
Statistical Relational
Learning

Pedro Domingos
Dept. of Computer Science & Eng.

University of Washington

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Motivation
  Most learners assume i.i.d. data

(independent and identically distributed)
  One type of object
  Objects have no relation to each other

  Real applications:
dependent, variously distributed data
  Multiple types of objects
  Relations between objects

Examples
  Web search
  Information extraction
  Natural language processing
  Perception
  Medical diagnosis
  Computational biology
  Social networks
  Ubiquitous computing
  Etc.

Costs and Benefits of SRL

  Benefits
  Better predictive accuracy
  Better understanding of domains
  Growth path for machine learning

  Costs
  Learning is much harder
  Inference becomes a crucial issue
  Greater complexity for user

Goal and Progress
  Goal:

Learn from non-i.i.d. data as easily
as from i.i.d. data

  Progress to date
  Burgeoning research area
  We’re “close enough” to goal
  Easy-to-use open-source software available

  Lots of research questions (old and new)

Plan

  We have the elements:
  Probability for handling uncertainty
  Logic for representing types, relations,

and complex dependencies between them
  Learning and inference algorithms for each

  Figure out how to put them together
  Tremendous leverage on a wide range of

applications

Disclaimers
  Not a complete survey of statistical

relational learning
  Or of foundational areas
  Focus is practical, not theoretical
  Assumes basic background in logic,

probability and statistics, etc.
  Please ask questions
  Tutorial and examples available at

alchemy.cs.washington.edu

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Markov Networks
  Undirected graphical models

Cancer

Cough Asthma

Smoking

  Potential functions defined over cliques
Smoking Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 2.7

True True 4.5

Markov Networks
  Undirected graphical models

  Log-linear model:

Weight of Feature i Feature i

Cancer

Cough Asthma

Smoking

Hammersley-Clifford Theorem

If Distribution is strictly positive (P(x) > 0)
And Graph encodes conditional independences
Then Distribution is product of potentials over

 cliques of graph

Inverse is also true.
(“Markov network = Gibbs distribution”)

Markov Nets vs. Bayes Nets
Property Markov Nets Bayes Nets
Form Prod. potentials Prod. potentials

Potentials Arbitrary Cond. probabilities

Cycles Allowed Forbidden

Partition func. Z = ? Z = 1

Indep. check Graph separation D-separation

Indep. props. Some Some

Inference MCMC, BP, etc. Convert to Markov

Inference in Markov Networks
  Goal: Compute marginals & conditionals of

  Exact inference is #P-complete
  Conditioning on Markov blanket is easy:

  Gibbs sampling exploits this

MCMC: Gibbs Sampling

state ← random truth assignment
for i ← 1 to num-samples do
 for each variable x
 sample x according to P(x|neighbors(x))
 state ← state with new value of x
P(F) ← fraction of states in which F is true

Other Inference Methods

  Many variations of MCMC
  Belief propagation (sum-product)
  Variational approximation
  Exact methods

MAP/MPE Inference

  Goal: Find most likely state of world given
evidence

Query Evidence

MAP Inference Algorithms

  Iterated conditional modes
  Simulated annealing
  Graph cuts
  Belief propagation (max-product)

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Learning Markov Networks

  Learning parameters (weights)
  Generatively
  Discriminatively

  Learning structure (features)
  In this tutorial: Assume complete data

(If not: EM versions of algorithms)

Generative Weight Learning

  Maximize likelihood or posterior probability
  Numerical optimization (gradient or 2nd order)
  No local maxima

  Requires inference at each step (slow!)

No. of times feature i is true in data

Expected no. times feature i is true according to model

Pseudo-Likelihood

  Likelihood of each variable given its
neighbors in the data

  Does not require inference at each step
  Consistent estimator
  Widely used in vision, spatial statistics, etc.
  But PL parameters may not work well for

long inference chains

Discriminative Weight Learning

  Maximize conditional likelihood of query (y)
given evidence (x)

  Approximate expected counts by counts in
MAP state of y given x	

No. of true groundings of clause i in data

Expected no. true groundings according to model

Other Weight Learning
Approaches

  Generative: Iterative scaling
  Discriminative: Max margin

Structure Learning

  Start with atomic features
  Greedily conjoin features to improve score
  Problem: Need to reestimate weights for

each new candidate
  Approximation: Keep weights of previous

features constant

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

First-Order Logic
  Constants, variables, functions, predicates

E.g.: Anna, x, MotherOf(x), Friends(x, y)
  Literal: Predicate or its negation
  Clause: Disjunction of literals
  Grounding: Replace all variables by constants

E.g.: Friends (Anna, Bob)
  World (model, interpretation):

Assignment of truth values to all ground
predicates

Inference in First-Order Logic
  Traditionally done by theorem proving

(e.g.: Prolog)
  Propositionalization followed by model

checking turns out to be faster (often a lot)
  Propositionalization:

Create all ground atoms and clauses
  Model checking: Satisfiability testing
  Two main approaches:

  Backtracking (e.g.: DPLL)
  Stochastic local search (e.g.: WalkSAT)

Satisfiability
  Input: Set of clauses

(Convert KB to conjunctive normal form (CNF))
  Output: Truth assignment that satisfies all clauses,

or failure
  The paradigmatic NP-complete problem
  Solution: Search
  Key point:

Most SAT problems are actually easy
  Hard region: Narrow range of

#Clauses / #Variables

Backtracking

  Assign truth values by depth-first search
  Assigning a variable deletes false literals

and satisfied clauses
  Empty set of clauses: Success
  Empty clause: Failure
  Additional improvements:

  Unit propagation (unit clause forces truth value)
  Pure literals (same truth value everywhere)

The DPLL Algorithm
if CNF is empty then
 return true
else if CNF contains an empty clause then
 return false
else if CNF contains a pure literal x then
 return DPLL(CNF(x))
else if CNF contains a unit clause {u} then
 return DPLL(CNF(u))
else
 choose a variable x that appears in CNF
 if DPLL(CNF(x)) = true then return true
 else return DPLL(CNF(¬x))

Stochastic Local Search

  Uses complete assignments instead of partial
  Start with random state
  Flip variables in unsatisfied clauses
  Hill-climbing: Minimize # unsatisfied clauses
  Avoid local minima: Random flips
  Multiple restarts

The WalkSAT Algorithm

for i ← 1 to max-tries do
 solution = random truth assignment
 for j ← 1 to max-flips do
 if all clauses satisfied then
 return solution
 c ← random unsatisfied clause
 with probability p
 flip a random variable in c
 else
 flip variable in c that maximizes
 number of satisfied clauses
return failure

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Rule Induction
  Given: Set of positive and negative examples of

some concept
  Example: (x1, x2, … , xn, y)
  y: concept (Boolean)
  x1, x2, … , xn: attributes (assume Boolean)

  Goal: Induce a set of rules that cover all positive
examples and no negative ones
  Rule: xa ^ xb ^ … ⇒ y (xa: Literal, i.e., xi or its negation)
  Same as Horn clause: Body ⇒ Head
  Rule r covers example x iff x satisfies body of r

  Eval(r): Accuracy, info. gain, coverage, support, etc.

Learning a Single Rule

head ← y
body ← Ø
repeat
 for each literal x
 rx ← r with x added to body
 Eval(rx)
 body ← body ^ best x
until no x improves Eval(r)
return r

Learning a Set of Rules

R ← Ø
S ← examples
repeat
 learn a single rule r
 R ← R U { r }
 S ← S − positive examples covered by r
until S contains no positive examples
return R

First-Order Rule Induction
  y and xi are now predicates with arguments

E.g.: y is Ancestor(x,y), xi is Parent(x,y)
  Literals to add are predicates or their negations
  Literal to add must include at least one variable

already appearing in rule
  Adding a literal changes # groundings of rule

E.g.: Ancestor(x,z) ^ Parent(z,y) ⇒ Ancestor(x,y)
  Eval(r) must take this into account

E.g.: Multiply by # positive groundings of rule
 still covered after adding literal

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Plethora of Approaches
  Knowledge-based model construction

[Wellman et al., 1992]
  Stochastic logic programs [Muggleton, 1996]
  Probabilistic relational models

[Friedman et al., 1999]
  Relational Markov networks [Taskar et al., 2002]
  Bayesian logic [Milch et al., 2005]
  Markov logic [Richardson & Domingos, 2006]
  And many others!

Key Dimensions
  Logical language

First-order logic, Horn clauses, frame systems
  Probabilistic language

Bayes nets, Markov nets, PCFGs
  Type of learning

  Generative / Discriminative
  Structure / Parameters
  Knowledge-rich / Knowledge-poor

  Type of inference
  MAP / Marginal
  Full grounding / Partial grounding / Lifted

Knowledge-Based
Model Construction
  Logical language: Horn clauses
  Probabilistic language: Bayes nets

  Ground atom → Node
  Head of clause → Child node
  Body of clause → Parent nodes
  >1 clause w/ same head → Combining function

  Learning: ILP + EM
  Inference: Partial grounding + Belief prop.

Stochastic Logic Programs

  Logical language: Horn clauses
  Probabilistic language:

Probabilistic context-free grammars
  Attach probabilities to clauses
  .Σ Probs. of clauses w/ same head = 1

  Learning: ILP + “Failure-adjusted” EM
  Inference: Do all proofs, add probs.

Probabilistic Relational Models
  Logical language: Frame systems
  Probabilistic language: Bayes nets

  Bayes net template for each class of objects
  Object’s attrs. can depend on attrs. of related objs.
  Only binary relations
  No dependencies of relations on relations

  Learning:
  Parameters: Closed form (EM if missing data)
  Structure: “Tiered” Bayes net structure search

  Inference: Full grounding + Belief propagation

Relational Markov Networks
  Logical language: SQL queries
  Probabilistic language: Markov nets

  SQL queries define cliques
  Potential function for each query
  No uncertainty over relations

  Learning:
  Discriminative weight learning
  No structure learning

  Inference: Full grounding + Belief prop.

Bayesian Logic
  Logical language: First-order semantics
  Probabilistic language: Bayes nets

  BLOG program specifies how to generate relational world
  Parameters defined separately in Java functions
  Allows unknown objects
  May create Bayes nets with directed cycles

  Learning: None to date
  Inference:

  MCMC with user-supplied proposal distribution
  Partial grounding

Markov Logic
  Logical language: First-order logic
  Probabilistic language: Markov networks

  Syntax: First-order formulas with weights
  Semantics: Templates for Markov net features

  Learning:
  Parameters: Generative or discriminative
  Structure: ILP with arbitrary clauses and MAP score

  Inference:
  MAP: Weighted satisfiability
  Marginal: MCMC with moves proposed by SAT solver
  Partial grounding + Lazy inference

Markov Logic

  Most developed approach to date
  Many other approaches can be viewed as

special cases
  Main focus of rest of this tutorial

Markov Logic: Intuition

  A logical KB is a set of hard constraints
on the set of possible worlds

  Let’s make them soft constraints:
When a world violates a formula,
It becomes less probable, not impossible

  Give each formula a weight
(Higher weight ⇒ Stronger constraint)

Markov Logic: Definition
  A Markov Logic Network (MLN) is a set of

pairs (F, w) where
  F is a formula in first-order logic
  w is a real number

  Together with a set of constants,
it defines a Markov network with
  One node for each grounding of each predicate in

the MLN
  One feature for each grounding of each formula F

in the MLN, with the corresponding weight w

Example: Friends & Smokers

Example: Friends & Smokers

Example: Friends & Smokers

Example: Friends & Smokers

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

Cancer(A)

Smokes(A) Smokes(B)

Cancer(B)

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

Cancer(A)

Smokes(A) Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

Cancer(A)

Smokes(A) Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Example: Friends & Smokers

Cancer(A)

Smokes(A) Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Two constants: Anna (A) and Bob (B)

Markov Logic Networks
  MLN is template for ground Markov nets
  Probability of a world x:

  Typed variables and constants greatly reduce
size of ground Markov net

  Functions, existential quantifiers, etc.
  Infinite and continuous domains

Weight of formula i No. of true groundings of formula i in x

Relation to Statistical Models
  Special cases:

  Markov networks
  Markov random fields
  Bayesian networks
  Log-linear models
  Exponential models
  Max. entropy models
  Gibbs distributions
  Boltzmann machines
  Logistic regression
  Hidden Markov models
  Conditional random fields

  Obtained by making all
predicates zero-arity

  Markov logic allows
objects to be
interdependent
(non-i.i.d.)

Relation to First-Order Logic

  Infinite weights ⇒ First-order logic
  Satisfiable KB, positive weights ⇒

Satisfying assignments = Modes of distribution
  Markov logic allows contradictions between

formulas

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

Query Evidence

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

MAP/MPE Inference

  Problem: Find most likely state of world
given evidence

  This is just the weighted MaxSAT problem
  Use weighted SAT solver

(e.g., MaxWalkSAT [Kautz et al., 1997])
  Potentially faster than logical inference (!)

The MaxWalkSAT Algorithm

for i ← 1 to max-tries do
 solution = random truth assignment
 for j ← 1 to max-flips do
 if ∑ weights(sat. clauses) > threshold then
 return solution
 c ← random unsatisfied clause
 with probability p
 flip a random variable in c
 else
 flip variable in c that maximizes
 ∑ weights(sat. clauses)
return failure, best solution found

But … Memory Explosion

  Problem:
If there are n constants
and the highest clause arity is c,
the ground network requires O(n) memory

  Solution:
Exploit sparseness; ground clauses lazily
→ LazySAT algorithm [Singla & Domingos, 2006]

c

Computing Probabilities

  P(Formula|MLN,C) = ?
  MCMC: Sample worlds, check formula holds
  P(Formula1|Formula2,MLN,C) = ?
  If Formula2 = Conjunction of ground atoms

  First construct min subset of network necessary to
answer query (generalization of KBMC)

  Then apply MCMC (or other)
  Can also do lifted inference [Braz et al, 2005]

Ground Network Construction

network ← Ø
queue ← query nodes
repeat
 node ← front(queue)
 remove node from queue
 add node to network
 if node not in evidence then
 add neighbors(node) to queue
until queue = Ø

But … Insufficient for Logic

  Problem:
Deterministic dependencies break MCMC
Near-deterministic ones make it very slow

  Solution:
Combine MCMC and WalkSAT
→ MC-SAT algorithm [Poon & Domingos, 2006]

Learning

  Data is a relational database
  Closed world assumption (if not: EM)
  Learning parameters (weights)
  Learning structure (formulas)

  Parameter tying: Groundings of same clause

  Generative learning: Pseudo-likelihood
  Discriminative learning: Cond. likelihood,

use MC-SAT or MaxWalkSAT for inference

Weight Learning

No. of times clause i is true in data

Expected no. times clause i is true according to MLN

Structure Learning
  Generalizes feature induction in Markov nets
  Any inductive logic programming approach can be

used, but . . .
  Goal is to induce any clauses, not just Horn
  Evaluation function should be likelihood
  Requires learning weights for each candidate
  Turns out not to be bottleneck
  Bottleneck is counting clause groundings
  Solution: Subsampling

Structure Learning

  Initial state: Unit clauses or hand-coded KB
  Operators: Add/remove literal, flip sign
  Evaluation function:

Pseudo-likelihood + Structure prior
  Search: Beam, shortest-first, bottom-up

[Kok & Domingos, 2005; Mihalkova & Mooney, 2007]

Alchemy
Open-source software including:
  Full first-order logic syntax
  Generative & discriminative weight learning
  Structure learning
  Weighted satisfiability and MCMC
  Programming language features

alchemy.cs.washington.edu

Alchemy Prolog BUGS

Represent-
ation

F.O. Logic +
Markov nets

Horn
clauses

Bayes
nets

Inference Model check-
ing, MC-SAT

Theorem
proving

Gibbs
sampling

Learning Parameters
& structure

No Params.

Uncertainty Yes No Yes

Relational Yes Yes No

Overview

  Motivation
  Foundational areas

  Probabilistic inference
  Statistical learning
  Logical inference
  Inductive logic programming

  Putting the pieces together
  Applications

Applications
  Basics
  Logistic regression
  Hypertext classification
  Information retrieval
  Entity resolution
  Hidden Markov models
  Information extraction

  Statistical parsing
  Semantic processing
  Bayesian networks
  Relational models
  Robot mapping
  Planning and MDPs
  Practical tips

Running Alchemy

  Programs
  Infer
  Learnwts
  Learnstruct

  Options

  MLN file
  Types (optional)
  Predicates
  Formulas

  Database files

Uniform Distribn.: Empty MLN

Example: Unbiased coin flips

Type: flip = { 1, … , 20 }
Predicate: Heads(flip)

Binomial Distribn.: Unit Clause
Example: Biased coin flips
Type: flip = { 1, … , 20 }
Predicate: Heads(flip)
Formula: Heads(f)
Weight: Log odds of heads:

By default, MLN includes unit clauses for all predicates
(captures marginal distributions, etc.)

Multinomial Distribution
Example: Throwing die

Types: throw = { 1, … , 20 }
 face = { 1, … , 6 }
Predicate: Outcome(throw,face)
Formulas: Outcome(t,f) ^ f != f’ => !Outcome(t,f’).
 Exist f Outcome(t,f).

Too cumbersome!

Multinomial Distrib.: ! Notation
Example: Throwing die

Types: throw = { 1, … , 20 }
 face = { 1, … , 6 }
Predicate: Outcome(throw,face!)
Formulas:

Semantics: Arguments without “!” determine arguments with “!”.
Also makes inference more efficient (triggers blocking).

Multinomial Distrib.: + Notation
Example: Throwing biased die

Types: throw = { 1, … , 20 }
 face = { 1, … , 6 }
Predicate: Outcome(throw,face!)
Formulas: Outcome(t,+f)

Semantics: Learn weight for each grounding of args with “+”.

Logistic regression:

Type: obj = { 1, ... , n }
Query predicate: C(obj)
Evidence predicates: Fi(obj)
Formulas: a C(x)
 bi Fi(x) ^ C(x)

Resulting distribution:

Therefore:

Alternative form: Fi(x) => C(x)

Logistic Regression

Text Classification
page = { 1, … , n }
word = { … }
topic = { … }

Topic(page,topic!)
HasWord(page,word)

!Topic(p,t)
HasWord(p,+w) => Topic(p,+t)

Text Classification
Topic(page,topic!)
HasWord(page,word)

HasWord(p,+w) => Topic(p,+t)

Hypertext Classification
Topic(page,topic!)
HasWord(page,word)
Links(page,page)

HasWord(p,+w) => Topic(p,+t)
Topic(p,t) ^ Links(p,p') => Topic(p',t)

Cf. S. Chakrabarti, B. Dom & P. Indyk, “Hypertext Classification
Using Hyperlinks,” in Proc. SIGMOD-1998.

Information Retrieval
InQuery(word)
HasWord(page,word)
Relevant(page)

InQuery(w+) ^ HasWord(p,+w) => Relevant(p)
Relevant(p) ^ Links(p,p’) => Relevant(p’)

Cf. L. Page, S. Brin, R. Motwani & T. Winograd, “The PageRank Citation
Ranking: Bringing Order to the Web,” Tech. Rept., Stanford University, 1998.

Problem: Given database, find duplicate records

HasToken(token,field,record)
SameField(field,record,record)
SameRecord(record,record)

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’)
 => SameField(f,r,r’)
SameField(f,r,r’) => SameRecord(r,r’)
SameRecord(r,r’) ^ SameRecord(r’,r”)
 => SameRecord(r,r”)

Cf. A. McCallum & B. Wellner, “Conditional Models of Identity Uncertainty
with Application to Noun Coreference,” in Adv. NIPS 17, 2005.

Entity Resolution

Can also resolve fields:

HasToken(token,field,record)
SameField(field,record,record)
SameRecord(record,record)

HasToken(+t,+f,r) ^ HasToken(+t,+f,r’)
 => SameField(f,r,r’)
SameField(f,r,r’) <=> SameRecord(r,r’)
SameRecord(r,r’) ^ SameRecord(r’,r”)
 => SameRecord(r,r”)
SameField(f,r,r’) ^ SameField(f,r’,r”)
 => SameField(f,r,r”)

More: P. Singla & P. Domingos, “Entity Resolution with
Markov Logic”, in Proc. ICDM-2006.

Entity Resolution

Hidden Markov Models
obs = { Obs1, … , ObsN }
state = { St1, … , StM }
time = { 0, … , T }

State(state!,time)
Obs(obs!,time)

State(+s,0)
State(+s,t) => State(+s',t+1)
Obs(+o,t) => State(+s,t)

Information Extraction

  Problem: Extract database from text or
semi-structured sources

  Example: Extract database of publications
from citation list(s) (the “CiteSeer problem”)

  Two steps:
  Segmentation:

Use HMM to assign tokens to fields
  Entity resolution:

Use logistic regression and transitivity

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) <=> InField(i+1,+f,c)
f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)
 ^ InField(i’,+f,c’) => SameField(+f,c,c’)
SameField(+f,c,c’) <=> SameCit(c,c’)
SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”)
SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

Information Extraction

Token(token, position, citation)
InField(position, field, citation)
SameField(field, citation, citation)
SameCit(citation, citation)

Token(+t,i,c) => InField(i,+f,c)
InField(i,+f,c) ^ !Token(“.”,i,c) <=> InField(i+1,+f,c)
f != f’ => (!InField(i,+f,c) v !InField(i,+f’,c))

Token(+t,i,c) ^ InField(i,+f,c) ^ Token(+t,i’,c’)
 ^ InField(i’,+f,c’) => SameField(+f,c,c’)
SameField(+f,c,c’) <=> SameCit(c,c’)
SameField(f,c,c’) ^ SameField(f,c’,c”) => SameField(f,c,c”)
SameCit(c,c’) ^ SameCit(c’,c”) => SameCit(c,c”)

More: H. Poon & P. Domingos, “Joint Inference in Information
Extraction”, in Proc. AAAI-2007.

Information Extraction

Statistical Parsing
  Input: Sentence
  Output: Most probable parse
  PCFG: Production rules

with probabilities
E.g.: 0.7 NP → N
 0.3 NP → Det N

  WCFG: Production rules
with weights (equivalent)

  Chomsky normal form:
 A → B C or A → a

S

John ate the pizza

NP
VP

N
V

NP

Det N

Statistical Parsing
  Evidence predicate: Token(token,position)

E.g.: Token(“pizza”, 3)
  Query predicates: Constituent(position,position)

E.g.: NP(2,4)
  For each rule of the form A → B C:

Clause of the form B(i,j) ^ C(j,k) => A(i,k)
E.g.: NP(i,j) ^ VP(j,k) => S(i,k)

  For each rule of the form A → a:
Clause of the form Token(a,i) => A(i,i+1)
E.g.: Token(“pizza”, i) => N(i,i+1)

  For each nonterminal:
Hard formula stating that exactly one production holds

  MAP inference yields most probable parse

Semantic Processing
  Weighted definite clause grammars:

Straightforward extension
  Combine with entity resolution:

NP(i,j) => Entity(+e,i,j)
  Word sense disambiguation:

Use logistic regression
  Semantic role labeling:

Use rules involving phrase predicates
  Building meaning representation:

Via weighted DCG with lambda calculus
(cf. Zettlemoyer & Collins, UAI-2005)

  Another option:
Rules of the form Token(a,i) => Meaning
and MeaningB ^ MeaningC ^ … => MeaningA

  Facilitates injecting world knowledge into parsing

Semantic Processing
Example: John ate pizza.

Grammar: S → NP VP VP → V NP V → ate
 NP → John NP → pizza

Token(“John”,0) => Participant(John,E,0,1)
Token(“ate”,1) => Event(Eating,E,1,2)
Token(“pizza”,2) => Participant(pizza,E,2,3)
Event(Eating,e,i,j) ^ Participant(p,e,j,k)
 ^ VP(i,k) ^ V(i,j) ^ NP(j,k) => Eaten(p,e)
Event(Eating,e,j,k) ^ Participant(p,e,i,j)
 ^ S(i,k) ^ NP(i,j) ^ VP(j,k) => Eater(p,e)
Event(t,e,i,k) => Isa(e,t)

Result: Isa(E,Eating), Eater(John,E), Eaten(pizza,E)

Bayesian Networks
  Use all binary predicates with same first argument

(the object x).
  One predicate for each variable A: A(x,v!)
  One clause for each line in the CPT and

value of the variable
  Context-specific independence:

One Horn clause for each path in the decision tree
  Logistic regression: As before
  Noisy OR: Deterministic OR + Pairwise clauses

Relational Models
  Knowledge-based model construction

  Allow only Horn clauses
  Same as Bayes nets, except arbitrary relations
  Combin. function: Logistic regression, noisy-OR or external

  Stochastic logic programs
  Allow only Horn clauses
  Weight of clause = log(p)
  Add formulas: Head holds => Exactly one body holds

  Probabilistic relational models
  Allow only binary relations
  Same as Bayes nets, except first argument can vary

Relational Models
  Relational Markov networks

  SQL → Datalog → First-order logic
  One clause for each state of a clique
  * syntax in Alchemy facilitates this

  Bayesian logic
  Object = Cluster of similar/related observations
  Observation constants + Object constants
  Predicate InstanceOf(Obs,Obj) and clauses using it

  Unknown relations: Second-order Markov logic
 S. Kok & P. Domingos, “Statistical Predicate Invention”, in
Proc. ICML-2007. (Tomorrow at 3:15pm in Austin Auditorium)

Robot Mapping

  Input:
Laser range finder segments (xi, yi, xf, yf)

  Outputs:
  Segment labels (Wall, Door, Other)
  Assignment of wall segments to walls
  Position of walls (xi, yi, xf, yf)

Robot Mapping

MLNs for Hybrid Domains

  Allow numeric properties of objects as nodes
E.g.: Length(x), Distance(x,y)

  Allow numeric terms as features
E.g.: –(Length(x) – 5.0)2
(Gaussian distr. w/ mean = 5.0 and variance = 1/(2w))

  Allow α = β as shorthand for –(α – β)2
E.g.: Length(x) = 5.0

  Etc.

Robot Mapping
SegmentType(s,+t) => Length(s) = Length(+t)
SegmentType(s,+t) => Depth(s) = Depth(+t)
Neighbors(s,s’) ^ Aligned(s,s’) =>
 (SegType(s,+t) <=> SegType(s’,+t))
!PreviousAligned(s) ^ PartOf(s,l) => StartLine(s,l)
StartLine(s,l) => Xi(s) = Xi(l) ^ Yi(s) = Yi(l)

PartOf(s,l) => =

Etc.

Cf. B. Limketkai, L. Liao & D. Fox, “Relational Object Maps for
Mobile Robots”, in Proc. IJCAI-2005.

Yf(s)-Yi(s) Yi(s)-Yi(l)
Xf(s)-Xi(s) Xi(s)-Xi(l)

Planning and MDPs
  Classical planning

Formulate as satisfiability in the usual way
  Actions with uncertain effects

Give finite weights to action axioms
  Sensing actions

Add clauses relating sensor readings to world states
  Relational Markov Decision Processes

  Assign utility weights to clauses (coming soon!)
  Maximize expected sum of weights of satisfied utility clauses
  Classical planning is special case:

Exist t GoalState(t)

Practical Tips
  Add all unit clauses (the default)
  Implications vs. conjunctions
  Open/closed world assumptions
  How to handle uncertain data:
R(x,y) => R’(x,y) (the “HMM trick”)

  Controlling complexity
  Low clause arities
  Low numbers of constants
  Short inference chains

  Use the simplest MLN that works
  Cycle: Add/delete formulas, learn and test

Summary

  Most domains are non-i.i.d.
  Much progress in recent years
  SRL mature enough to be practical tool
  Many old and new research issues
  Check out the Alchemy Web site:

alchemy.cs.washington.edu

