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Abstract

With the continuing empirical successes of deep networks, it becomes increas-
ingly important to develop better methods for understanding training of models
and the representations learned within. In this paper we propose Singular Vector
Canonical Correlation Analysis (SVCCA), a tool for quickly comparing two rep-
resentations in a way that is both invariant to affine transform (allowing compar-
ison between different layers and networks) and fast to compute (allowing more
comparisons to be calculated than with previous methods). We deploy this tool
to measure the intrinsic dimensionality of layers, showing in some cases need-
less over-parameterization; to probe learning dynamics throughout training, find-
ing that networks converge to final representations from the bottom up; to show
where class-specific information in networks is formed; and to suggest new train-
ing regimes that simultaneously save computation and overfit less.

1 Introduction

As the empirical success of deep neural networks ([5, 7, 15]) become an indisputable fact, the goal
of better understanding these models escalates in importance. Central to this aim is a core issue
of deciphering learned representations. Facets of this key question have been explored empirically,
particularly for image models, in [1, 2, 8, 10, 11, 12, 13, 16, 17]. Most of these approaches are
motivated by interpretability of learned representations. More recently, [9] studied the similarities
of representations learned by multiple networks by finding permutations of neurons with maximal
correlation.

In this work we introduce a new approach to the study of network representations, based on an
analysis of each neuron’s activation vector – the scalar outputs it emits on input datapoints. With
this interpretation of neurons as vectors (and layers as subspaces, spanned by neurons), we intro-
duce SVCCA, Singular Vector Canonical Correlation Analysis, an amalgamation of Singular Value
Decomposition and Canonical Correlation Analysis [4], as a powerful method for analyzing deep
representations.

The main contributions resulting from the introduction of SVCCA are the following:

1. We ask: is the dimensionality of a layer’s learned representation the same as the number of
neurons in the layer? Answer: No. We show that the trained network performs equally well
with a number of directions just a fraction of the number of neurons with no additional
training, provided they are carefully chosen with SVCCA (Section 2.1). We explore the
consequences for model compression (Section 4.5).

2. We ask: what do deep representation learning dynamics look like? Answer: Networks
broadly converge bottom up. Using SVCCA, we compare layers across time and find they
solidify from the bottom up. This suggests a simple, computationally more efficient method
of training networks, Freeze Training, where lower layers are sequentially frozen after a
certain number of timesteps (Sections 4.1, 4.2).
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Figure 1: To demonstrate SVCCA, we consider a toy regression task (regression target as in Figure 3). (a)
We train two networks with four fully connected hidden layers starting from different random initializations,
and examine the representation learned by the penultimate (shaded) layer in each network. (b) The neurons
with the highest activations in net 1 (maroon) and in net 2 (green). The x-axis indexes over the dataset: in
our formulation, the representation of a neuron is simply its value over a dataset (Section 2). (c) The SVD
directions — i.e. the directions of maximal variance — for each network. (d) The top SVCCA directions. We
see that each pair of maroon/green lines (starting from the top) are almost visually identical (up to a sign). Thus,
although looking at just neurons (b) seems to indicate that the networks learn very different representations,
looking at the SVCCA subspace (d) shows that the information in the representations are (up to a sign) nearly
identical.

3. We develop a method based on the discrete Fourier transform which greatly speeds up the
application of SVCCA to convolutional neural networks (Section 3).

4. We also explore an interpretability question, of when different architectures become sensi-
tive to output classes. Surprisingly, this sensitivity to output is determined by the proportion
of total network depth, not the absolute layer depth (Section 4.4).

Experimental Details Most of our experiments are performed on CIFAR-10 (augmented with
random translations). The main architectures we use are a convolutional network and a residual
network1. To produce a few figures, we also use a toy regression task: training a four hidden layer
fully connected network with 1D input and 4D output, to regress on four different simple functions.

2 Measuring Representations in Neural Networks

Our goal in this paper is to analyze and interpret the representations learned by neural networks. The
critical question from which our investigation departs is: how should we define the representation
of a neuron? Consider that a neuron at a particular layer in a network computes a real-valued
function over the network’s input domain. In other words, if we had a lookup table of all possible
input→ output mappings for a neuron, it would be a complete portrayal of that neuron’s functional
form.

However, such infinite tables are not only practically infeasible, but are also problematic to process
into a set of conclusions. Our primary interest is not in the neuron’s response to random data, but
rather in how it represents features of a specific dataset (e.g. natural images). Therefore, in this
study we take a neuron’s representation to be its set of responses over a finite set of inputs — those
drawn from some training or validation set.

More concretely, for a given dataset X = {x1, · · ·xm} and a neuron i on layer l, zzzli, we define zzzli to
be the vector of outputs on X , i.e.

zzzli = (zzzli(x1), · · · , zzzli(xm))

Note that this is a different vector from the often-considered vector of the “representation at a layer
of a single input.” Here zzzli is a single neuron’s response over the entire dataset, not an entire layer’s

1Convnet layers: conv-conv-bn-pool-conv-conv-conv-bn-pool-fc-bn-fc-bn-out. Resnet layers:
conv-(x10 c/bn/r block)-(x10 c/bn/r block)-(x10 c/bn/r block)-bn-fc-out.
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response for a single input. In this view, a neuron’s representation can be thought of as a single
vector in a high-dimensional space. Broadening our view from a single neuron to the collection of
neurons in a layer, the layer can be thought of as the set of neuron vectors contained within that
layer. This set of vectors will span some subspace. To summarize:

Considered over a dataset X with m examples, a neuron is a vector in Rm.
A layer is the subspace of Rm spanned by its neurons’ vectors.

Within this formalism, we introduce Singular Vector Canonical Correlation Analysis (SVCCA) as
a method for analysing representations. SVCCA proceeds as follows:

• Input: SVCCA takes as input two (not necessarily different) sets of neurons (typically
layers of a network) l1 = {zzzl11 , ..., zzzl1m1

} and l2 = {zzzl21 , ..., zzzl2m2
}

• Step 1 First SVCCA performs a singular value decomposition of each subspace to get sub-
subspaces l′1 ⊂ l1, l

′
2 ⊂ l2 which comprise of the most important directions of the original

subspaces l1, l2. In general we take enough directions to explain 99% of variance in the
subspace. This is especially important in neural network representations, where as we will
show many low variance directions (neurons) are primarily noise.

• Step 2 Second, compute the Canonical Correlation similarity ([4]) of l′1, l
′
2: linearly trans-

form l′1, l
′
2 to be as aligned as possible and compute correlation coefficients. In particu-

lar, given the output of step 1, l′1 = {zzz′l11 , ..., zzz′
l1
m′1
}, l′2 = {zzz′l21 , ..., zzz′

l2
m′2
}, CCA linearly

transforms these subspaces l̃1 = WX l
′
1, l̃2 = WY l

′
2 such as to maximize the correlations

corrs = {ρ1, . . . ρmin(m′1,m
′
2)
} between the transformed subspaces.

• Output: With these steps, SVCCA outputs pairs of aligned directions, (z̃zzl1i , z̃zz
l2
i ) and how

well they correlate, ρi. Step 1 also produces intermediate output in the form of the top
singular values and directions.

For a more detailed description of each step, see the Appendix. SVCCA can be used to analyse
any two sets of neurons. In our experiments, we utilize this flexibility to compare representations
across different random initializations, architectures, timesteps during training, and specific classes
and layers.

Figure 1 shows a simple, intuitive demonstration of SVCCA. We train a small network on a toy
regression task and show each step of SVCCA, along with the resulting very similar representations.
SVCCA is able to find hidden similarities in the representations.

2.1 Distributed Representations

An important property of SVCCA is that it is truly a subspace method: both SVD and CCA work
with span(zzz1, . . . , zzzm) instead of being axis aligned to the zzzi directions. SVD finds singular vectors
zzz′i =

∑m
j=1 sijzzzj , and the subsequent CCA finds a linear transform W , giving orthogonal canon-

ically correlated directions {z̃zz1, . . . , z̃zzm} = {
∑m
j=1 w1jzzz

′
j , . . . ,

∑m
j=1 wmjzzz

′
j}. In other words,

SVCCA has no preference for representations that are neuron (axes) aligned.

If representations are distributed across many dimensions, then this is a desirable property of a
representation analysis method. Previous studies have reported that representations may be more
complex than either fully distributed or axis-aligned [14, 18, 9] but this question remains open.

We use SVCCA as a tool to probe the nature of representations via two experiments:

(a) We find that the subspace directions found by SVCCA are disproportionately important to
the representation learned by a layer, relative to neuron-aligned directions.

(b) We show that at least some of these directions are distributed across many neurons.

Experiments for (a), (b) are shown in Figure 2 as (a), (b) respectively. For both experiments, we first
acquire two different representations, l1, l2, for a layer l by training two different random initializa-
tions of a convolutional network on CIFAR-10. We then apply SVCCA to l1 and l2 to get directions
{z̃zzl11 , ..., z̃zz

l1
m} and {z̃zzl21 , ..., z̃zz

l2
m}, ordered according to importance by SVCCA, with each z̃zzlij being a

linear combination of the original neurons, i.e. z̃zzlij =
∑m
r=1 α

(li)
jr zzz

li
r .
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Figure 2: Demonstration of (a) disproportionate importance of SVCCA directions, and (b) distributed nature
of some of these directions. For both panes, we first find the top k SVCCA directions by training two conv nets
on CIFAR-10 and comparing corresponding layers. (a) We project the output of the top three layers, pool1, fc1,
fc2, onto this top-k subspace. We see accuracy rises rapidly with increasing k, with even k � num neurons
giving reasonable performance, with no retraining. Baselines of random k neuron subspaces and max activation
neurons require larger k to perform as well. (b): after projecting onto top k subspace (like left), dotted lines
then project again onto m neurons, chosen to correspond highly to the top k-SVCCA subspace. Many more
neurons are needed than k for better performance, suggesting distributedness of SVCCA directions.

For different values of k < m, we can then restrict layer li’s output to lie in the subspace of
span(z̃zzli1 , . . . , z̃zz

li
k ), the most useful k-dimensional subspace as found by SVCCA, done by projecting

each neuron into this k dimensional space.

We find — somewhat surprisingly — that very few SVCCA directions are required for the network
to perform the task well. As shown in Figure 2(a), for a network trained on CIFAR-10, the first
25 dimensions provide nearly the same accuracy as using all 512 dimensions of a fully connected
layer with 512 neurons. The accuracy curve rises rapidly with the first few SVCCA directions, and
plateaus quickly afterwards, for k � m. This suggests that the useful information contained in m
neurons is well summarized by the subspace formed by the top k SVCCA directions. Two base-
lines for comparison are picking random and maximum activation neuron aligned subspaces and
projecting outputs onto these. Both of these baselines require far more directions (in this case: neu-
rons) before matching the accuracy achieved by the SVCCA directions. These results also suggest
approaches to model compression, which are explored in more detail in Section 4.5.

Figure 2(b) next demonstrates that these useful SVCCA directions are at least somewhat distributed
over neurons rather than axis-aligned. First, the top k SVCCA directions are picked and the rep-
resentation is projected onto this subspace. Next, the representation is further projected onto m
neurons, where the m are chosen as those most important to the SVCCA directions . The resulting
accuracy is plotted for different choices of k (given by x-axis) and different choices of m (different
lines). That, for example, keeping even 100 fc1 neurons (dashed green line) cannot maintain the
accuracy of the first 20 SVCCA directions (solid green line at x-axis 20) suggests that those 20
SVCCA directions are distributed across 5 or more neurons each, on average. Figure 3 shows a
further demonstration of the effect on the output of projecting onto top SVCCA directions, here for
the toy regression case.

Why the two step SV + CCA method is needed. Both SVD and CCA have important properties
for analysing network representations and SVCCA consequently benefits greatly from being a two
step method. CCA is invariant to affine transformations, enabling comparisons without natural
alignment (e.g. different architectures, Section 4.3). See Appendix 7 for proofs and a demonstrative
figure. While CCA is a powerful method, it also suffers from certain shortcomings, particularly in
determining how many directions were important to the original space X , which is the strength of
SVD. See Appendix for an example where naive CCA performs badly. Both the SVD and CCA
steps are critical to the analysis of learning dynamics in Section 4.1.
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Figure 3: The effect on the output of a latent representation being projected onto top SVCCA directions in
the toy regression task. Representations of the penultimate layer are projected onto 2, 6, 15, 30 top SVCCA
directions (from second pane). By 30, the output looks very similar to the full 200 neuron output (left).

3 Scaling SVCCA for Convolutional Layers

Applying SVCCA to convolutional layers can be done in two natural ways:

(1) Same layer comparisons: If X,Y are the same layer (at different timesteps or across ran-
dom initializations) receiving the same input we can concatenate along the pixel (height h,
width w) coordinates to form a vector: a conv layer h × w × c maps to c vectors, each
of dimension hwd, where d is the number of datapoints. This is a natural choice because
neurons at different pixel coordinates see different image data patches to each other. When
X,Y are two versions of the same layer, these c different views correspond perfectly.

(2) Different layer comparisons: WhenX,Y are not the same layer, the image patches seen by
different neurons have no natural correspondence. But we can flatten an h×w×c conv into
hwc neurons, each of dimension d. This approach is valid for convs in different networks
or at different depths.

3.1 Scaling SVCCA with Discrete Fourier Transforms

Applying SVCCA to convolutions introduces a computational challenge: the number of neurons
(h×w×c) in convolutional layers, especially early ones, is very large, making SVCCA prohibitively
expensive due to the large matrices involved. Luckily the problem of approximate dimensionality
reduction of large matrices is well studied, and efficient algorithms exist, e.g. [3].

For convolutional layers however, we can avoid dimensionality reduction and perform exact
SVCCA, even for large networks. This is achieved by preprocessing each channel with a Discrete
Fourier Transform (which preserves CCA due to invariances, see Appendix), causing all (covari-
ance) matrices to be block-diagonal. This allows all matrix operations to be performed block by
block, and only over the diagonal blocks, vastly reducing computation. We show:

Theorem 1. Suppose we have a translation invariant (image) dataset X and convolutional layers
l1, l2. Letting DFT (li) denote the discrete fourier transform applied to each channel of li, the
covariance cov(DFT (l1), DFT (l2)) is block diagonal, with blocks of size c× c.

We make only two assumptions: 1) all layers below l1, l2 are either conv or pooling layers (transla-
tion equivariance) 2) The dataset X has all translations of the images Xi. This is necessary in the
proof for certain symmetries in neuron activations, but these symmetries typically exist in natural
images even without translation invariance, as shown in Figure 9 in the Appendix. Below are key
statements, with proofs in Appendix.

Definition 1. Say a single channel image dataset X of images is translation invariant if for any
(wlog n× n) image Xi ∈ X , with pixel values {zzz11, ...zzznn}, X(a,b)

i = {zzzσa(1)σb(1), ...zzzσa(n)σb(n)}
is also in X , for all 0 ≤ a, b ≤ n− 1, where σa(i) = a+ i mod n (and similarly for b).

For a multiple channel imageXi, an (a, b) translation is an (a, b) height/width shift on every channel
separately. X is then translation invariant as above.

To prove Theorem 1, we first show another theorem:

Theorem 2. Given a translation invariant dataset X , and a convolutional layer l with channels
{c1, . . . ck} applied to X

5



(a) the DFT of ci, FcFT has diagonal covariance matrix (with itself).
(b) the DFT of ci, cj , FciFT , FcjFT have diagonal covariance with each other.

Finally, both of these theorems rely on properties of circulant matrices and their DFTs:
Lemma 1. The covariance matrix of ci applied to translation invariant X is circulant and block
circulant.
Lemma 2. The DFT of a circulant matrix is diagonal.

4 Applications of SVCCA

4.1 Learning Dynamics with SVCCA

We can use SVCCA as a window into learning dynamics by comparing the representation at a
layer at different points during training to its final representation. Furthermore, as the SVCCA
computations are relatively cheap to compute compared to methods that require training an auxiliary
network for each comparison [1, 8, 9], we can compare all layers during training at all timesteps to
all layers at the final time step, producing a rich view into the learning process.

The outputs of SVCCA are the aligned directions (x̃i, ỹi), how well they align, ρi, as well as in-
termediate output from the first step, of singular values and directions, λ(i)X , x′

(i), λ(j)Y , y′
(j). We

condense these outputs into a single value, the SVCCA similarity ρ̄, that encapsulates how well the
representations of two layers are aligned with each other,

ρ̄ =
1

min (m1,m2)

∑
i

ρi, (1)

where min (m1,m2) is the size of the smaller of the two layers being compared. The SVCCA
similarity ρ̄ is the average correlation across aligned directions, and is a direct multidimensional
analogue of Pearson correlation.

The SVCCA similarity for all pairs of layers, and all time steps, is shown in Figure 4 for a convnet
and a resnet architecture trained on CIFAR10.

4.2 Freeze Training

Observing in Figure 4 that networks broadly converge from the bottom up, we propose a training
method where we successively freeze lower layers during training, only updating higher and higher
layers, saving all computation needed for deriving gradients and updating in lower layers.

We apply this method to convolutional and residual networks trained on CIFAR-10, Figure 5, using
a linear freezing regime: in the convolutional network, each layer is frozen at a fraction (layer num-
ber/total layers) of total training time, while for resnets, each residual block is frozen at a fraction
(block number/total blocks). The vertical grey dotted lines show which steps have another set of lay-
ers frozen. Aside from saving computation, Freeze Training appears to actively help generalization
accuracy, like early stopping but with different layers requiring different stopping points.

4.3 Cross Model Comparison

SVCCA similarity can also be used to compare the similarity of representations across different
random initializations, and even different architectures. We compare convolutional networks on
CIFAR-10 across random initializations (Appendix) and also a convolutional network to a residual
network (Figure 6 right pane), which supports the surprising theory that learned representations are
determined by the proportion of computation performed so far.

4.4 Interpreting Representations: when are classes learned?

We also can use SVCCA to compare how correlated representations in each layer are with the logits
of each class in order to measure how knowledge about the target evolves throughout the network.
In Figure 6 we plot the SVCCA coefficient between the each layer representation and the output
logit for each class for both a convolutional neural network and a resnet (there is only one such
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Figure 4: Learning dynamics plots for conv (top) and res (middle) nets trained on CIFAR-10. Each pane is
a matrix of size layers × layers, with each entry showing the SVCCA similarity ρ̄ between the two layers.
Note that learning broadly happens ‘bottom up’ – layers closer to the input seem to solidify into their final
representations with the exception of the very top layers. This is also seen in the line plot (bottom), which plots
the SVCCA similarity of each layer with its final representation, as a function of training step, for both the
conv (left pane) and res (right pane) nets. Other patterns are also visible – batch norm layers maintain nearly
perfect similarity to the layer preceding them due to scaling invariance (with a slight reduction since batch norm
changes the SVD directions which capture 99% of the variance). In the resnet plot, we see a stripe like pattern
due to skip connections inducing high similarities to previous layers.

coefficient because the output logit is one dimensional). Although the resnet has 3x layers, the
amount of knowledge about the target seems to depend linearly on the ratio of layer depth to total
depth of the network, rather than how many layers have been applied, supported also by the right
pane, where we see that lower convnet layers have similarity to higher resnet layers.

4.5 Model Compression
In Figure 3, we saw that projecting onto the subspace of the top few SVCCA directions resulted in
comparable accuracy. This observations motivates an approach to model compression. In particular,
letting the output vector of layer l be xxx(l) ∈ Rn×1, and the weights W (l), we replace the usual
W (l)xxx(l) with (W (l)PTx )(Pxxxx

(l)) where Px is a k × n projection matrix, projecting xxx onto the top
SVCCA directions. This bottleneck reduces both parameter count and inference computational cost
for the layer by a factor ∼ k

n . In Figure 7,we show that we can consecutively compress top layers
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(which indicate the timestep at which another layer is frozen), both networks have a ‘linear’ freezing regime:
for the convolutional network, we freeze individual layers at evenly spaced timesteps throughout training. For
the residual network, we freeze entire residual blocks at each freeze step. The curves were averaged over ten
runs.
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Figure 6: Left and center: Plotting the SVCCA coefficient between the representation in each layer with the
output logit of a single class, for a subset of the classes in CIFAR-10. Surprisingly, we see that the amount of
correlation with the output depends the proportion of the way through the network the input has been processed,
and not the number of layers. We also see for both a convolutional neural network, and a resnet that the classes
are learned at similar rates to each other. Right: We plot the SVCCA similarity measure for different layers
between the convolutional and resnet architecture and observe that the largest similarities between the learned
representations exist between layers at similar proportions between input and output.

with SVCCA by a significant amount (in one case reducing each layer to 0.35 original size) and
hardly affect performance.

5 Conclusion

In this paper we present SVCCA, a general method which allows for comparison of the learned dis-
tributed representations between different neural network layers and architectures. Using SVCCA
we obtain novel insights into the learning dynamics and learned representations of common neural
network architectures. These insights motivated a new Freeze Training technique which can reduce
the number of flops required to train networks and potentially even increase generalization perfor-
mance. They also motivate a new algorithm for model compression. Finally, we observe somewhat
surprisingly that networks represent information about output targets roughly linearly proportional
to their depth in the network.
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Appendix
6 Mathematical details of CCA and SVCCA

Canonical Correlation of X,Y Finding maximal correlations between X,Y can be expressed as
finding a, b to maximise:

aTΣXY b√
aTΣXXa

√
bTΣY Y b

where ΣXX ,ΣXY ,ΣY X ,ΣY Y are the covariance and cross-covariance terms. By performing the
change of basis x̃̃x̃x1 = Σ

1/2
xx a and ỹ̃ỹy1 = Σ

1/2
Y Y b and using Cauchy-Schwarz we recover an eigenvalue

problem:

x̃̃x̃x1 = argmax

[
xTΣ

−1/2
XX ΣXY Σ−1Y Y ΣY XΣ

−1/2
XX x

||x||

]
(*)

SVCCA Given two subspaces X = {xxx1, ...,xxxm1
}, Y = {yyy1, ..., yyym2

}, SVCCA first performs a
singular value decomposition on X,Y . This results in singular vectors {x′x′x′1, ...,x′x′x′m1

} with associ-
ated singular values {λ1, ..., λm1

} (for X , and similarly for Y ). Of these m1 singular vectors, we
keep the top m′1 where m′1 is the smallest value that

∑m′1
i=1 |λi|(≥ 0.99

∑m1

i=1 |λi|). That is, 99% of
the variation of X is explainable by the top m′1 vectors. This helps remove directions/neurons that
are constant zero, or noise with small magnitude.

Then, we apply Canonical Correlation Analysis (CCA) to the sets {x′x′x′1, ...,x′x′x′m′1}, {y
′y′y′1, ..., y

′y′y′m′2} of
top singular vectors.

CCA is a well established statistical method for understanding the similarity of two different sets
of random variables – given our two sets of vectors {x′x′x′1, ...,x′x′x′m′1}, {y

′y′y′1, ..., y
′y′y′m′2}, we wish to find

linear transformations, WX ,WY that maximally correlate the subspaces. This can be reduced to
an eigenvalue problem. Solving this results in linearly transformed subspaces X̃, Ỹ with directions
x̃xxi, ỹyyi that are maximally correlated with each other, and orthogonal to x̃xxj , ỹyyj , j < i. We let ρi =
corr(x̃xxi, ỹyyi). In summary, we have:

SVCCA Summary

1. Input: X,Y
2. Perform: SVD(X), SVD(Y). Output: X ′ = UX, Y ′ = V Y

3. Perform CCA(X ′, Y ′). Output: X̃ = WXX
′, Ỹ = WY Y

′ and corrs =
{ρ1, . . . ρmin(m1,m2)}

7 Additional Proofs and Figures from Section 2.1

Proof of Orthonormal and Scaling Invariance of CCA:

We can see this using equation (*) as follows: suppose U, V are orthonormal transforms applied to
the sets X,Y . Then it follows that ΣaXX becomes UΣaXXU

T , for a = {1,−1, 1/2,−1/2}, and
similarly for Y and V . Also note ΣXY becomes UΣXY V

T . Equation (*) then becomes

x̃1 = argmax

[
xTUΣ

−1/2
XX ΣXY Σ−1Y Y ΣY XΣ

−1/2
XX UTx

||x||

]
So if ũ is a solution to equation (*), then Uũ is a solution to the equation above, which results in the
same correlation coefficients.

7.0.1 The importance of SVD: how many directions matter?

While CCA is excellent at identifying useful learned directions that correlate, independent of certain
common transforms, it doesn’t capture the full picture entirely. Consider the following setting:
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Figure 8: This figure shows the ability of CCA to deal with orthogonal and scaling transforms. In
the first pane, the maroon plot shows one of the highest activation neurons in the penultimate layer
of a network trained on CIFAR-10, with the x-axis being (ordered) image ids and the y-axis being
activation on that image. The green plots show two resulting distorted directions after this and two
of the other top activation neurons are permuted, rotated and scaled. Pane two shows the result of
applying CCA to the distorted directions and the original signal, which succeeds in recovering the
original signal.

suppose we have subspaces A,B,C, with A being 50 dimensions, B being 200 dimensions, 50 of
which are perfectly aligned with A and the other 150 being noise, and C being 200 dimensions, 50
of which are aligned with A (and B) and the other 150 being useful, but different directions.

Then looking at the canonical correlation coefficients of (A,B) and (A,C) will give the same result,
both being 1 for 50 values and 0 for everything else. But these are two very different cases – the
subspaceB is indeed well represented by the 50 directions that are aligned withA. But the subspace
C has 150 more useful directions.

This distinction becomes particularly important when aggregating canonical correlation coefficients
as a measure of similarity, as used in analysing network learning dynamics. However, by first ap-
plying SVD to determine the number of directions needed to explain 99% of the observed variance,
we can distinguish between pathological cases like the one above.

8 Proof of Theorem 1

Here we provide the proofs for Lemma 1, Lemma 2, Theorem 2 and finally Theorem 1.

A preliminary note before we begin:

When we consider a (wlog) n by n channel c of a convolutional layer, we assume it has shape


zzz0,0 zzz1,2 . . . zzz0,n−1
zzz1,0 zzz2,2 . . . zzz1,n−1

...
...

. . .
...

zzzn−1,0 zzzn−1,1 . . . zzzn−1,n−1
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(a) (b) (c) (d)

Figure 9: This figure visualizes the covariance matrix of one of the channels of a resnet trained
on Imagenet. Black correspond to large values and white to small values. (a) we compute the
covariance without a translation invariant dataset and without first preprocessing the images by DFT.
We see that the covariance matrix is dense. (b) We compute the covariance after applying DFT, but
without augmenting the dataset with translations. Even without enforcing translation invariance, we
see that the covariance in the DFT basis is approximately diagonal. (c) Same as (a), but the dataset
is augmented to be fully translation invariant. The covariance in the pixel basis is still dense. (d)
Same as (c), but with dataset augmented to be translation invariant. The covariance matrix is exactly
diagonal for a translation invariant dataset in a DFT basis.

When computing the covariance matrix however, we vectorize c by stacking the columns under each
other, and call the result vec(c):

vec(c) =



zzz0,0
zzz1,0

...
zzzn−1,0
zzz0,1

...
zzzn−1,n−1


:=



zzz0
zzz1
...

zzzn−1
zzzn
...

zzzn2−1


One useful identity when switching between these two notations (see e.g. [6]) is

vec(AcB) = (BT ⊗A)vec(c)

where A,B are matrices and ⊗ is the Kronecker product. A useful observation arising from this is:

Lemma 3. The CCA vectors of DFT (ci), DFT (cj) are the same (up to a rotation by F ) as the
CCA of ci, cj .

Proof: From Section 7 we know that unitary transforms only rotate the CCA directions. But while
DFT pre and postmultiplies by F, FT – unitary matrices, we cannot directly apply this as the result
is for unitary transforms on vec(ci). But, using the identity above, we see that vec(DFT (ci)) =
vec(FciF

T ) = (F ⊗ F )vec(ci), which is unitary as F is unitary. Applying the same identity to cj ,
we can thus conclude that the DFT preserves CCA (up to rotations).

As Theorem 1 preprocesses the neurons with DFT, it is important to note that by the Lemma above,
we do not change the CCA vectors (except by a rotation).

8.1 Proof of Lemma 1

Proof. Translation invariance is preserved We show inductively that any translation invariant input
to a convolutional channel results in a translation invariant output: Suppose the input to channel c,
(n by n) is translation invariant. It is sufficient to show that for inputs Xi, Xj and 0 ≤ a, b,≤ n− 1,
c(Xi) + (a, b) mod n = c(Xj). But an (a, b) shift in neuron coordinates in c corresponds to a
(height stride · a,width stride · b) shift in the input. And as X is translation invariant, there is some
Xj = Xi + (height stride · a,width stride · b).

cov(c) is circulant:
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LetX be (by proof above) a translation invariant input to a channel c in some convolution or pooling
layer. The empirical covariance, cov(c) is the n2 by n2 matrix computed by (assuming c is centered)

1

|X|
∑
Xi∈X

vec(c(Xi)) · vec(c(Xi))
T

So, cov(c)ij = 1
|X|zzz

T
i zzzj = 1

|X|
∑
Xl∈X zzz

T
i (Xl)zzzj(Xl), i.e. the inner products of the neurons i and

j.

The indexes i and j refer to the neurons in their vectorized order in vec(c). But in the matrix ordering
of neurons in c, i and j correspond to some (a1, b1) and (a2, b2). If we applied a translation (a, b),
to both, we would get new neuron coordinates (a1 + a, b1 + b), (a2 + a, b2 + b) (all coordinates
mod n) which would correspond to i+ an+ b mod n2 and j + an+ b mod n2, by our stacking
of columns and reindexing.

Let τa,b be the translation in inputs corresponding to an (a, b) translation in c, i.e. τa,b =
(height stride·a,width stride·b). Then clearly zzz(a1,b1)(Xi) = zzz(a1+a,b1+b)(τ(a,b)(Xi), and similarly
for zzz(a2,b2)

It follows that 1
|X|zzz

T
(a1,b1)

zzz(a2,b2) = 1
|X|zzz

T
(a1+b,b1+b)

zzz(a2+a,b2+b), or, with vec(c) indexing

1

|X|
zzzTi zzzj =

1

|X|
zzzT(i+an+b mod n2)zzz(j+an+b mod n2)

This gives us the circulant structure of cov(c).

cov(c) is block circulant: Let zzz(i) be the ith column of c, and zzz(j) the jth. In vec(c), these correspond
to zzz(i−1)n, . . . zzzin−1 and zzz(j−1)n, . . . zzzjn−1, and the n by n submatrix at those row and column in-
dexes of cov(vec(c)) corresponds to the covariance of column i, j. But then we see that the covari-
ance of columns i+k, j+k, corresponding to the covariance of neurons zzz(i−1)n+k·n, . . . zzzin−1+k·n,
and zzz(j−1)n+k·n, . . . zzzjn−1+k·n, which corresponds to the 2-d shift (1, 0), applied to every neuron.
So by an identical argument to above, we see that for all 0 ≤ k ≤ n− 1

cov(zzz(i), zzz(j)) = cov(zzz(i+k), zzz(j+k))

In particular, cov(vec(c)) is block circulant.

An example cov(vec(c)) with c being 3 by 3 look like below:

[
A0 A1 A2

A2 A0 A1

A1 A2 A0

]
where each Ai is itself a circulant matrix.

8.2 Proof of Lemma 2

Proof. This is a standard result, following from expressing a circulant matrix A in terms of its
diagonal form , i.e. A = V ΣV T with the columns of V being its eigenvectors. Noting that V = F ,
the DFT matrix, and that vectors of powers of ωk = exp( 2πik

n ), ωj = exp( 2πik
n ) are orthogonal

gives the result.

8.3 Proof of Theorem 2

Proof. Starting with (a), we need to show that cov(vec(DFT (ci)), vec(DFT (ci)) is diagonal. But
by the identity above, this becomes:

cov(vec(DFT (ci)), vec(DFT (ci)) = (F ⊗ F )vec(ci)vec(ci)
T (F ⊗ F )∗

14



By Lemma 1, we see that

cov(vec(ci)) = vec(ci)vec(ci)
T =


A0 A1 . . . An−1
An−1 A0 . . . An−2

...
...

. . .
...

A1 A2 . . . A0


with each Ai circulant.

And so cov(vec(DFT (ci)), vec(DFT (ci)) becomes
f00F f01F . . . f0,n−1F
f10F f11F . . . f1,n−1F

...
...

. . .
...

fn−1,0F fn−1,1F . . . fn−1,n−1F



A0 A1 . . . An−1
An−1 A0 . . . An−2

...
...

. . .
...

A1 A2 . . . A0




f∗00F
∗ f∗10F

∗ . . . f∗n−1,0F
∗

f∗01F
∗ f∗11F

∗ . . . f∗n−1,1F
∗

...
...

. . .
...

f∗0,n−1F
∗ f∗1,n−1F

∗ . . . f∗n−1,n−1F
∗


From this, we see that the sjth entry has the form

n−1∑
l=0

(
n−1∑
k=0

fskFAl−k

)
f∗ljF

∗ =
∑
k,l

fskf
∗
ljFAl−kF

∗

Letting [FArF
∗] denote the coefficient of the term FArF

∗, we see that (addition being mod n)

[FArF
∗] =

n−1∑
k=0

fskf
∗
(k+r)j =

∑
k

e
2πisk
n · e

−2πij(k+r)
n = e

−2πijr
n

n−1∑
k=0

e
2πik(s−j)

n = e
−2πijr
n · δsj

with the last step following by the fact that the sum of powers of non trivial roots of unity are 0.

In particular, we see that only the diagonal entries (of the n by n matrix of matrices) are non zero.
The diagonal elements are linear combinations of terms of form FArF

∗, and by Lemma 2 these are
diagonal. So the covariance of the DFT is diagonal as desired.

Part (b) follows almost identically to part (a), but by first noting that exactly by the proof of Lemma
1, cov(ci, cj) is also a circulant and block circulant matrix.

8.4 Proof of Theorem 1

Proof. This Theorem now follows easily from the previous. Suppose we have a layer l, with chan-
nels c1, ..., ck. And let vec(DFT (ci)) have directions z̃zz(i)0 , · · · z̃zz(i)n2−1. By the previous theorem, we

know that the covariance of all of these neurons only has non-zero terms cov(z̃zz
(i)
k , z̃zz

(j)
k .

So arranging the full covariance matrix to have row and column indexes being
z̃zz
(1)
0 , z̃zz

(1)
0 , . . . z̃zz

(k)
0 , z̃zz

(1)
1 . . . z̃zz

(k)
n2 the nonzero terms all live in the n2 k by k blocks down the

diagonal of the matrix, proving the theorem.

8.5 Computational Gains

As the covariance matrix is block diagonal, our more efficient algorithm for computation is as fol-
lows: take the DFT of every channel (n log n due to FFT) and then compute covariances according
to blocks: partition the kn directions into the n2 k by k matrices that are non-zero, and compute the
covariance, inverses and square roots along these.

A rough computational budget for the covariance is therefore kn log n + n2k2.5, while the naive
computation would be of order (kn2)2.5, a polynomial difference. Furthermore, the DFT method
also makes for easy parallelization as each of the n2 blocks does not interact with any of the others.

9 Additional Figure from Section 4.3

Figure 10 compares the converged representations of two different initializations of the same con-
volutional network on CIFAR-10.
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Figure 10: Comparing the converged representations of two different initializations of the same
convolutional architecture. The results support findings in [10], where initial and final layers are
found to be similar, with middle layers differing in representation similarity.
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