
Metropolis-Hastings Generative Adversarial Networks

Ryan Turner 1 Jane Hung 1 Eric Frank 1 Yunus Saatci 1 Jason Yosinski 1

Abstract
We introduce the Metropolis-Hastings generative
adversarial network (MH-GAN), which combines
aspects of Markov chain Monte Carlo and GANs.
The MH-GAN draws samples from the distribu-
tion implicitly defined by a GAN’s discriminator-
generator pair, as opposed to standard GANs
which draw samples from the distribution defined
only by the generator. It uses the discriminator
from GAN training to build a wrapper around
the generator for improved sampling. With a per-
fect discriminator, this wrapped generator sam-
ples from the true distribution on the data exactly
even when the generator is imperfect. We demon-
strate the benefits of the improved generator on
multiple benchmark datasets, including CIFAR-
10 and CelebA, using the DCGAN, WGAN, and
progressive GAN.

1. Introduction
Traditionally, density estimation is done with a model that
can compute the data likelihood. Generative adversarial net-
works (GANs) (Goodfellow et al., 2014) present a radically
new way to do density estimation: They implicitly represent
the density of the data via a classifier that distinguishes real
from generated data.

GANs iterate between updating a discriminator D and a
generator G, where G generates new (synthetic) samples
of data, and D attempts to distinguish samples of G from
the real data. In the typical setup, D is thrown away at the
end of training, and only G is kept for generating new syn-
thetic data points. In this work, we propose the Metropolis-
Hastings GAN (MH-GAN), a GAN that constructs a new
generator G′ that “wraps” G using the information con-
tained in D. This principle is illustrated in Figure 1.1

1Uber AI Labs. Correspondence to: Ryan Turner
<ryan.turner@uber.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1Code found at:
github.com/uber-research/metropolis-hastings-gans

The MH-GAN uses Markov chain Monte Carlo (MCMC)
methods to sample from the distribution implicitly defined
by the discriminator D learned for the generator G. This
is built upon the notion that the discriminator classifies
between the generator G and a data distribution:

D(x) =
pD(x)

pD(x) + pG(x)
, (1)

where pG is the (intractable) density of samples from the
generator G, and pD is the data density implied by the dis-
criminator D with respect to G. If GAN training reaches its
global optimum, then this discriminator distribution pD is
equal to the data distribution and the generator distribution
(pD = pdata = pG) (Goodfellow et al., 2014). Furthermore,
if the discriminator D is optimal for a fixed imperfect gen-
erator, G then the implied distribution still equals the data
distribution (pD = pdata 6= pG).

We use an MCMC independence sampler (Tierney, 1994) to
sample from pD by taking multiple samples from G. Amaz-
ingly, using our algorithm, one can show that given a perfect
discriminator D and a decent (but imperfect) generator G,
one can obtain exact samples from the true data distribution
pdata. Standard MCMC implementations require (unnormal-
ized) densities for the target pD and the proposal pG, which
are both unavailable for GANs. However, the Metropolis-
Hastings (MH) algorithm requires only the ratio:

pD(x)

pG(x)
=

D(x)

1−D(x)
, (2)

which we can obtain using only evaluation of D(x).

Sampling from an MH-GAN is more computationally ex-
pensive than a standard GAN, but the bigger and more
relevant training compute cost remains unchanged. Thus,
the MH-GAN is best suited for applications where sample
quality is more important than compute speed at test time.

The outline of this paper is as follows: Section 2 reviews
diverse areas of relevant prior work. In Sections 3.1 and 3.2
we explain the necessary background on MCMC methods
and GANs. We explain our methodology of combining
these two seemingly disparate areas in Section 4 where
we derive the wrapped generator G′. Results on real data
(CIFAR-10 and CelebA) and extending common GAN mod-
els (DCGAN, WGAN, and progressive GAN) are shown in
Section 5. Section 6 discusses implications and conclusions.

ar
X

iv
:1

81
1.

11
35

7v
2

 [
st

at
.M

L
]

 1
7

M
ay

 2
01

9

github.com/uber-research/metropolis-hastings-gans

Metropolis-Hastings Generative Adversarial Networks

(a) GAN value function (b) G′ wraps G

Figure 1. (a) We diagram how training of D and G in GANs performs coordinate descent on the joint minimax value function, shown in
the solid black arrow. If GAN training produces a perfect D for an imperfect G, the MH-GAN wraps G to produce a perfect generator
G′, as shown in the final dashed arrow. The generator G moves vertically towards the orange region while the discriminator D moves
horizontally towards the purple. (b) We illustrate how the MH-GAN is essentially a selector from multiple draws of G. In the MH-GAN,
the selector is built using a Metropolis-Hastings (MH) acceptance rule from the discriminator scores D.

2. Related Work
A few other works combine GANs and MCMC in some
way. Song et al. (2017) use a GAN-like procedure to train a
RealNVP (Dinh et al., 2016) MCMC proposal for sampling
an externally provided target p?. Whereas Song et al. (2017)
use GANs to accelerate MCMC, we use MCMC to enhance
the samples from a GAN. Similar to Song et al. (2017),
Kempinska & Shawe-Taylor (2017) improve proposals in
particle filters rather than MCMC. Song et al. (2017) was
recently generalized by Neklyudov et al. (2018).

2.1. Discriminator Rejection Sampling

A concurrent work with similar aims from Azadi et al.
(2018) proposes discriminator rejection sampling (DRS)
for GANs, which performs rejection sampling on the out-
puts of G by using the probabilities given by D. While
conceptually appealing at first, DRS suffers from two ma-
jor shortcomings in practice. First, it is necessary to find
an upper-bound on D over all possible samples in order
to obtain a valid proposal distribution for rejection sam-
pling. Because this is not possible, one must instead rely on
estimating this bound by drawing many pilot samples. Sec-
ondly, even if one were to find a good bound, the acceptance
rate would become very low due to the high-dimensionality
of the sampling space. This leads Azadi et al. (2018) to
use an extra γ heuristic to shift the logit D scores, making
the model sample from a distribution different from pdata
even when D is perfect. We use MCMC instead, which was
invented precisely as a replacement for rejection sampling
in higher dimensions. We further improve the robustness of
MCMC via use of a calibrator on the discriminator to get
more accurate probabilities for computing acceptance.

3. Background and Notation
In this section, we briefly review the notation and equations
with MCMC and GANs.

3.1. MCMC Methods

MCMC methods attempt to draw a chain of samples x1:K ∈
XK that marginally come from a target distribution p?. We
refer to the initial distribution as p0 and the proposal for
the independence sampler as x′ ∼ q(x′|xk) = q(x′). The
proposal x′ ∈ X is accepted with probability

α(x′,xk) = min

(
1,
p?(x′)q(xk)

p?(xk)q(x′)

)
∈ [0, 1] . (3)

If x′ is accepted, xk+1 = x′, otherwise xk+1 = xk. Note
that when estimating the distribution p?, one must include
the duplicates that are a result of rejections in x′.

Independent samples Many evaluation metrics assume
perfectly iid samples. Although MCMC methods are typi-
cally used to produce correlated samples, we can produce
iid samples by using one chain per sample: Each chain sam-
ples x0 ∼ p0 and then does K MH iterations to get xK as
the output of the chain, which is the output of G′. Using
multiple chains is also better for GPU parallelization.

Detailed balance The detailed balance condition implies
that if xk ∼ p? exactly then xk+1 ∼ p? exactly as well.
Even if xk is not exactly distributed according to p?, the
Kullback-Leibler (KL) divergence between the implied den-
sity it is drawn from and p? always decreases as k in-
creases (Murray & Salakhutdinov, 2008). We use detailed
balance to motivate our approach to MH-GAN initialization.

Metropolis-Hastings Generative Adversarial Networks

3.2. GANs

GANs implicitly model the data x via a synthetic data gen-
erator G ∈ Rd → X :

x = G(z) , z ∼ N (0, Id) . (4)

This implies a (intractable) distribution on the data x ∼ pG.
We refer to the unknown true distribution on the data x as
pdata. The discriminator D ∈ X → [0, 1] is a soft classifier
predicting if a data point is real as opposed to being sampled
from pG.

If D converges optimally for a fixed G, then
D = pdata/(pdata + pG), and if both D and G con-
verge then pG = pdata (Goodfellow et al., 2014). GAN
training forms a game between D and G. In practice D
is often better at estimating the density ratio than G is at
generating high-fidelity samples (Shibuya, 2017). This
motivates wrapping an imperfect G to obtain an improved
G′ by using the density ratio information contained in D.

4. Methods
In this section we show how to sample from the distribution
pD implied by the discriminator D. We apply (2) and (3)
for a target of p? = pD and proposal q = pG:

pD
pG

=
1

D−1 − 1
(5)

=⇒ α(x′,xk) = min

(
1,
D(xk)

−1 − 1

D(x′)−1 − 1

)
. (6)

The ratio pD/pG is computed entirely from the discrimina-
tor scores D. If D is perfect, pD = pdata, so the sampler
will marginally sample from pdata. The use of (6) is further
illustrated in Algorithm 1.

A toy one-dimensional example with just such a perfect
discriminator is shown in Figure 2. In this example the MH-
GAN is able to correctly reconstruct a missing mode in the
generating distribution from the tail of a faulty generator.

Calibration The probabilities for D must not merely pro-
vide a good AUC score, but must also be well calibrated.
In other words, if one were to warp the probabilities of the
perfect discriminator in (1) it may still suffice for standard
GAN training, but it will not work in the MCMC procedure
defined in (6), as it will result in erroneous density ratios.

We can demonstrate the miscalibration of D using the statis-
tic of Dawid (1997) on held out samples x1:N and real/fake
labels y1:N ∈ {0, 1}N . If D is well calibrated, i.e., y is
indistinguishable from a y ∼ Bern(D(x)), then

Z =

∑N
i=1 yi −D(xi)√∑N

i=1D(xi)(1−D(xi))
=⇒ Z ∼ N (0, 1) . (7)

That is, we expect the Z diagnostic to be a Gaussian in
large N for any well-calibrated classifier. This means that
for large values of Z, such as when |Z| > 2, we reject the
hypothesis that D is well-calibrated.

Correcting Calibration While (7) may tell us a classi-
fier is poorly calibrated, we also need to be able to fix it.
Furthermore, some GANs (like WGAN) require calibration
because their discriminator only outputs a score and not a
probability. To correct an uncalibrated classifier, denoted
D̃ ∈ X → R, we use a held out calibration set (e.g., 10% of
the training data) and either logistic, isotonic, or beta (Kull
et al., 2017) regression to warp the output of D̃. The held
out calibration set contains an equal number of positive and
negative examples, which in the case of GANs is an even
mix of real samples and fake samples from G. After D̃ is
learned, we train a probabilistic classifier C ∈ R → [0, 1]
to map D̃(xi) to yi using the calibration set. The calibrated
classifier is built via D(xi) = C(D̃(xi)).

Initialization We also avoid the burn-in issues that usu-
ally plague MCMC methods. Recall that via the detailed
balance property (Gilks et al., 1996, Ch. 1), if the marginal
distribution of a Markov chain state x ∈ X at time step
k matches the target pD (xk ∼ pD), then the marginal at
time step k + 1 will also follow pD (xk+1 ∼ pD). In most
MCMC applications it is not possible to get an initial sample
from the target distribution (x0 ∼ pD).

However, for MH-GAN, we have access to real data from
the target distribution. By initializing the chain at a sample
of real data (the correct distribution), we apply the detailed
balance property and avoid burn-in. If no generated sample
is accepted by the end of the chain, we restart sampling from
a synthetic sample to ensure the initial real sample is never
output. To make restarts rare, we set K large (often 640).

Using a restart after an MCMC chain of only rejects has a
theoretical potential for bias. However, MCMC in practice
often uses chain diagnostics as a stopping criterion, which
suffers the same bias potential (Cowles et al., 1999). Alter-
natively, we could never restart and always report the state
after K samples, which will occasionally include the ini-
tial real sample. This might be a better approach in certain
statistical problems, where we care more about eliminating
any potential source of bias, than in image generation.

Perfect Discriminator The assumption of a perfect D
may be weakened for two reasons: (A) Because we re-
calibrate the discriminator, the actual probabilities can be
incorrect as long as the decision boundary between real and
fake is correct. (B) Because the discriminator is only ever
evaluated at samples from G or the initial real sample x0, D
only needs to be accurate on the manifold of samples from
the generator pG and the real data pdata.

Metropolis-Hastings Generative Adversarial Networks

Figure 2. Illustration comparing the MH-GAN setup with the formulation of DRS on a univariate example. This figure uses a pdata of four
Gaussian mixtures while pG is missing one of the mixtures. The top row shows the resulting density of samples, while the bottom row
shows the typical number of rejects before accepting a sample at that x value. The MH-GAN recovers the true density except in the far
right tail where there is an exponentially small chance of getting a sample from the proposal pG. DRS with γ = 0 shift should also be
able to recover the density exactly, but it has an even larger error in the right tail. These errors arise because DRS must approximate the
max D score and use only 10,000 pilot samples to do so, as in Azadi et al. (2018). Additionally, due to the large maximum D, it needs a
large number of draws before a single accept. DRS with γ shift is much more sample efficient, but completely misses the right mode as
the setup invalidates the rejection sampling equations. The MH-GAN is more adaptive in that it quickly accepts samples for the areas pG
models well; more MCMC rejections occur before accepting a sample in the right poorly modeled mode. In all cases the MH-GAN is
more efficient than DRS without γ shift. Presumably, this effect becomes greater in high dimensions.

E
po

ch
 3

0
E

po
ch

 1
50

GAN DRS MH-GAN

Data

Figure 3. The 25 Gaussians example. We show the state of the generators at epoch 30 (when MH-GAN begins showing large gains) on
the top row and epoch 150 (the final epoch) on the bottom row. The MH-GAN corrects areas of mis-assigned mass in the original GAN.
DRS appears visually closer to the original GAN than the data, whereas the MH-GAN appears closer to the actual data.

Metropolis-Hastings Generative Adversarial Networks

Algorithm 1 MH-GAN

Input: generator G, calibrated disc. D, real samples
Assign random real sample x0 to x
for k = 1 to K do

Draw x′ from G
Draw U from Uniform(0, 1)
if U ≤ (D(x)−1 − 1)/(D(x′)−1 − 1) then
x← x′

end if
end for
If x is still real sample x0 restart with draw from G as x0

Output: sample x from G′

5. Results
We first show an illustrative synthetic mixture model exam-
ple followed by real data with images.

5.1. Mixture of 25 Gaussians

We consider the 5× 5 grid of two-dimensional Gaussians
used in Azadi et al. (2018), which has become a popular toy
example in the GAN literature (Dumoulin et al., 2016). The
means are arranged on the grid µ ∈ {−2,−1, 0, 1, 2} and
use a standard deviation of σ = 0.05.

Experimental setup Following Azadi et al. (2018), we
use four fully connected layers with ReLU activations for
both the generator and discriminator. The final output layer
of the discriminator is a sigmoid, and no nonlinearity is
applied to the final generator layer. All hidden layers have
size 100, with a latent z ∈ R2. We used 64,000 standardized
training points and generated 10,000 points in test.

Visual results In Figure 3, we show the original data
along with samples generated by the GAN. We also show
samples enhanced via the MH-GAN (with calibration) and
with DRS. The standard GAN creates spurious links along
the grid lines between modes and misses some modes along
the bottom row. DRS is able to reduce some of the spuri-
ous links but not fill in the missing modes. The MH-GAN
further reduces the spurious links and recovers these under-
estimated modes.

Quantitative results These results are made more quanti-
tative in Figure 4, where we follow some of the metrics for
the example from Azadi et al. (2018). We consider the stan-
dard deviations within each mode in Figure 4a and the rate of
“high quality” samples in Figure 4b. A sample is assigned to
a mode if its L2 distance is within four standard deviations
(≤ 4σ = 0.2) of its mean. Samples within four standard
deviations of any mixture component are considered “high
quality”. The within standard deviation plot (Figure 4a)

shows a slight improvement for MH-GAN, and the high
quality sample rate (Figure 4b) approaches 100% faster for
the MH-GAN than the GAN or DRS.

To test the spread of the distribution, we inspect the categor-
ical distribution of the closest mode. Far away (non-high
quality) samples are assigned to a 26th unassigned category.
This categorical distribution should be uniform over the
25 real modes for a perfect generator. To assess generator
quality, we look at the Jensen-Shannon divergence (JSD)
between the sample mode distribution and a uniform distri-
bution. This is a much more stringent test of appropriate
spread of probability mass than checking if a single sample
is produced near a mode (as in Azadi et al. (2018)).

In Figure 4c, we see that the MH-GAN improves the JSD
over DRS by 5× on average, meaning it achieves a much
more balanced spread across modes. DRS fails to make
gains after epoch 30. Using the principled approach of
the MH-GAN along with calibrated probabilities ensures a
correct spread of probability mass.

5.2. Real Data

For real data experiments we considered the CelebA (Liu
et al., 2015) and CIFAR-10 (Torralba et al., 2008) data
sets modeled using the DCGAN (Radford et al., 2015) and
WGAN (Arjovsky et al., 2017; Gulrajani et al., 2017). To
evaluate the generator G′, we plot Inception scores (Sali-
mans et al., 2016) per epoch in Figure 5a after k = 640
MCMC iterations. Figure 5b shows Inception score per
MCMC iteration: most gains are made in the first k = 100
iterations, but gains continue to k = 400. This shows that
the MH-GAN allows a tunable trade-off between sample
quality and computation cost.

In Table 1, we summarize performance (Inception score)
across all experiments, running MCMC to k = 640 itera-
tions in all cases. Behavior is qualitatively similar to that
in Figure 5a. While DRS improves on a direct GAN, MH-
GAN improves Inception score more in every case. Calibra-
tion helps in every case; and we found a slight advantage
for isotonic regression over other calibration methods. Re-
sults are computed at epoch 60, and as in Figure 5a, error
bars and p-values are computed using a paired t-test across
Inception score batches. All results are significantly better
than the baseline GAN at p < 0.05.

Score distribution In Figure 5c, we show what G′ does
to the distribution on discriminator scores. MCMC shifts
the distribution of the fakes to match the distribution on true
images. We also observed that the MH acceptance rate is
primarily determined by the overlap of the distributions on
D scores between real and fake samples. If the AUC of D is
less than 0.90 we see acceptance rates over 20%; but when
the AUC of D is 0.95, acceptance rates drop to 10%.

Metropolis-Hastings Generative Adversarial Networks

(a) mode std. dev. (b) high quality rate (c) Jensen-Shannon divergence

Figure 4. Results of the MH-GAN experiments on the mixture of 25 Gaussians example. (a) On the left, we show the standard deviation
of samples within a single mode. The black lines represent values for the true distribution. (b) In the center, we show the high quality rate
(samples near a real mode) across different GAN setups. (c) On the right, we show the Jensen-Shannon divergence (JSD) between the
distribution on the nearest mode vs a uniform, which is the generating distribution on mixture components. The MH-GAN shows, on
average, a 5× improvement in JSD over DRS. We considered adding error bars to these plots via a bootstrap analysis, but the error bars
are too small to be visible.

(a) performance by epoch (b) performance by MCMC iteration (c) epoch 13 scores

Figure 5. Results of the MH-GAN experiments on CIFAR-10 using the DCGAN. (a) On the left, we show the Inception score vs. training
epoch of the DCGAN with k = 640 MH iterations. MH-GAN denotes using the raw discriminator scores and MH-GAN (cal) for the
calibrated scores. The error bars on MH-GAN performance (in gray) are computed using a t-test on the variation per batch across 80 splits
of the Inception score. (b) In the center we show the Inception score vs. number of MCMC iterations k for the GAN at epoch 15. (c) On
the right, we show the scores at epoch 13 where there is some overlap between the scores of fake and real images. When there is overlap,
the MH-GAN corrects the pG distribution to have scores looking similar to the real data. DRS fails to fully shift the distribution because
1) it does not use calibration and 2) its “γ shift” setup violates the validity of rejection sampling.

Table 1. Results showing Inception score improvements from MH-GAN on DCGAN and WGAN at epoch 60. Like Figure 5a, the error
bars and p-values are computed using a paired t-test across Inception score batches (higher is better). All results except for DCGAN
on CelebA are significant at p < 10−4. WGAN does not learn a typical GAN discriminator that outputs a probability, so calibration is
actually required in this case.

DCGAN WGAN

CIFAR-10 p CelebA p CIFAR-10 p CelebA p

GAN 2.8789 – 2.3317 – 3.0734 – 2.7876 –
DRS 2.977(77) 0.0131 2.511(50) <0.0001
DRS (cal) 3.073(80) <0.0001 2.869(67) <0.0001 3.137(64) 0.0497 2.861(66) 0.0277
MH-GAN 3.113(69) <0.0001 2.682(50) <0.0001
MH-GAN (cal) 3.379(66) <0.0001 3.106(64) <0.0001 3.305(83) <0.0001 2.889(89) 0.0266

Metropolis-Hastings Generative Adversarial Networks

(a) CIFAR-10 (b) CelebA

Figure 6. We show the calibration statistic Z (7) for the discriminator on held out data for the DCGAN. The results for CIFAR-10 are
shown on the left (a), and CelebA on the right (b). The raw discriminator is clearly miscalibrated being far outside the region expected
by chance (dashed black), and after multiple comparison correction (dotted black). All the calibration methods give roughly equivalent
results. CelebA has a period of training instability during epochs 30–50 which gives trivially calibrated classifiers.

Calibration results Figure 6 shows the results per epoch
for both CIFAR-10 and CelebA. It shows that the raw dis-
criminator is highly miscalibrated, but can be fixed with any
of the calibration methods. The Z statistic for the raw dis-
criminator D (DCGAN on CIFAR-10) varies from −77.57
to 48.98 in the first 60 epochs; even after Bonferroni correc-
tion at N=60, we expect |Z| < 3.35 with 95% confidence
for a calibrated classifier. The calibrated discriminator varies
from−2.91 to 3.60, showing almost perfect calibration. Ac-
cordingly, it is unsurprising that the calibrated discriminator
significantly boosts performance in the MH-GAN.

Visual results We show example images from the CIFAR-
10 and CelebA setups in the Appendix A (Figures 11–12).
The selectors (such as MH-GAN) result in a wider spread of
probability mass across background colors. For CIFAR-10,
it enhances modes with animal-like outlines and vehicles.

5.3. Progressive GAN

To further illustrate the power of the MH-GAN approach we
consider the progressive GAN (PGAN) (Karras et al., 2017),
which recently produced shockingly realistic images. We
applied the MH-GAN to a PGAN using the same setup as
with DCGAN, at k = 800. We used the pre-trained network
of Karras et al. (2017) on CelebA-HQ (1024×1024). Large
batches of samples are in Appendix A (Figures 7–10).

In Table 2, we use the PGAN as our base GAN and generate
random samples from the base, as well as from the addition

of DRS and MH-GAN selectors. The different selectors
(DRS and MH-GAN) are run on the same batches of im-
ages, so the same images may appear for both generators.
Although the PGAN sometimes produces near photoreal-
istic images, it also produces many flawed nightmare like
images. To assess image quality, five human labelers manu-
ally labeled images as warped or acceptable. Table 2 shows
that MH-GAN selects significantly fewer warped images.

Both DRS and MH-GAN show an ability to select just the
realistic images. The MH-GAN samples are nearly perfect,
while DRS still has many flawed samples.

6. Conclusions
We have shown how to incorporate the knowledge in the
discriminatorD into an improved generatorG′. Our method
is based on the premise that D is better at density ratio
estimation than G is at sampling data, which may be a
harder task. The principled MCMC setup selects among
samples from G to correct biases in G. This is the only
method in the literature which has the property that given a
perfect D one can recover G such that pG = pdata.

We have shown the raw discriminators in GANs and DRS
are poorly calibrated. To our knowledge, this is the first work
to evaluate the discriminator in this way and to rigorously
show the poor calibration of the discriminator. Because the
MH-GAN algorithm may be used to wrap any other GAN,
there are countless possible use cases.

Metropolis-Hastings Generative Adversarial Networks

Table 2. We show 16 random samples from the PGAN, calibrated (improved) DRS, and MH-GAN, from the same sequence of G samples.
There are 5 cases where the PGAN produces bad warpings (red) while the MH-GAN does not, and 0 cases where the MH-GAN does and
the PGAN does not; for DRS, there are 7 where only DRS is warped, and 1 where only MH-GAN is warped. Even with 16 samples, the
MH-GAN is better under a one-sided pairwise trinomial test (Coakley & Heise, 1996) at p = 0.017 vs DRS and p = 0.013 vs PGAN.

PGAN (base) PGAN with DRS (cal) PGAN with MH-GAN (cal)

Metropolis-Hastings Generative Adversarial Networks

Acknowledgements
We thank Rosanne Liu and Zoubin Ghahramani for useful
discussions and comments.

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein

generative adversarial networks. In Proceedings of the In-
ternational Conference on Machine Learning, volume 70,
pp. 214–223, 2017.

Azadi, S., Olsson, C., Darrell, T., Goodfellow, I., and Odena,
A. Discriminator rejection sampling. arXiv preprint
arXiv:1810.06758, 2018.

Coakley, C. W. and Heise, M. A. Versions of the sign test in
the presence of ties. Biometrics, 52(4):1242–1251, 1996.

Cowles, M. K., Roberts, G. O., and Rosenthal, J. S. Possi-
ble biases induced by MCMC convergence diagnostics.
Journal of Statistical Computation and Simulation, 64(1):
87–104, 1999.

Dawid, A. P. Prequential analysis. Encyclopedia of Statisti-
cal Sciences, 1:464–470, 1997.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using real NVP. arXiv preprint arXiv:1605.08803,
2016.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O.,
Lamb, A., Arjovsky, M., and Courville, A. Adversari-
ally learned inference. arXiv preprint arXiv:1606.00704,
2016.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. Intro-
ducing Markov chain Monte Carlo. Markov Chain Monte
Carlo in Practice, 1:19, 1996.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Proceedings of Ad-
vances in Neural Information Processing Systems, pp.
2672–2680. Curran Associates, Inc., 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. Improved training of Wasserstein GANs.
arXiv preprint arXiv:1704.00028v3, 2017.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive
growing of GANs for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196, 2017.

Kempinska, K. and Shawe-Taylor, J. Adversarial sequen-
tial Monte Carlo. In Bayesian Deep Learning (NIPS
Workshop), 2017.

Kull, M., Filho, T. S., and Flach, P. Beta calibration: A
well-founded and easily implemented improvement on
logistic calibration for binary classifiers. In Proceedings
of the International Conference on Artificial Intelligence
and Statistics, volume 54, pp. 623–631, 2017.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 3730–
3738, 2015.

Murray, I. and Salakhutdinov, R. Notes on the KL-
divergence between a Markov chain and its equilibrium
distribution. 2008.

Neklyudov, K., Shvechikov, P., and Vetrov, D. Metropolis-
Hastings view on variational inference and adversarial
training. arXiv preprint arXiv:1810.07151, 2018.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., Chen, X., and Chen, X. Improved techniques
for training GANs. In Proceedings of Advances in Neural
Information Processing Systems, pp. 2234–2242. Curran
Associates, Inc., 2016.

Shibuya, N. Understanding generative adversarial net-
works. https://towardsdatascience.com/
understanding-generative-adversarial-
networks-4dafc963f2ef, 2017.

Song, J., Zhao, S., and Ermon, S. A-NICE-MC: Adversar-
ial training for MCMC. In Proceedings of Advances in
Neural Information Processing Systems, pp. 5140–5150.
Curran Associates, Inc., 2017.

Sugiyama, M., Suzuki, T., and Kanamori, T. Density Ratio
Estimation in Machine Learning. Cambridge University
Press, 2012.

Tierney, L. Markov chains for exploring posterior distribu-
tions. The Annals of Statistics, 22(4):1701–1728, 1994.

Torralba, A., Fergus, R., and Freeman, W. T. 80 million
tiny images: A large data set for nonparametric object
and scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(11):1958–1970,
2008.

https://towardsdatascience.com/understanding-generative-adversarial-networks-4dafc963f2ef
https://towardsdatascience.com/understanding-generative-adversarial-networks-4dafc963f2ef
https://towardsdatascience.com/understanding-generative-adversarial-networks-4dafc963f2ef

Metropolis-Hastings Generative Adversarial Networks

A. Supplementary Material
In this section we present some of the samples from the
various GAN setups in full page figures below.

We also note that the GAN approach to density estimation
is complementary to the earlier density ratio estimation ap-
proach (Sugiyama et al., 2012). In density ratio estimation,
the generator G is fixed, and the density is found by com-
bining Bayes’ rule and the learned classifier D. In GANs,
the key is learning G well; while in density ratio estimation,
the key is learning D well. The MH-GAN has flavors of
both in that it uses both G and D to build G′.

Metropolis-Hastings Generative Adversarial Networks

Figure 7. Set of 64 random samples from the (base) PGAN.

Figure 8. Flawed examples from the PGAN. Such a degree of non-realism is rarer in the DRS samples (Figure 9) and nearly absent in the
MH-GAN samples (Figure 10).

Metropolis-Hastings Generative Adversarial Networks

Figure 9. Set of 64 random samples from the calibrated DRS setup.

Metropolis-Hastings Generative Adversarial Networks

Figure 10. Set of 64 random samples from the calibrated MH-GAN.

Metropolis-Hastings Generative Adversarial Networks

(a) GAN (b) DRS

(c) MH-GAN (d) MH-GAN (cal)

Figure 11. Example images on CIFAR-10 for different GAN setups. The different selectors (MH-GAN and DRS) are run on the same
batch of images. Meaning, the same images may appear for both generators. The calibrated MH-GAN shows a greater preference for
animal-like images with four legs.

Metropolis-Hastings Generative Adversarial Networks

(a) GAN (b) DRS

(c) MH-GAN (d) MH-GAN (cal)

Figure 12. Example images on CelebA for different GAN setups. Like Figure 11, the same batch of images goes into each selector.

