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Motivation 
  Most learners assume i.i.d. data 

(independent and identically distributed) 
  One type of object 
  Objects have no relation to each other 

  Real applications: 
dependent, variously distributed data 
  Multiple types of objects 
  Relations between objects 



Examples 
  Web search 
  Information extraction 
  Natural language processing 
  Perception 
  Medical diagnosis 
  Computational biology 
  Social networks 
  Ubiquitous computing 
  Etc. 



Costs and Benefits of SRL 

  Benefits 
  Better predictive accuracy 
  Better understanding of domains 
  Growth path for machine learning 

  Costs 
  Learning is much harder 
  Inference becomes a crucial issue 
  Greater complexity for user 



Goal and Progress 
  Goal: 

Learn from non-i.i.d. data as easily 
as from i.i.d. data 

  Progress to date 
  Burgeoning research area 
  We’re “close enough” to goal 
  Easy-to-use open-source software available 

  Lots of research questions (old and new) 



Plan 

  We have the elements: 
  Probability for handling uncertainty 
  Logic for representing types, relations, 

and complex dependencies between them 
  Learning and inference algorithms for each 

  Figure out how to put them together 
  Tremendous leverage on a wide range of 

applications 



Disclaimers 
  Not a complete survey of statistical 

relational learning 
  Or of foundational areas 
  Focus is practical, not theoretical 
  Assumes basic background in logic, 

probability and statistics, etc. 
  Please ask questions 
  Tutorial and examples available at 

alchemy.cs.washington.edu 
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Markov Networks 
  Undirected graphical models 

Cancer 

Cough Asthma 

Smoking 

  Potential functions defined over cliques 
Smoking Cancer   Ф(S,C) 

False False      4.5 

False True      4.5 

True False      2.7 

True True      4.5 



Markov Networks 
  Undirected graphical models 

  Log-linear model: 

Weight of Feature i Feature i 

Cancer 

Cough Asthma 

Smoking 



Hammersley-Clifford Theorem 

If Distribution is strictly positive (P(x) > 0) 
And Graph encodes conditional independences 
Then Distribution is product of potentials over       

  cliques of graph 

Inverse is also true. 
(“Markov network = Gibbs distribution”) 



Markov Nets vs. Bayes Nets 
Property Markov Nets Bayes Nets 
Form Prod. potentials Prod. potentials 

Potentials Arbitrary Cond. probabilities 

Cycles Allowed Forbidden 

Partition func. Z = ? Z = 1 

Indep. check Graph separation D-separation 

Indep. props. Some Some 

Inference MCMC, BP, etc. Convert to Markov 



Inference in Markov Networks 
  Goal: Compute marginals & conditionals of 

  Exact inference is #P-complete 
  Conditioning on Markov blanket is easy: 

  Gibbs sampling exploits this 



MCMC: Gibbs Sampling 

state ← random truth assignment 
for i ← 1 to num-samples do 
    for each variable x  
        sample x according to P(x|neighbors(x)) 
        state ← state with new value of x 
P(F) ← fraction of states in which F is true 



Other Inference Methods 

  Many variations of MCMC 
  Belief propagation (sum-product) 
  Variational approximation 
  Exact methods 



MAP/MPE Inference 

  Goal: Find most likely state of world given 
evidence 

Query Evidence 



MAP Inference Algorithms 

  Iterated conditional modes 
  Simulated annealing 
  Graph cuts 
  Belief propagation (max-product) 
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Learning Markov Networks 

  Learning parameters (weights) 
  Generatively 
  Discriminatively 

  Learning structure (features) 
  In this tutorial: Assume complete data 

(If not: EM versions of algorithms) 



Generative Weight Learning 

  Maximize likelihood or posterior probability 
  Numerical optimization (gradient or 2nd order)  
  No local maxima 

  Requires inference at each step (slow!) 

No. of times feature i is true in data 

Expected no. times feature i is true according to model 



Pseudo-Likelihood 

  Likelihood of each variable given its 
neighbors in the data 

  Does not require inference at each step 
  Consistent estimator 
  Widely used in vision, spatial statistics, etc. 
  But PL parameters may not work well for 

long inference chains 



Discriminative Weight Learning 

  Maximize conditional likelihood of query (y) 
given evidence (x) 

  Approximate expected counts by counts in 
MAP state of y given x	



No. of true groundings of clause i in data 

Expected no. true groundings according to model 



Other Weight Learning 
Approaches 

  Generative: Iterative scaling 
  Discriminative: Max margin 



Structure Learning 

  Start with atomic features 
  Greedily conjoin features to improve score 
  Problem: Need to reestimate weights for 

each new candidate 
  Approximation: Keep weights of previous 

features constant 
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First-Order Logic 
  Constants, variables, functions, predicates 

E.g.: Anna, x, MotherOf(x), Friends(x, y) 
  Literal: Predicate or its negation 
  Clause: Disjunction of literals 
  Grounding: Replace all variables by constants 

E.g.: Friends (Anna, Bob) 
  World (model, interpretation): 

Assignment of truth values to all ground 
predicates 



Inference in First-Order Logic 
  Traditionally done by theorem proving 

(e.g.: Prolog) 
  Propositionalization followed by model 

checking turns out to be faster (often a lot) 
  Propositionalization: 

Create all ground atoms and clauses 
  Model checking: Satisfiability testing 
  Two main approaches: 

  Backtracking (e.g.: DPLL) 
  Stochastic local search (e.g.: WalkSAT) 



Satisfiability 
  Input: Set of clauses 

(Convert KB to conjunctive normal form (CNF)) 
  Output: Truth assignment that satisfies all clauses, 

or failure 
  The paradigmatic NP-complete problem 
  Solution: Search 
  Key point: 

Most SAT problems are actually easy 
  Hard region: Narrow range of 

#Clauses / #Variables 



Backtracking 

  Assign truth values by depth-first search 
  Assigning a variable deletes false literals 

and satisfied clauses 
  Empty set of clauses: Success 
  Empty clause: Failure 
  Additional improvements: 

  Unit propagation (unit clause forces truth value) 
  Pure literals (same truth value everywhere) 



The DPLL Algorithm 
if CNF is empty then 
    return true 
else if CNF contains an empty clause then 
    return false 
else if CNF contains a pure literal x then 
    return DPLL(CNF(x)) 
else if CNF contains a unit clause {u} then 
    return DPLL(CNF(u)) 
else 
    choose a variable x that appears in CNF 
    if DPLL(CNF(x)) = true then return true 
    else return DPLL(CNF(¬x)) 



Stochastic Local Search 

  Uses complete assignments instead of partial 
  Start with random state 
  Flip variables in unsatisfied clauses 
  Hill-climbing: Minimize # unsatisfied clauses 
  Avoid local minima: Random flips 
  Multiple restarts 



The WalkSAT Algorithm 

for i ← 1 to max-tries do 
    solution = random truth assignment 
    for j ← 1 to max-flips do 
        if all clauses satisfied then 
            return solution 
        c ← random unsatisfied clause 
        with probability p 
            flip a random variable in c 
        else 
            flip variable in c that maximizes 
                number of satisfied clauses 
return failure 
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Rule Induction 
  Given: Set of positive and negative examples of 

some concept 
  Example: (x1, x2, … , xn, y) 
  y: concept (Boolean) 
  x1, x2, … , xn: attributes (assume Boolean) 

  Goal: Induce a set of rules that cover all positive 
examples and no negative ones 
  Rule:  xa ^ xb ^ … ⇒ y   (xa: Literal, i.e., xi or its negation) 
  Same as Horn clause:  Body ⇒ Head 
  Rule r covers example x iff x satisfies body of r 

  Eval(r): Accuracy, info. gain, coverage, support, etc. 



Learning a Single Rule 

head ← y 
body ← Ø 
repeat 
    for each literal x 
        rx ← r with x added to body 
        Eval(rx) 
    body ← body ^ best x 
until no x improves Eval(r) 
return r 



Learning a Set of Rules 

R ← Ø 
S ← examples 
repeat 
    learn a single rule r 
     R ← R U { r } 
    S ← S − positive examples covered by r 
until S contains no positive examples 
return R 



First-Order Rule Induction 
  y and xi are now predicates with arguments 

E.g.: y is Ancestor(x,y), xi is Parent(x,y) 
  Literals to add are predicates or their negations 
  Literal to add must include at least one variable 

already appearing in rule 
  Adding a literal changes # groundings of rule 

E.g.: Ancestor(x,z) ^ Parent(z,y) ⇒ Ancestor(x,y) 
  Eval(r) must take this into account 

E.g.: Multiply by # positive groundings of rule 
         still covered after adding literal 
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Plethora of Approaches 
  Knowledge-based model construction 

[Wellman et al., 1992] 
  Stochastic logic programs [Muggleton, 1996] 
  Probabilistic relational models 

[Friedman et al., 1999] 
  Relational Markov networks [Taskar et al., 2002] 
  Bayesian logic [Milch et al., 2005] 
  Markov logic [Richardson & Domingos, 2006] 
  And many others! 



Key Dimensions 
  Logical language 

First-order logic, Horn clauses, frame systems 
  Probabilistic language 

Bayes nets, Markov nets, PCFGs 
  Type of learning 

  Generative / Discriminative 
  Structure / Parameters 
  Knowledge-rich / Knowledge-poor 

  Type of inference 
  MAP / Marginal 
  Full grounding / Partial grounding / Lifted 



Knowledge-Based 
Model Construction 
  Logical language: Horn clauses 
  Probabilistic language: Bayes nets 

  Ground atom → Node 
  Head of clause → Child node 
  Body of clause → Parent nodes 
  >1 clause w/ same head → Combining function 

  Learning: ILP + EM 
  Inference: Partial grounding + Belief prop. 



Stochastic Logic Programs 

  Logical language: Horn clauses 
  Probabilistic language: 

Probabilistic context-free grammars 
  Attach probabilities to clauses 
  .Σ Probs. of clauses w/ same head = 1 

  Learning: ILP + “Failure-adjusted” EM 
  Inference: Do all proofs, add probs. 



Probabilistic Relational Models 
  Logical language: Frame systems 
  Probabilistic language: Bayes nets 

  Bayes net template for each class of objects 
  Object’s attrs. can depend on attrs. of related objs. 
  Only binary relations 
  No dependencies of relations on relations 

  Learning: 
  Parameters: Closed form (EM if missing data) 
  Structure: “Tiered” Bayes net structure search 

  Inference: Full grounding + Belief propagation 



Relational Markov Networks 
  Logical language: SQL queries 
  Probabilistic language: Markov nets 

  SQL queries define cliques 
  Potential function for each query 
  No uncertainty over relations 

  Learning: 
  Discriminative weight learning 
  No structure learning 

  Inference: Full grounding + Belief prop. 



Bayesian Logic 
  Logical language: First-order semantics 
  Probabilistic language: Bayes nets 

  BLOG program specifies how to generate relational world 
  Parameters defined separately in Java functions 
  Allows unknown objects 
  May create Bayes nets with directed cycles 

  Learning: None to date 
  Inference: 

  MCMC with user-supplied proposal distribution 
  Partial grounding 



Markov Logic 
  Logical language: First-order logic 
  Probabilistic language: Markov networks 

  Syntax: First-order formulas with weights 
  Semantics: Templates for Markov net features 

  Learning: 
  Parameters: Generative or discriminative 
  Structure: ILP with arbitrary clauses and MAP score 

  Inference: 
  MAP: Weighted satisfiability 
  Marginal: MCMC with moves proposed by SAT solver 
  Partial grounding + Lazy inference 



Markov Logic 

  Most developed approach to date 
  Many other approaches can be viewed as 

special cases 
  Main focus of rest of this tutorial 



Markov Logic: Intuition 

  A logical KB is a set of hard constraints 
on the set of possible worlds 

  Let’s make them soft constraints: 
When a world violates a formula, 
It becomes less probable, not impossible 

  Give each formula a weight 
(Higher weight  ⇒  Stronger constraint) 



Markov Logic: Definition 
  A Markov Logic Network (MLN) is a set of 

pairs (F, w) where 
  F is a formula in first-order logic 
  w is a real number 

  Together with a set of constants, 
it defines a Markov network with 
  One node for each grounding of each predicate in 

the MLN 
  One feature for each grounding of each formula F 

in the MLN, with the corresponding weight w 



Example: Friends & Smokers 



Example: Friends & Smokers 
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Example: Friends & Smokers 

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 

Cancer(A) 

Smokes(A) Smokes(B) 

Cancer(B) 

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 
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Smokes(A) Friends(A,A) 
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Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 
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Example: Friends & Smokers 

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 



Markov Logic Networks 
  MLN is template for ground Markov nets 
  Probability of a world x: 

  Typed variables and constants greatly reduce 
size of ground Markov net 

  Functions, existential quantifiers, etc. 
  Infinite and continuous domains 

Weight of formula i No. of true groundings of formula i in x 



Relation to Statistical Models 
  Special cases: 

  Markov networks 
  Markov random fields 
  Bayesian networks 
  Log-linear models 
  Exponential models 
  Max. entropy models 
  Gibbs distributions 
  Boltzmann machines 
  Logistic regression 
  Hidden Markov models 
  Conditional random fields 

  Obtained by making all 
predicates zero-arity 

  Markov logic allows 
objects to be 
interdependent  
(non-i.i.d.) 



Relation to First-Order Logic 

  Infinite weights  ⇒  First-order logic 
  Satisfiable KB, positive weights ⇒  

Satisfying assignments = Modes of distribution 
  Markov logic allows contradictions between 

formulas 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 

Query Evidence 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 

  This is just the weighted MaxSAT problem 
  Use weighted SAT solver 

(e.g., MaxWalkSAT [Kautz et al., 1997] ) 
  Potentially faster than logical inference (!) 



The MaxWalkSAT Algorithm 

for i ← 1 to max-tries do 
    solution = random truth assignment 
    for j ← 1 to max-flips do 
        if ∑ weights(sat. clauses) > threshold then 
            return solution 
        c ← random unsatisfied clause 
        with probability p 
            flip a random variable in c 
        else 
            flip variable in c that maximizes 
                ∑ weights(sat. clauses)                 
return failure, best solution found 



But … Memory Explosion 

  Problem:  
If there are n constants 
and the highest clause arity is c, 
the ground network requires O(n  ) memory 

  Solution: 
Exploit sparseness; ground clauses lazily 
→ LazySAT algorithm [Singla & Domingos, 2006] 

c 



Computing Probabilities 

  P(Formula|MLN,C) = ? 
  MCMC: Sample worlds, check formula holds 
  P(Formula1|Formula2,MLN,C) = ? 
  If Formula2 = Conjunction of ground atoms 

  First construct min subset of network necessary to 
answer query (generalization of KBMC) 

  Then apply MCMC (or other) 
  Can also do lifted inference [Braz et al, 2005] 



Ground Network Construction 

network ← Ø 
queue ← query nodes 
repeat 
    node ← front(queue)  
    remove node from queue 
    add node to network 
    if node not in evidence then 
        add neighbors(node) to queue     
until queue = Ø 



But … Insufficient for Logic 

  Problem: 
Deterministic dependencies break MCMC 
Near-deterministic ones make it very slow 

  Solution: 
Combine MCMC and WalkSAT 
→ MC-SAT algorithm  [Poon & Domingos, 2006] 



Learning 

  Data is a relational database 
  Closed world assumption (if not: EM) 
  Learning parameters (weights) 
  Learning structure (formulas) 



  Parameter tying: Groundings of same clause 

  Generative learning: Pseudo-likelihood 
  Discriminative learning: Cond. likelihood, 

use MC-SAT or MaxWalkSAT for inference 

Weight Learning 

No. of times clause i is true in data 

Expected no. times clause i is true according to MLN 



Structure Learning 
  Generalizes feature induction in Markov nets 
  Any inductive logic programming approach can be 

used, but . . . 
  Goal is to induce any clauses, not just Horn 
  Evaluation function should be likelihood 
  Requires learning weights for each candidate 
  Turns out not to be bottleneck 
  Bottleneck is counting clause groundings 
  Solution: Subsampling 



Structure Learning 

  Initial state: Unit clauses or hand-coded KB 
  Operators: Add/remove literal, flip sign 
  Evaluation function:  

Pseudo-likelihood + Structure prior 
  Search: Beam, shortest-first, bottom-up 

[Kok & Domingos, 2005; Mihalkova & Mooney, 2007]  



Alchemy 
Open-source software including: 
  Full first-order logic syntax 
  Generative & discriminative weight learning 
  Structure learning 
  Weighted satisfiability and MCMC 
  Programming language features 

alchemy.cs.washington.edu 



Alchemy Prolog BUGS 

Represent-
ation 

F.O. Logic + 
Markov nets 

Horn 
clauses 

Bayes 
nets 

Inference Model check- 
ing, MC-SAT 

Theorem 
proving 

Gibbs 
sampling 

Learning Parameters 
& structure 

No Params. 

Uncertainty Yes No Yes 

Relational Yes Yes No 
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Applications 
  Basics 
  Logistic regression 
  Hypertext classification 
  Information retrieval 
  Entity resolution 
  Hidden Markov models 
  Information extraction 

  Statistical parsing 
  Semantic processing 
  Bayesian networks 
  Relational models 
  Robot mapping 
  Planning and MDPs 
  Practical tips 



Running Alchemy 

  Programs 
  Infer 
  Learnwts 
  Learnstruct 

  Options 

  MLN file 
  Types (optional) 
  Predicates 
  Formulas 

  Database files 



Uniform Distribn.: Empty MLN 

Example: Unbiased coin flips 

Type:           flip = { 1, … , 20 } 
Predicate:   Heads(flip) 



Binomial Distribn.: Unit Clause 
Example: Biased coin flips 
Type:          flip = { 1, … , 20 } 
Predicate:  Heads(flip) 
Formula:    Heads(f) 
Weight:      Log odds of heads:  

By default, MLN includes unit clauses for all predicates 
(captures marginal distributions, etc.) 



Multinomial Distribution 
Example: Throwing die 

Types:       throw = { 1, … , 20 } 
                   face = { 1, … , 6 } 
Predicate:  Outcome(throw,face) 
Formulas:  Outcome(t,f) ^ f != f’ => !Outcome(t,f’). 
         Exist f Outcome(t,f). 

Too cumbersome! 



Multinomial Distrib.: ! Notation 
Example: Throwing die 

Types:       throw = { 1, … , 20 } 
                   face = { 1, … , 6 } 
Predicate:  Outcome(throw,face!) 
Formulas: 

Semantics: Arguments without “!” determine arguments with “!”. 
Also makes inference more efficient (triggers blocking). 



Multinomial Distrib.: + Notation 
Example: Throwing biased die 

Types:       throw = { 1, … , 20 } 
                   face = { 1, … , 6 } 
Predicate:  Outcome(throw,face!) 
Formulas:  Outcome(t,+f) 

Semantics: Learn weight for each grounding of args with “+”. 



Logistic regression: 

Type:                        obj = { 1, ... , n } 
Query predicate:     C(obj) 
Evidence predicates:  Fi(obj) 
Formulas:                        a  C(x) 
                   bi  Fi(x) ^ C(x) 

Resulting distribution:  

Therefore: 

Alternative form:     Fi(x) => C(x) 

Logistic Regression 



Text Classification 
page = { 1, … , n } 
word = { … } 
topic = { … } 

Topic(page,topic!) 
HasWord(page,word) 

!Topic(p,t) 
HasWord(p,+w) => Topic(p,+t) 



Text Classification 
Topic(page,topic!) 
HasWord(page,word) 

HasWord(p,+w) => Topic(p,+t) 



Hypertext Classification 
Topic(page,topic!) 
HasWord(page,word) 
Links(page,page) 

HasWord(p,+w) => Topic(p,+t) 
Topic(p,t) ^ Links(p,p') => Topic(p',t) 

Cf.  S. Chakrabarti, B. Dom & P. Indyk, “Hypertext Classification 
Using Hyperlinks,” in Proc. SIGMOD-1998. 



Information Retrieval 
InQuery(word) 
HasWord(page,word) 
Relevant(page) 

InQuery(w+) ^ HasWord(p,+w) => Relevant(p) 
Relevant(p) ^ Links(p,p’) => Relevant(p’) 

Cf.  L. Page, S. Brin, R. Motwani & T. Winograd, “The PageRank Citation 
Ranking: Bringing Order to the Web,” Tech. Rept., Stanford University, 1998. 



Problem: Given database, find duplicate records 

HasToken(token,field,record) 
SameField(field,record,record) 
SameRecord(record,record) 

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’) 
   => SameField(f,r,r’) 
SameField(f,r,r’) => SameRecord(r,r’) 
SameRecord(r,r’) ^ SameRecord(r’,r”) 
   => SameRecord(r,r”) 

Cf.  A. McCallum & B. Wellner, “Conditional Models of Identity Uncertainty 
with Application to Noun Coreference,” in Adv. NIPS 17, 2005. 

Entity Resolution 



Can also resolve fields: 

HasToken(token,field,record) 
SameField(field,record,record) 
SameRecord(record,record) 

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’) 
   => SameField(f,r,r’) 
SameField(f,r,r’) <=> SameRecord(r,r’) 
SameRecord(r,r’) ^ SameRecord(r’,r”) 
   => SameRecord(r,r”) 
SameField(f,r,r’) ^ SameField(f,r’,r”) 
   => SameField(f,r,r”) 

More: P. Singla & P. Domingos, “Entity Resolution with 
Markov Logic”, in Proc. ICDM-2006. 

Entity Resolution 



Hidden Markov Models 
obs = { Obs1, … , ObsN } 
state = { St1, … , StM } 
time = { 0, … , T } 

State(state!,time) 
Obs(obs!,time) 

State(+s,0) 
State(+s,t) => State(+s',t+1) 
Obs(+o,t) => State(+s,t) 



Information Extraction 

  Problem: Extract database from text or 
semi-structured sources 

  Example: Extract database of publications 
from citation list(s) (the “CiteSeer problem”) 

  Two steps: 
  Segmentation: 

Use HMM to assign tokens to fields 
  Entity resolution: 

Use logistic regression and transitivity 



Token(token, position, citation) 
InField(position, field, citation) 
SameField(field, citation, citation) 
SameCit(citation, citation) 

Token(+t,i,c) => InField(i,+f,c) 
InField(i,+f,c) <=> InField(i+1,+f,c) 
f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) 

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) 
   ^ InField(i’,+f,c’) => SameField(+f,c,c’) 
SameField(+f,c,c’) <=> SameCit(c,c’) 
SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) 
SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) 

Information Extraction 



Token(token, position, citation) 
InField(position, field, citation) 
SameField(field, citation, citation) 
SameCit(citation, citation) 

Token(+t,i,c) => InField(i,+f,c) 
InField(i,+f,c) ^ !Token(“.”,i,c) <=> InField(i+1,+f,c) 
f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c)) 

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’) 
   ^ InField(i’,+f,c’) => SameField(+f,c,c’) 
SameField(+f,c,c’) <=> SameCit(c,c’) 
SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”) 
SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”) 

More: H. Poon & P. Domingos, “Joint Inference in Information 
Extraction”, in Proc. AAAI-2007. 

Information Extraction 



Statistical Parsing 
  Input: Sentence 
  Output: Most probable parse 
  PCFG: Production rules 

with probabilities 
E.g.:   0.7   NP → N 
          0.3    NP → Det N 

  WCFG: Production rules 
with weights (equivalent) 

  Chomsky normal form: 
 A → B C  or  A → a 

S 

John    ate   the   pizza 

NP 
VP 

N 
V 

NP 

Det N 



Statistical Parsing 
  Evidence predicate: Token(token,position) 

E.g.: Token(“pizza”, 3) 
  Query predicates: Constituent(position,position) 

E.g.: NP(2,4) 
  For each rule of the form A → B C: 

Clause of the form B(i,j) ^ C(j,k) => A(i,k) 
E.g.: NP(i,j) ^ VP(j,k) => S(i,k) 

  For each rule of the form A → a: 
Clause of the form  Token(a,i) => A(i,i+1) 
E.g.: Token(“pizza”, i) => N(i,i+1) 

  For each nonterminal: 
Hard formula stating that exactly one production holds 

  MAP inference yields most probable parse 



Semantic Processing 
  Weighted definite clause grammars: 

Straightforward extension 
  Combine with entity resolution: 

NP(i,j) => Entity(+e,i,j) 
  Word sense disambiguation: 

Use logistic regression 
  Semantic role labeling: 

Use rules involving phrase predicates 
  Building meaning representation: 

Via weighted DCG with lambda calculus 
(cf. Zettlemoyer & Collins, UAI-2005) 

  Another option: 
Rules of the form  Token(a,i) => Meaning 
and  MeaningB ^ MeaningC ^ … => MeaningA 

  Facilitates injecting world knowledge into parsing 



Semantic Processing 
Example: John ate pizza. 

Grammar:      S → NP VP       VP → V NP       V → ate 
                       NP → John        NP → pizza 

Token(“John”,0) => Participant(John,E,0,1) 
Token(“ate”,1) => Event(Eating,E,1,2) 
Token(“pizza”,2) => Participant(pizza,E,2,3) 
Event(Eating,e,i,j) ^ Participant(p,e,j,k) 
  ^ VP(i,k) ^ V(i,j) ^ NP(j,k) => Eaten(p,e) 
Event(Eating,e,j,k) ^ Participant(p,e,i,j) 
  ^ S(i,k) ^ NP(i,j) ^ VP(j,k) => Eater(p,e) 
Event(t,e,i,k) => Isa(e,t) 

Result: Isa(E,Eating), Eater(John,E), Eaten(pizza,E) 



Bayesian Networks 
  Use all binary predicates with same first argument 

(the object x). 
  One predicate for each variable A: A(x,v!) 
  One clause for each line in the CPT and 

value of the variable 
  Context-specific independence: 

One Horn clause for each path in the decision tree 
  Logistic regression: As before 
  Noisy OR: Deterministic OR + Pairwise clauses 



Relational Models 
  Knowledge-based model construction 

  Allow only Horn clauses 
  Same as Bayes nets, except arbitrary relations 
  Combin. function: Logistic regression, noisy-OR or external 

  Stochastic logic programs 
  Allow only Horn clauses 
  Weight of clause = log(p) 
  Add formulas: Head holds => Exactly one body holds 

  Probabilistic relational models 
  Allow only binary relations 
  Same as Bayes nets, except first argument can vary 



Relational Models 
  Relational Markov networks 

  SQL → Datalog → First-order logic 
  One clause for each state of a clique 
  * syntax in Alchemy facilitates this 

  Bayesian logic 
  Object = Cluster of similar/related observations 
  Observation constants + Object constants 
  Predicate  InstanceOf(Obs,Obj) and clauses using it 

  Unknown relations: Second-order Markov logic 
 S. Kok & P. Domingos, “Statistical Predicate Invention”, in 
Proc. ICML-2007.  (Tomorrow at 3:15pm in Austin Auditorium) 



Robot Mapping 

  Input: 
Laser range finder segments (xi, yi, xf, yf) 

  Outputs: 
  Segment labels (Wall, Door, Other) 
  Assignment of wall segments to walls 
  Position of walls (xi, yi, xf, yf) 



Robot Mapping 



MLNs for Hybrid Domains 

  Allow numeric properties of objects as nodes 
E.g.: Length(x), Distance(x,y) 

  Allow numeric terms as features 
E.g.: –(Length(x) – 5.0)2 
(Gaussian distr. w/ mean = 5.0 and variance = 1/(2w)) 

  Allow α = β as shorthand for –(α – β)2  
E.g.:  Length(x) = 5.0 

  Etc. 



Robot Mapping 
SegmentType(s,+t) => Length(s) = Length(+t) 
SegmentType(s,+t) => Depth(s) = Depth(+t) 
Neighbors(s,s’) ^ Aligned(s,s’) => 
   (SegType(s,+t) <=> SegType(s’,+t)) 
!PreviousAligned(s) ^ PartOf(s,l) => StartLine(s,l) 
StartLine(s,l) => Xi(s) = Xi(l) ^ Yi(s) = Yi(l) 

PartOf(s,l) =>             =  

Etc. 

Cf.  B. Limketkai, L. Liao & D. Fox, “Relational Object Maps for 
Mobile Robots”, in Proc. IJCAI-2005. 

Yf(s)-Yi(s)   Yi(s)-Yi(l) 
Xf(s)-Xi(s)   Xi(s)-Xi(l) 



Planning and MDPs 
  Classical planning 

Formulate as satisfiability in the usual way 
  Actions with uncertain effects 

Give finite weights to action axioms 
  Sensing actions 

Add clauses relating sensor readings to world states 
  Relational Markov Decision Processes 

  Assign utility weights to clauses  (coming soon!) 
  Maximize expected sum of weights of satisfied utility clauses 
  Classical planning is special case: 

Exist t GoalState(t) 



Practical Tips 
  Add all unit clauses (the default) 
  Implications vs. conjunctions 
  Open/closed world assumptions 
  How to handle uncertain data: 
R(x,y) => R’(x,y)   (the “HMM trick”) 

  Controlling complexity 
  Low clause arities 
  Low numbers of constants 
  Short inference chains 

  Use the simplest MLN that works 
  Cycle: Add/delete formulas, learn and test 



Summary 

  Most domains are non-i.i.d. 
  Much progress in recent years 
  SRL mature enough to be practical tool 
  Many old and new research issues 
  Check out the Alchemy Web site: 

alchemy.cs.washington.edu 


