
Visually Debugging Restricted Boltzmann Machine Training
with a 3D Example

Jason Yosinski yosinski@cs.cornell.edu
Hod Lipson hod.lipson@cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY, USA

Abstract

Restricted Boltzmann Machines (RBMs) are
being applied to a growing number of prob-
lems with great success. In the process of
training an RBM one must pick a number of
parameters, but often these parameters are
brittle and produce poor performance when
slightly off. Here we describe several use-
ful visualizations to assist in choosing ap-
propriate values for these parameters. We
also demonstrate a successful application of
an RBM to a unique domain: learning a rep-
resentation of synthetic 3D shapes.

1. Introduction

Restricted Boltzmann Machines (RBMs) have enjoyed
recent success in learning features in a number of do-
mains (Hinton & Salakhutdinov, 2006; Bengio et al.,
2007; Lee et al., 2008; Ngiam et al., 2011). How-
ever, successfully training a Restricted Boltzmann Ma-
chines (RBM) is far from a straightforward proposi-
tion. There are many tuning parameters that must be
carefully chosen. Results are sensitive to these param-
eters, and picking them correctly is often difficult.

With this in mind, we describe several visualizations
that we have found helpful in tuning the requisite pa-
rameters. Many are adapted from the very useful pa-
per “A practical guide to training restricted boltzmann
machines” (Hinton, 2010).

This guide is aimed toward a novice trainer of RBMs
who wishes to spend as little time in the trenches as
possible. To this end we give concrete examples of how

Presented at the Representation Learning Workshop, 29 th

International Conference on Machine Learning, Edin-
burgh, Scotland, UK, 2012. Copyright 2012 by the au-
thor(s)/owner(s).

to implement the plots in the form of code snippets in
both Python and Octave / Matlab.

For the remainder of the paper, we assume the RBM is
trained using mini-batch based gradient descent using
the Contrastive Divergence algorithm (Hinton, 2002).

2. Debugging RBMs

The four presented plots are arranged in roughly the
order they should be used. Undesired behavior in ear-
lier plots will produce further undesired behavior in
later plots. Thus, debugging should be focused on the
first plot showing unexpected behavior. Some of the
code is loosely based on the Theano RBM tutorials
(Bergstra et al., 2010).

2.1. Code setup

The following imports and initializations are assumed:

Python:

from numpy import tanh, fabs, mean, ones
from PIL import Image
from matplotlib.pyplot import hist, title, subplot
def sigmoid(xx):

return .5 * (1 + tanh(xx / 2.))

Octave / Matlab:

sigmoid = inline(’.5 * (1 + tanh(z / 2.))’);

2.2. Probability of hidden activation

For a given input example, each hidden binary neuron
has a probability of turning on. This probability is
deterministic (involves no sampling noise) and is, for
obvious reasons, always in [0,1]. Thus, in order to see
how the hidden neurons are being used, how often they
are likely to be on vs. off, and whether they are cor-
related, we plot this probability of activation for each
hidden neuron for each example input within a mini-
batch. These probabilities can be effectively visualized

Visually Debugging Restricted Boltzmann Machine Training with a 3D Example

as grayscale values of an image where each row con-
tains the hidden neuron activation probabilities for a
single example, and each column contains the proba-
bilities for a given neuron across examples. Figure 1
shows this plot.

100 hidden neurons along columns

20
 e

xa
m

pl
es

 a
lo

ng
 r

ow
s

Figure 1. Hidden neuron activation probabilities for the
first 100 neurons (of 1,000) and the first 20 example data
points (of 50,000), where black represents p = 0 and white,
p = 1. Each row shows different neurons’ activations for
a given input example, and each column shows a given
neuron’s activations across many examples. Top: correct
dithered gray before training begins. Values are mostly
in [.4, .6]. Middle: Values pegged to black or white after
one mini-batch. Decrease initial W values or learning rate.
Bottom: the learning has converged well after 45 epochs of
training.

Make sure to manually set the intensity limits to [0,1]
rather than using any autoscale feature (e.g. do not
use Matlab’s imagesc with the default autoscaling be-
havior).

Given a mini-batch of training examples in X (dimen-
sion 20 x 1000), the following code produces the plots
in Figure 1.

Python:

hMean = sigmoid(dot(X, rbm.W) + rbm.hBias)
image = Image.fromarray(hMean * 256).show()

Octave / Matlab:

hMean = sigmoid(X*W + repmat(hBias, 20, 1));
imagesc(hMean, [0, 1]);
colormap(’gray’); axis(’equal’);

Before any training, the probability plot should be
mostly a flat gray, perhaps with a little visible noise.
That is, most hidden probabilities should be around
.5, with some as low as .4 or as high as .6. If the plot
is all black (near 0) or all white (near 1), the weights

W or the hidden biases hBias were initialized incor-
rectly. The weights W should initially be random and
centered at 0, and hBias should be 0, or at least cen-
tered at 0. If the probability plot contains both pixels
pegged to black and pixels pegged to white, then the
W has been initialized with values too large. Intu-
itively, the problem with this case is that all hidden
neurons have already determined what features they
are looking for before seeing any of the data.

So first initialize the W and hBias such that this plot
shows gray before training. It is useful to look at this
plot each epoch for the same mini-batch, so one can see
how the neuron activations evolve. If we view proba-
bility plots for a given mini-batch over time in quick
succession (like a video), we can see the effect of train-
ing. Once training begins, generally the neurons’ ac-
tivations diverge from gray and converge toward their
final shades over the course of only several epochs.

Surprisingly, while the activations converge nearly to
their final values after only a few epochs, it is often
an order of magnitude longer (say, 20 or 30 epochs)
before the reconstruction error decreases. Apparently
the neurons decide on their preferred stimulus easily,
but then further fine tuning takes much longer.

Occasionally, if the learning rate is too high, the
probabilities for a given mini-batch will not converge
smoothly. The video view of the probability plot (or
the filter plots below) shows this clearly as a flickering
that persists for many epochs. The solution is to use
a lower learning rate. If the rate is already so low that
learning takes a long time, consider a smaller (simpler)
input vector (e.g. for images use a smaller patch size).

2.3. Weight Histograms

In addition to the hidden probability plots above,
which show the combined effects of W and hBias to
produce hidden probabilities, it is often useful to look
at the values of vBias, W , and hBias on aggregate.
Figure 2 shows a set of useful plots: the top three show
a histogram of values in vBias, W , and hBias, respec-
tively, and the bottom three plots show histograms of
the most recent (mini-batch) updates to the vBias,
W , and hBias values. For a quick sanity check with-
out requiring the user to interpret the axis scales, we
also show in the title the mean absolute magnitude of
the values in each histogram.

Python:

def plotit(values):
hist(values);
title(’mm = %g’ % mean(fabs(values)))

subplot(231); plotit(rbm.vBias)

Visually Debugging Restricted Boltzmann Machine Training with a 3D Example

Figure 2. Histograms of hBias, W , vBias (top row) and
the last batch updates to each (bottom row). The mean
absolute magnitude of the values is shown above each plot.

subplot(232); plotit(rbm.W.flatten()
subplot(232); plotit(rbm.hBias)
subplot(232); plotit(rbm.dvBias)
subplot(232); plotit(rbm.dW.flatten())
subplot(232); plotit(rbm.dhBias)

Octave / Matlab:

function plotit(values)
hist(values(:));
title(sprintf(’mm = %g’, ...

mean(mean(abs(values)))));
end
subplot(231); plotit(vBias);
subplot(232); plotit(W);
subplot(233); plotit(hBias);
subplot(234); plotit(dvBias);
subplot(235); plotit(dW);
subplot(236); plotit(dhBias);

Under normal, desired conditions in the middle of
training, all histograms should look roughly Gaussian
in shape, and the mean magnitudes of each of the lower
three plots should be smaller than its corresponding
upper plot by a factor of 102 to 104. If the change
in weights is too small (i.e. a separation of more than
104), then the learning rate can probably be increased.
If the change in weights is too large, the learning may
explode and the weights diverge to infinity.

Note: occasionally the values of the weights may bi-
furcate into two separate, Gaussian shaped clusters in
the middle of training. If one cluster starts to move
off to infinity, the learning rate should be decreased

to avoid divergence. However, we sometimes observed
the weights to bifurcate into two clusters and then, 2-
10 epochs later, to reconverge. We are not sure why
this happens, but it seems to have no adverse effect.

Bifurcation notwithstanding, any time than any of the
weights, even a small tail, drift off to infinity, the learn-
ing should be slowed down or stopped sooner.

2.4. Filters

Once the probability image and weight histograms are
behaving satisfactorily, we plot the learned filter for
each hidden neuron, one per column of W . Each filter
is of the same dimension as the input data, and it is
most useful to visualize the filters in the same way
as the input data is visualized. In the cases of image
patches, we show each filter as an image patch, or in
this paper’s example, we show the filters as 3D shapes
Figure 5. Because readers are far more likely to train
on images than 3D voxel data, in Figure 3 we show a
2D slice of our learned 3D filters and give code for the
construction of this plot as if image data were used.

It is worth noting that filters may or may not be sparse.
If filters are sparse, they will respond to very local
features. Dense filters, on the other hand, respond to
stimuli across the entire filter. Although the two types
of filter are qualitatively different, we have observed
cases in which both types are successful in learning
the underlying density; that is, both types of filter are
able to generate reasonable synthetic data using Gibbs
sampling.

Python:

Initialize background to dark gray
tiled = ones((11*10, 11*10), dtype=’uint8’) * 51

for row in xrange(nRows):
for col in xrange(nCols):
patch = X[row*nCols + col].reshape((10,10))
normPatch = ((patch - patch.min()) /

(patch.max()-patch.min()+1e-6))
tiled[row*11:row*11+10, col*11:col*11+10] = \

normPatch * 255
Image.fromarray(tiled).show()

Octave / Matlab:

tiled = ones(11*nRows, 11*nCols) * .2
dark gray borders
for row = 1:nRows
for col = 1:nCols
patch = W(:,(row-1)*nCols+col);
normPatch = (patch - min(patch)) / ...

(max(patch)-min(patch)+1e-6);
tiled((row-1)*11+1:(row-1)*11+10, ...

(col-1)*11+1:(col-1)*11+10) = ...

Visually Debugging Restricted Boltzmann Machine Training with a 3D Example

Figure 3. A 2D slice of the filters learned by an RBM for 3D
shapes data. Each 10x10 tile shows a single layer (2D) slice
of the preferred 3D stimulus for a single hidden neuron.
The values within each tile have been normalized to be in
[0, 1] for ease of visualization. White regions are areas that
the neuron prefers to be filled with voxels, and black areas
are not preferred. Top: before learning, filters are random.
Bottom: after 45 epochs of learning, filters are strongly
locally correlated.

reshape(normPatch, 10, 10);
end

end
imagesc(tiled, [0, 1]);
colormap(’gray’); axis(’equal’);

The above code works for the first layer in a Deep Be-
lief Network (DBN) composed of several stacked layers
of RBMs. Filters in layers beyond the first represent
distributions over hidden neurons, not visible neurons,
so visualization is more difficult. These higher level fil-
ters can still be visualized by plotting the visible pat-
tern that would maximally activate the higher level
neuron, but the connection is less direct.

2.5. Reconstruction error

Plotting the reconstruction error over time is also help-
ful. It should decrease, often after an initial plateau.
If the training diverges, the reconstruction error will
increase dramatically. Often we have obtained good
results when the reconstruction error drops from its
initial higher value to a lower plateau about halfway
through training. This plot and code are fairly simple
and are omitted for space.

2.6. Typical Training Timeline

In Table 1 we present an example timeline of events
that occur during RBM training. This is meant to il-
lustrate the important milestones in training and to
provide a single example of the relative timing of no-
table events. It is not intended to provide a tem-
plate which much be matched exactly, or even approx-
imately.

Epoch Event
0 Hidden probability plot gray, values .4 to .6
1 Hidden probability plot shows some pattern

2-4 Probability plot showing final pattern
which may not significantly change for
rest of training

0-45 Filters smoothly resolve over entire period
0-20 Reconstruction error decreases slowly
20-25 Reconstruction error decreases quickly
25-45 Reconstruction error decreases slowly

Table 1. A typical training timeline.

Visually Debugging Restricted Boltzmann Machine Training with a 3D Example

3. Example Problem and Results: 3D
Spheres

We now consider an illustrative example of learning
a feature representation for a class of synthetic 3D
shapes. The 3D shape data was generated in the fol-
lowing manner. First, we define a 10 x 10 x 10 cube
containing 1000 voxels. We then choose an x, y, and z
location for the center of a sphere randomly from these
1000 voxels, and a radius for the sphere randomly be-
tween 1 voxel and 1/3 of the width (3.33 voxels). We
then paint this sphere onto the 10 x 10 x 10 voxel
canvas. Portions of the sphere that would fall outside
the canvas are ignored, so partial spheres are common.
Figure 4 shows example spheres from the dataset.

We then train an RBM on 50,000 example spheres
from this dataset. The training parameters are shown
in Table 2.

Figure 4. Exemplars from synthetic 3D dataset used for
this study. Each sphere has a random (x, y, z) location
and random width between 1 and 3.33 voxels.

Parameter Value
Visible neurons 1000 binary
Hidden neurons 400 binary

size of a mini batch 20
Epochs 45

Learning rate .001
Initial vBias 0
Initial hBias 0

Initial W uniform(-.022, .022)
Weight decay none

Momentum none
Sampling method CD-1

Table 2. Training parameters used to learn a representa-
tion of 3D shapes in Section 3

The filters learned after 45 epochs of training are
shown in Figure 5. Visualizing 3D shapes is difficult,
but we can get a feel for the filters by plotting a solid
voxel where the filter’s response is high and increas-
ingly transparent voxels when the response is smaller.

Figure 5. Filters learned by the RBM, i.e. columns of the
W weight matrix. Voxels where the filter’s response is high
are opaque, and voxels where the response is lower become
increasingly transparent.

Finally, in Figure 6 we show example Markov Chain
Monte Carlo (MCMC) draws from the learned distri-
bution using Gibbs sampling.

Figure 6. MCMC samples drawn from the learned distri-
bution of shapes. The MCMC mixing rate is low, so the
samples are highly correlated, but note that the generated
shapes are all nearly perfectly spherical.

Visually Debugging Restricted Boltzmann Machine Training with a 3D Example

4. Conclusion

RBMs are difficult to train because many parameters
must be set correctly. We have shown several visu-
alizations that assist in picking these parameters and
have provided code that can be used to generate each.
We have also demonstrated a simple, though atypi-
cal, application of RBMs to learn a representation of
synthetic 3D shapes, with good results.

5. Acknowledgements

This work was supported in part by NSF CDI Grant
ECCS 0941561 and the DARPA Open Manufacturing
program. The content of this paper is solely the re-
sponsibility of the authors and does not necessarily
represent the official views of the sponsoring organiza-
tions.

References

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.,
and Montreal, U. Greedy layer-wise training of deep
networks. Advances in neural information process-
ing systems, 19:153, 2007.

Bergstra, James, Breuleux, Olivier, Bastien,
Frédéric, Lamblin, Pascal, Pascanu, Razvan,
Desjardins, Guillaume, Turian, Joseph, Warde-
Farley, David, and Bengio, Yoshua. Theano:
a CPU and GPU math expression compiler.
In Proceedings of the Python for Scientific
Computing Conference (SciPy), June 2010.
URL http://www.iro.umontreal.ca/~lisa/
pointeurs/theano_scipy2010.pdf. Oral Presen-
tation.

Hinton, G. A practical guide to training restricted
boltzmann machines. Momentum, 9:1, 2010.

Hinton, G.E. Training products of experts by mini-
mizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

Hinton, G.E. and Salakhutdinov, R.R. Reducing the
dimensionality of data with neural networks. Sci-
ence, 313(5786):504, 2006.

Lee, H., Ekanadham, C., and Ng, A. Sparse deep belief
net model for visual area v2. Advances in neural
information processing systems, 20:873–880, 2008.

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H.,
and Ng, A.Y. Multimodal deep learning. In NIPS
Workshop on Deep Learning and Unsupervised Fea-
ture Learning. 2010, 2011.

http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf

