeder (Stanley et al., 2013, 2016) (Q score = 0.38
vs. 0.28, p < 0.0001 via Mann-Whitney U test). While the comparison is not apples to
apples for many reasons, this result shows that our automated evolution can produce
similarly elegant, modular solutions to human-assisted evolution.

The evolvability of an organism can also be measured as a function of the fitness
distribution of its offspring, with a higher distribution indicating increased evolvabil-
ity (Hornby et al., 2003; Clune et al., 2011; Fogel and Ghozeil, 1996; Grefenstette, 2014;
Belew et al., 1995; Igel and Chellapilla, 1999; Igel and Kreutz, 1999). To test whether
more objectives leads to increased evolvability under this measure, we compared the
fitness values of parents and their offspring. One challenge when measuring evolv-
ability in this way is that the distribution of offspring fitness values may depend on
the fitness of the parent. Since we have already shown that having more objectives im-
proves performance, we need to control for the fitness of the parent in this evolvability
analysis. To do that, we select a set of 400 different champions with performance val-
ues semi-evenly distributed within [0, 1], such that each treatment has approximately
the same distribution of fitness values, thus controlling for the fitness of the parents
across treatments. Specifically, we divide the confidence range [0, 1] into 20 bins:
[0.00, 0.05), [0.05, 0.1), ..., [0.95, 1). For each bin, every treatment contributes the same
number of organisms. This number varies from bin to bin; however, on average, each
treatment has 20 organisms in each bin for comparison. It was possible to fulfill these
constraints for all treatments except the single-objective treatment: we thus include
only the four treatments that had more than one objective (N = 50, 100, 500, 1000).

18 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

There are two separate sets of objectives over which we could have measured the
fitness of offspring. Offspring could be compared vs. their parents on the class of
the parent only, or across all 1000 ImageNet classes. We suspected that single- and
few-objective treatments would have offspring that did better on the class of their par-
ent, because organisms in these treatments spend most of their evolutionary history
attempting to keep average fitness high on one or a few objectives. We further pre-
dicted that many-objective treatments would have organisms more evolved for goal-
switching, such that their average fitness across all 1000 objectives would be higher.
While both can be considered a form of evolvability, the goal-switching form of evolv-
ability is what is truly required to solve extremely challenging problems and to make
progress on open-ended evolution (Lehman and Stanley, 2008; Stanley and Lehman,
2015).

To measure within-class fitness changes, we produced 10 mutants per champion
(each champion is from a class C), and measured their DNN confidence score improve-
ment in class C (only) relative to the champion (i.e. the parent). In total, 400 cham-
pions ×10 = 4000 mutants were considered per treatment. As expected, we found a
very slight, but significant, negative monotonic correlation between the fitness changes
of offspring with respect to their parent class only and the number of objectives in
a treatment (Fig. 16, ρ = −0.08, p < 0.0001 via Spearman’s rank-order correlation).
Overall, across all treatments, 94.8% of the offspring have a lower DNN confidence
score than their parents, but treatments with more objectives had distributions with
slightly lower medians. Additionally, variance in the mutant confidence change dis-
tributions decreases as the number of objectives increases (Fig. 16). An explanation is
that fewer-objective treatments produce organisms with lower confidence scores than
more-objective treatments (Fig. 13a), leaving more room for the mutations to improve
(thus, the higher variance). In the previous paragraph we outline one hypothesis for
why single-objective or few-objective treatments have higher fitness distributions for
their parent’s class: because they have not been evolved to goal-switch as much.

50 100 500 1000

Number of objectives

−100

0

100

200

300

400

500

600

M
u
ta

n
t 

co
n
fi
d
e
n
ce

 c
h
a
n
g
e
s 

(%
)

Figure 16: The median fitness changes of offspring compared to their parents (in per-
centage) for the same class as their parents slightly, but significantly decreases as the
number of objectives increases (see text for statistics).

A perhaps better measure of evolvability is not just whether organisms fare better
on the fitness peak their parents are on, but how they do across all fitness peaks. To

Evolutionary Computation Volume 0, Number ja 19



A. Nguyen, J. Yosinski, and J. Clune

test this hypothesis, we not only need to control for the champion fitness, but also the
number of classes that the champions came from. Specifically, we select 500 mutants
(out of 4000 total) that have parents satisfying two conditions: 1) having confidence
scores within the range [0.95, 1); and 2) each coming from one of 50 randomly chosen
classes. In order to have 500 champions that meet this criteria for all treatments, we
were not able to constrain this set of 50 classes to be the same same for all treatments.
We select from the 500 offspring produced per treatment the best image for each of
the 1000 ImageNet classes. As expected, treatments with more objectives produce sig-
nificantly higher average fitness across all 1000 classes (Fig. 17). This result confirms
that the presence of multiple objectives leads to selection not just for high fitness, but
for evolvability in the sense of being more likely to have a higher fitness on different
objectives. This sort of evolvability could potentially aid our quest for open-ended evo-
lutionary dynamics like those seen in nature (Lehman and Stanley, 2008; Stanley and
Lehman, 2015).

1 200 400 600 800 1000

Category

5
0

1
0

0
5

0
0

1
0

0
0

N
u
m

b
e
r 

o
f 

o
b
je

ct
iv

e
s

0.00

0.25

0.50

0.75

1.00

M
u
ta

n
t 

co
n
fi
d
e
n
ce

(a)

Enlarged  view

(b)

Figure 17: Organisms that are evolved with a higher number of objectives produce off-
spring that have higher average fitness across all 1000 objectives. (a) A fitness heatmap
of 500 mutants for each treatment across 1000 categories. (b) The median performance
of mutants across 1000 categories increases slightly, but significantly and consistently,
with the number of objectives (ρ = 0.14, p < 0.0001 via Spearman’s rank-order corre-
lation). The inset panel (right) zooms in on the area of the left panel where the data
is most concentrated to reveal the slight, but significant and monotonically increasing
relationship between the number of objectives and evolvability.

20 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

Overall, the evidence is either neutral or positive supporting the claim that more
objectives improves evolvability. While we did not find that more objectives leads to
substantially higher modularity or genome compactness, there was a slightly positive,
significant correlation between CPPN modularity and the number of objectives. More
convincing is the fact that genomes evolved in the many objective environments are
worse at staying high on the peak their parents are currently on, but have a signifi-
cantly higher fitness distribution across all 1000 objectives. In other words, Innovation
Engines are producing organisms with a form of evolvability that makes them more
likely to goal-switch than EAs that have a single or low number of objectives.

5.3 Innovation Engine with Novelty Search

To support the case that Innovation Engines should work with any diversity-promoting
EA combined with a DNN-provided deep distance function, we implemented Innovation
Engine 1.0 with Novelty Search instead of MAP-Elites. After Novelty Search was af-
forded the same number of image evaluations, we found the best image it produced
for each class according to the DNN. We performed 10 independent runs of Novelty
Search. To facilitate comparison to the single-class control, we compare performance
on the 100 classes randomly selected for the single-class control (Sec. 5.2). The MAP-
Elites vs. Novelty Search comparison on 100 classes is qualitatively the same on all
1000 classes (data not shown).

As expected, Novelty Search also produced high-confidence images in most classes
(Fig. 10). Its median confidence of 91.6% significantly outperforms the 68.3% for the
single-class control (p < 0.0001 via Mann-Whitney U test). While it significantly under-
performs MAP-Elites at the 1000th generation, for the 2000th generation and beyond
Novelty Search slightly, but significantly outperforms MAP-Elites (p < 0.01 via Mann-
Whitney U test), although MAP-Elites has a higher final mean (79.5% vs. 74.0%). The
images produced by two treatments are qualitatively similar (data not shown). This
result confirms that in this domain both MAP-Elites and Novelty Search can serve as
the diversity promoting EA in an Innovation Engine.

To isolate and evaluate the importance of the deep distance function in Innovation
Engines, we launched 10 runs of the same Novelty Search experiment as above except
that we replaced the DNN deep distance evaluation function with a pixel-by-pixel L1

distance function. Specifically, the behavior distance D between two evolved images
u and v of size 256 × 256 is calculated as the L1 distance (aka Manhattan distance)
between all pixel values across all 3 color channels c:

D(u,v) =

3∑
c=1

256∑
x=1

256∑
y=1

|uc
x,y − vc

x,y| (1)

This experiment, which swaps out the deep distance function with a shallow, pixel-
wise distance function, was only performed with Novelty Search because it is not ob-
vious how to sensibly discretize the space of all possible pixel combinations into bins,
as MAP-Elites requires (Mouret and Clune, 2015; Cully et al., 2015).

The results reveal that Novelty Search with the L1 distance function performs
poorly: the images it produces are given extremely low-confidence scores by the DNN.
After 2000 generations, the median confidence score is 0.18%, a significantly and sub-
stantially lower performance than the 84.4% for Novelty Search with the deep distance
function (p < 0.0001 via Mann-Whitney U test). Since its performance is significantly
lower than all other treatments at generation 2000 (p < 0.0001 via Mann-Whitney U

Evolutionary Computation Volume 0, Number ja 21



A. Nguyen, J. Yosinski, and J. Clune

zebra coil electric fan manhole cover

maze prison tile roof window shade

(a) Hand-selected images that we found recog-
nizable. Median confidence: 94.25%

bib chain doormat marimba

screw stole window screen bath towel

(b) A random sampling of images. Median con-
fidence: 13.49%

Figure 18: Images produced by Novelty Search with a shallow, L1 distance function di-
rectly in the pixel space. This experiment shows what happens when Novelty Search at-
tempts to produce novel images without the deep distance function provided by a deep
neural network, and instead encourages knowledge directly in the high-dimensional
space of all possible pixel combinations. These results suggest that, in any domain, it
is better to search along low-dimensional manifolds that represent interesting dimen-
sions of variation, rather than searching directly in high-dimensional search spaces.
Note: while the behavioral metric for Novelty Search is a pixel-wise distance function,
the images are still generated by CPPNs, which explains why they are regular.

test), and because this experiment was computationally expensive due to the number
of pixel comparisons that need to be made to calculateL1 distances between images, we
did not run the experiment all the way to 5000 generations, as we did for the other treat-
ments (Fig. 10). While most images are uninteresting and unrecognizable (Fig. 18b), we
found a few high-scoring images with recognizable patterns (Fig 18a, e.g. black-and-
white stripes for an image in the zebra class and vertical bars for an image in the prison
class). This experiment confirms that Novelty Search has difficulty finding the rare,
interesting, recognizable images in the vast space of all possible pixel combinations. It
suggests that, in general, Novelty Search will struggle to find interesting, rare items
in a vast, high-dimensional space without a deep distance function that can focus the
search on the interesting low-dimensional manifolds that exist with the higher dimen-
sional space.

5.4 Attempting to further improve the frequency and quality of recognizable
images by adding a natural image prior

Although DNNs sometimes make mistakes, giving high confidence scores to unrecog-
nizable “fooling” images (Nguyen et al., 2015a), we recently showed that using a collec-
tion of image priors to bias optimization towards producing images with more natural
image statistics can help produce more recognizable images (Yosinski et al., 2015). That
finding was not for evolved images but for images produced via gradient-based opti-
mization methods in which gradients are backpropagated to each pixel to search for
images that maximally activate certain neurons in DNNs. We subsequently found that
minimizing one particular prior called total variation (Rudin et al., 1992) produces even
more recognizable images (Nguyen et al., 2016b). We hypothesized that encouraging
the minimization of total variation in the fitness function via a penalty for higher total
variation would encourage evolution to search for more regular images with constant
color patches, and that this bias would thus improve recognizability, at least in the

22 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

directly encoded images.
First, we evolved images to match the MNIST handwritten digits dataset (LeCun

et al., 1998b). For these experiments, the EA is the default MAP-Elites, as in our previ-
ous experiments, but the DNN is LeNet, which is a commonly used DNN for MNIST
studies (LeCun et al., 1998a). We trained LeNet to successfully classify the 10 digits [0-
9] of the MNIST dataset with an accuracy of 99.06%. Images are 28×28 large, grayscale,
and directly encoded. Specifically, an image is encoded as a vector of integers, each rep-
resenting the 8-bit grayscale value of a pixel. We then used the Innovation Engine to
produce each image u in such a way that simultaneously a) maximizes the DNN confi-
dence score Φ(u), and b) minimizes the total variation penalty TV (u), via the following
fitness function:

F (u) = Φ(u)×
(
α− TV (u)

)
(2)

The multiplicative fitness function here tries to encourage both Φ(u) and
(
α− TV (u)

)
terms to be high. Maximizing the first term means that the target neuron’s activation
should be high. Maximizing the second term means that TV should be minimized. We
empirically chose α = 106 as an upper-bound on total variation to make sure

(
α −

TV (u)
)

is always positive.
Intuitively, the total variation of an image u is the sum of the variations in the color

space between adjacent pixels (Rudin et al., 1992). Specifically, we use a common finite
differences method for calculating the total variation norm (Getreuer, 2012), which is:

TV (u) =
∑
x,y

√(
ux+1,y − ux−1,y

2

)2

+

(
ux,y+1 − ux,y−1

2

)2

(3)

where (x, y) is the location of a pixel in the image. Note that since the variation of a pixel
at (x, y) is measured with respect to two adjacent pixels, the variation is not calculated
for pixels at the edge of an image (i.e. those on the outside border). Removing either
the first or second term within the square root of Eq. 3 allows the smoothing effect to
be applied along only the horizontal or vertical direction, respectively (Figs. 19b, 19c).

A recent study showed that it takes only 100 generations to produce unrecogniz-
able images that the LeNet DNN classifies as digits with 99.99% confidence (Nguyen
et al., 2015a). Here, we ran that experiment 50 times longer to 5000 generations with
and without a penalty for total variation. Without a total variation penalty, these ad-
ditional generations do enable evolution to produce recognizable images, at least for
some classes, although the images contain lots of high-frequency noise static (Fig. 19a).
Adding a total variation penalty to the fitness function generations produced smoother,
more recognizable images with less noise (Figs. 19b, 19c, 19d). While the total varia-
tion prior is thus beneficial, its benefit only shows up after thousands of generations,
making it extremely computationally expensive with only marginal benefit.

We also tested adding a total variation penalty on the challenge of producing im-
ages that resemble ImageNet classes, but it did not qualitatively improve image rec-
ognizability or DNN confidence scores after 20,000 generations (data not shown), al-
though perhaps it would with much more computation than we had available.

When conducting the same experiment on CPPNs instead of directly encoded im-
ages, we found that total variation regularization does not improve the recognizability
of images. An explanation for that is that CPPN-encoded images already tend to be
smooth and regular (Fig. 6), and thus already have low total variation.

Evolutionary Computation Volume 0, Number ja 23



A. Nguyen, J. Yosinski, and J. Clune

(a) Without minimizing total variation

(b) Minimizing horizontal total variation only

(c) Minimizing vertical total variation only

(d) Minimizing both horizontal and vertical total variation

Figure 19: Images evolved after 5000 generations with a direct encoding to match
MNIST digit classes. Total variation regularization helps remove the static noise from
the images, but requires thousands of generations to produce recognizable images. (a)
Evolution is asked to maximize the DNN confidence score only. (b, c, d) Evolution is
asked to both maximize the DNN confidence score, and minimize the total variation
across an image.

All told, the total variation prior may help the directly encoded Innovation En-
gine in the image domain, but not enough to make a large qualitative difference. As
expected, the total variation prior does not help with the already regular indirectly
(CPPN) encoded images. To greatly improve the frequency and quality of the pro-
duction of recognizable images, more research is needed to identify better priors that
penalize non-natural images (Yosinski et al., 2015).

6 Discussion and Conclusion

This paper introduces the concept of the Innovation Engine. It then describes a version
of Innovation Engines that can be created with existing deep learning technology, re-
lying on DNNs trained with supervised learning. It also describes a more ambitious
Innovation Engine that will take advantage of unsupervised learning technology once
it is more mature. Our paper also also offers a first empirical investigation into many
different aspects of Innovation Engines, including why they work and the degree to
which they promote evolvability.

All of the work in this paper is in the domain of generating images. However,
Innovation Engines should theoretically work in any domain, but future work is re-
quired to validate that hypothesis. In a future study, we will create Innovation Engines
in more quantitative domains. For example, we will pair DNNs trained to recognize
different actions in videos (e.g. cartwheels, backflips, handshakes) with evolutionary
algorithms to attempt to automatically create neural network robot controllers for thou-
sands of different robotic behaviors. DNNs already can classify the actions taking place
in videos (Karpathy et al., 2014; Simonyan and Zisserman, 2014; Donahue et al., 2015),

24 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

and EAs can evolve neural networks to produce a variety of robot behaviors (Floreano
and Mattiussi, 2008; Floreano and Keller, 2010; Cully et al., 2015; Clune et al., 2011; Li
et al., 2014; Clune et al., 2009; Lee et al., 2013; Cheney et al., 2013), so we are optimistic
that an Innovation Engine in this domain will be successful. That said, its computa-
tional costs will be substantial, given how expensive it is to both have DNNs evaluate
videos and for EAs to simulate robot behaviors.

Our results have shown that the Innovation Engine concept is worth exploring
further. Specifically, we have supported some of its key assumptions: that evolving
toward many objectives simultaneously approximates divergent search; that DNNs can
provide informative, abstract distance functions in high-dimensional spaces; and that
Innovation Engines can generate a large, diverse, interesting set of solutions in a given
domain (here images). Innovation Engines will only get better as DNNs are improved,
especially when generative DNN models trained with unsupervised learning can scale
to higher dimensions. Ultimately, Innovation Engines could potentially be applied to
the countless number of domains where stochastic optimization is applied. Like human
culture, they could eventually enable endless innovation in any domain, from software
and science to arithmetic proofs and art.

Acknowledgements

We thank Joost Huizinga, Christopher Stanton, Henok Mengistu and Jean-Baptiste
Mouret for useful conversations. Jeff Clune was supported by an NSF CAREER award
(CAREER: 1453549) and a hardware donation from the NVIDIA Corporation and Jason
Yosinski by the NASA Space Technology Research Fellowship and NSF grant 1527232.

References
Auerbach, J. E. (2012). Automated Evolution of Interesting Images. In Artificial Life 13. MIT Press.

Belew, R. K., Belew, R. K., and Vose, M. D. (1995). Foundations of Genetic Algorithms. Morgan
Kaufmann.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning.

Bengio, Y., Thibodeau-Laufer, É., Alain, G., and Yosinski, J. (2014). Deep generative stochastic
networks trainable by backprop. In Proceedings of the International Conference on Machine Learn-
ing, pages 226–234.

Cheney, N., MacCurdy, R., Clune, J., and Lipson, H. (2013). Unshackling evolution: Evolving soft
robots with multiple materials and a powerful generative encoding. In Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, pages 167–174, New
York, NY, USA. ACM.

Clune, J., Beckmann, B. E., Ofria, C., and Pennock, R. T. (2009). Evolving coordinated quadruped
gaits with the hyperneat generative encoding. In Proceedings of the 11th IEEE Congress on Evo-
lutionary Computation, CEC ’09, pages 2764–2771, Piscataway, NJ, USA. IEEE Press.

Clune, J. and Lipson, H. (2011). Evolving 3d objects with a generative encoding inspired by
developmental biology. SIGEVOlution, 5(4):2–12.

Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary origins of modularity. Proceedings
of the Royal Society of London B: Biological Sciences, 280(1755):20122863.

Clune, J., Stanley, K., Pennock, R., and Ofria, C. (2011). On the performance of indirect encoding
across the continuum of regularity. IEEE Transactions on Evolutionary Computation, 15(4):346–
367.

Evolutionary Computation Volume 0, Number ja 25



A. Nguyen, J. Yosinski, and J. Clune

Cuccu, G. and Gomez, F. (2011). When Novelty Is Not Enough, pages 234–243. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can adapt like animals.
Nature, 521(7553):503–507.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), CVPR ’09, pages 248–255. IEEE.

Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K.,
and Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and
description. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), CVPR ’15, pages 427–436. IEEE.

Floreano, D. and Keller, L. (2010). Evolution of adaptive behaviour in robots by means of dar-
winian selection. PLoS Biology, 8(1):1–8.

Floreano, D. and Mattiussi, C. (2008). Bio-inspired artificial intelligence: theories, methods, and tech-
nologies. MIT press.

Fogel, D. B. and Ghozeil, A. (1996). Using fitness distributions to design more efficient evolu-
tionary computations. In Proceedings of the 1996 IEEE International Conference on Evolutionary
Computation, pages 11–19. IEEE.

Getreuer, P. (2012). Rudin-osher-fatemi total variation denoising using split bregman. Image
Processing On Line, 2:74–95.

Grefenstette, J. J. (2014). Predictive models using fitness distributions of genetic operators. Foun-
dations of Genetic Algorithms, 3:139–161.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507.

Hornby, G. S., Lipson, H., and Pollack, J. B. (2003). Generative representations for the automated
design of modular physical robots. IEEE Transactions on Robotics and Automation, 19(4):703–719.

Igel, C. and Chellapilla, K. (1999). Fitness distributions: Tools for designing efficient evolutionary
computations. Advances in genetic programming, 3:191–216.

Igel, C. and Kreutz, M. (1999). Using fitness distributions to improve the evolution of learning
structures. In Proceedings of the 1st IEEE Congress on Evolutionary Computation, volume 3 of CEC
’99, page 1909. IEEE Press.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell,
T. (2014). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the
22Nd ACM International Conference on Multimedia, MM ’14, pages 675–678, New York, NY, USA.
ACM.

Karpathy, A. (2014). What I learned from competing against a convnet on Im-
ageNet. Retrieved from http://karpathy.github.io/2014/09/02/what-i-learned-from-
competing-against-a-convnet-on-imagenet/.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014). Large-
scale video classification with convolutional neural networks. In Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR ’14, pages 1725–1732, Washington,
DC, USA. IEEE.

Kashtan, N. and Alon, U. (2005). Spontaneous evolution of modularity and network motifs.
Proceedings of the National Academy of Sciences of the United States of America, 102(39):13773–
13778.

26 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

Kashtan, N., Noor, E., and Alon, U. (2007). Varying environments can speed up evolution. Pro-
ceedings of the National Academy of Sciences, 104(34):13711–13716.

Kompella, V. R., Stollenga, M., Luciw, M., and Schmidhuber, J. (2015). Continual curiosity-driven
skill acquisition from high-dimensional video inputs for humanoid robots. Artificial Intelli-
gence.

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza, G. (2005). Genetic
programming iv: Routine human-competitive machine intelligence. Genetic Programming and
Evolvable Machines, 6:231–233.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep con-
volutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Asso-
ciates, Inc.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Cortes, C., and Burges, C. J. (1998b). The MNIST database of handwritten digits.
Retrieved from http://yann.lecun.com/exdb/mnist/.

Lee, S., Yosinski, J., Glette, K., Lipson, H., and Clune, J. (2013). Evolving Gaits for Physical Robots
with the HyperNEAT Generative Encoding: The Benefits of Simulation, pages 540–549. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Lehman, J. and Stanley, K. O. (2008). Exploiting open-endedness to solve problems through the
search for novelty. In Proceedings of the Eleventh International Conference on Artificial Life (Alife
XI. MIT Press.

Lehman, J. and Stanley, K. O. (2011a). Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary Computation, 19(2):189–223.

Lehman, J. and Stanley, K. O. (2011b). Novelty search and the problem with objectives. In Genetic
Programming Theory and Practice IX, pages 37–56. Springer.

Leicht, E. A. and Newman, M. E. (2008). Community structure in directed networks. Physical
review letters, 100(11):118703.

Li, J., Storie, J., and Clune, J. (2014). Encouraging creative thinking in robots improves their
ability to solve challenging problems. In Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, GECCO ’14, pages 193–200, New York, NY, USA. ACM.

Liapis, A., Martınez, H. P., Togelius, J., and Yannakakis, G. N. (2013). Transforming exploratory
creativity with delenox. In Proceedings of the Fourth International Conference on Computational
Creativity.

Mouret, J.-B. (2011). Novelty-Based Multiobjectivization, pages 139–154. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909.

Mouret, J.-B. and Doncieux, S. (2010). Sferes v2: Evolvin’in the multi-core world. In Proceedings
of the 12th IEEE Congress on Evolutionary Computation, CEC ’10, pages 1–8. IEEE Press.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and Clune, J. (2016a). Synthesizing the pre-
ferred inputs for neurons in neural networks via deep generator networks. arXiv preprint
arXiv:1605.09304.

Evolutionary Computation Volume 0, Number ja 27



A. Nguyen, J. Yosinski, and J. Clune

Nguyen, A., Yosinski, J., and Clune, J. (2015a). Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), CVPR ’15, pages 427–436. IEEE.

Nguyen, A., Yosinski, J., and Clune, J. (2015b). Innovation engines: Automated creativity and im-
proved stochastic optimization via deep learning. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, GECCO ’15, pages 959–966. ACM.

Nguyen, A., Yosinski, J., and Clune, J. (2016b). Multifaceted feature visualization: Uncovering
the different types of features learned by each neuron in deep neural networks. In Visualization
Workshop, International Conference on Machine Learning (ICML).

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252.

Schmidhuber, J. (2006). Developmental robotics, optimal artificial curiosity, creativity, music, and
the fine arts. Connection Science, 18(2):173–187.

Secretan et al., J. (2011). Picbreeder: A case study in collaborative evolutionary exploration of
design space. Evolutionary Computation, 19(3):373–403.

Simonyan, K. and Zisserman, A. (2014). Two-stream convolutional networks for action recogni-
tion in videos. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q., editors, Advances in Neural Information Processing Systems 27, pages 568–576. Curran As-
sociates, Inc.

Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. (2012). Man vs. computer: Benchmarking
machine learning algorithms for traffic sign recognition. Neural networks, 32:323–332.

Stanley, K., Huizinga, J., and Clune, J. (2016). The emergence of canalization and evolvability in
an open-ended, interactive evolutionary system. In Preparation.

Stanley, K. and Lehman, J. (2015). Why Greatness Cannot Be Planned: The Myth of the Objective.
Springer.

Stanley, K. and Miikkulainen, R. (2002). Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127.

Stanley, K. O. (2007). Compositional pattern producing networks: A novel abstraction of devel-
opment. Genetic Programming and Evolvable Machines, 8(2):131–162.

Stanley, K. O., Clune, J., D’Ambrosio, D. B., Green, C. D., Lehman, J., Morse, G., Pugh, J. K., Risi,
S., and Szerlip, P. (2013). CPPNs effectively encode fracture: A response to critical factors in
the performance of hyperneat. Technical Report CS-TR-13-05, University of Central Florida.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), CVPR ’15, pages 1–9. IEEE.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2014).
Intriguing properties of neural networks. In International Conference on Learning Representations.

Woolley, B. G. and Stanley, K. O. (2011). On the deleterious effects of a priori objectives on evolu-
tion and representation. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’11, pages 957–964, New York, NY, USA. ACM.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H. (2015). Understanding neural net-
works through deep visualization. In Deep Learning Workshop, International Conference on Ma-
chine Learning (ICML).

28 Evolutionary Computation Volume 0, Number ja



Understanding Innovation Engines

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In
Proceedings of the 13th European Conference on Computer Vision (ECCV), pages 818–833, Cham.
Springer International Publishing.

Evolutionary Computation Volume 0, Number ja 29


