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B General references (More detailed lists are given at the end of
each section)

— Scholkopf, B. and A. Smola. Learning with Kernels.
MIT Press. 2002.

— Lecture slides (more detailed than this course)

This page contains Japanese information,
but the slides are written in English.
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Outline

1. Linear and nonlinear data analysis
2. Principles of kernel methods

3. Positive definite kernels and feature spaces



Linear and Nonlinear Data Analysis



What is data analysis?

— Analysis of data is a process of inspecting, cleaning, transforming,
and modeling data with the goal of highlighting useful information,
suggesting conclusions, and supporting decision making.

— Wikipedia
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Linear data analysis

— ‘Table’ of numbers - Matrix expression

(XP e x@
2 2

Y _ xl() Xr%)
N N

\xl( ) L. xrp

m dimensional, N data

— Linear algebra is used for methods of analysis

e Correlation,

e Linear regression analysis,

e Principal component analysis,
e Canonical correlation analysis,

etc.



B Example 1: Principal component analysis (PCA)

PCA: project data onto the subspace with largest variance.

1st direction = argmax,_Var[a' X]

2
Var[aTX]:ii a' X(‘)—iZN X
N N <=1

=1

=a'V,a.

where

1Q 1 <« 1 <« !
_ (i) (i) (i) (J)
VXX_WZ(X _Wijlx J j(x _Wijlx J j

i=1

(Empirical) covariance matrix of X

I-6




— 1st principal direction
T
= argmax; ;8 Vyya

= U, unit eigenvector w.r.t. the largest eigenvalue of V,,,

— p-th principal direction =
unit eigenvector w.r.t. the p-th largest eigenvalue of

PCA >  Eigenproblem of covariance matrix V,,




B Example 2: Linear classification
— Binary classification

Input data Class label
X 1(1) cee X W y @
X@ . ox® y @
X=|"" o Y=| . e{=1}"
XM ox™ y ™

Find a linear classifier
h(x) =sgn(a’x + b)

so that | _
h(X®")=y® for all (or most) i.

— Example: Fisher’s linear discriminant analyzer, Linear SVM, etc.

-8



Are linear methods enough?

linearly inseparable

transforrr>

Z3

linearly separable

20

10 15

(21’ Zy, 23) — (X12’ Xgi‘/lexz)

Watch the following movie!
http://ip.youtube.com/watch?v=3liCbRZPrZA




B Another example: correlation

_ _ E[(X-E[X])Y —E[Y])]
JVar[XVar[Y] JE (X - E[X])Z_

Pxy

Cov[X,Y]

E

(Y —E[Y])’)
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=0.17

transforrr>

(X2,Y)

PX2Y)

=0.96
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Nonlinear transform helps!

Analysis of data is a process of inspecting, cleaning, transforming,
and modeling data with the goal of highlighting useful information,
suggesting conclusions, and supporting decision making.

— Wikipedia.

Kernel method = a systematic way of transforming data into a high-
dimensional feature space to extract nonlinearity or higher-order
moments of data.

[-12



Principles of kernel methods
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Kernel method: Big picture

— ldea of kernel method

d $.¢x- I_|k< 2

feature map%ﬁ’jx; . o .

Space of original data Feature space

Do linear analysis in the feature space!
e.g. SVM

— What kind of space is appropriate as a feature space?

e Should incorporate various nonlinear information of the
original data.

e The inner product should be computable. It is essential for
many linear methods.

[-14



B Computational issue
— For example, how about using power series expansion?

X, Y,2) > (X, Y, Z, X2, Y2, 72, XY, YZ, ZX, ...)

— But, many recent data are high-dimensional.
e.g. microarray, images, etc...

The above expansion is intractable!
e.g. Up to 2nd moments, 10,000 dimension:

Dim of feature space:  15000C1 + 10000C2 = 50,005,000 (!)

— Need a cleverer way - Kernel method.

[-15



Feature space by positive definite kernel

— Feature map: from original space to feature space
o: QO —» H

X X0 > ®(X,),..., d(X.)

— With special choice of feature space, we have a function
(positive definite kernel)  K(X,y) such that

(@(X,), D(X))) =k(X;, X;) kernel trick.

— Many linear methods use only the inner products of data,
and do not need the explicit form of the vector ®(X).
(e.g. PCA)

[-16



Positive definite kernel

Definition. Q:set. k:Q X Q — R Is a positive definite kernel if

1) (symmetry)  K(X,y)=Kk(y,X)

2) (positivity) for arbitrary xy, ..., X, € Q

n

k(x, %) - K(X,X,)
: ", : IS positive semidefinite,
XI"I

k(xn.,xl) K(X

n?

(Gram matrix)

e., Z:jzlcicjk(xi,x.)zo forany C €R

J

[-17



Examples: positive definite kernels on R™ (proof is give in Section 1V)
e Euclidean inner product

k(x,y)=x"y
e Gaussian RBF kernel

K (X, Y) = exp(— |x - yHZ/az) (o >0)

e Laplacian kernel

k (xy) =expl-a>" X -yil)  (@>0)

e Polynomial kernel
ko (X, ) = (C+X"y)° (c>0,d eN)

[-18



/

-

Proposition 1.1

Let H be a vector space with inner product (-,-) and ®:Q - H
be a map (feature map). If k: Q x Q — Ris defined by

(@(x),@(y)) =k(x,Y),

then k(x,y) is necessarily positive definite.

— Positive definiteness Is necessary.

— Proof)

[-19




— Positive definite kernel is sufficient.

-

Theorem 1.2 (Moore-Aronszajn)

For a positive definite kernel k on Q, there is a Hilbert space
H,, (reproducing kernel Hilbert space, RKHS) that consists of
functions on  such that

1) k(-,x) € H, for any x
2) span{k(,x)|x € Q}isdensein H
3) (reproducing property)

(f,k(,x)) = f(x) foranyf €H,, x€Q

~

/

*Hilbert space: vector space with inner product such that
the topology is complete.

[-20



Feature map by positive definite
kernel

— Feature space = RKHS.
Feature map:

®: Q) - H, x = k(- x)
Xl' ""X'I’l > k(‘,Xl), ...,k(‘,Xn)

— Kernel trick: by reproducing property

(P(x), P(y)) = (k(,x), k(,¥)) = k(x, y)

— Prepare only positive definite kernel:

We do not need an explicit form of feature vector or feature
space.

All we need for kernel methods are kernel values k(X;, X;).
-21
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Outline
1. Kernel PCA

2. Kernel CCA
3. Kernel ridge regression

4. Some topics on kernel methods
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Kernel Principal Component
Analysis

-3




Principal Component Analysis

B PCA (review)

— Linear method for dimension reduction of data
— Project the data in the directions of large variance.

1st principal axis = argmax,,_,Var[a' X]

N3

Var[a' X] =£Zn:{aT(Xi _1 r;l

11-4



From PCA to Kernel PCA

— Kernel PCA: nonlinear dimension reduction of data (Schélkopf et al.
1998).

— Do PCA in feature space

2
. T 1<) 1 <o
MaXjgy - Varla X]:_Z{a (Xi n “ij}

N3 N

s

n

maX . - - Var[<f,CI)(X)>]:i2{<f,d)(xi)—izzl®(xs)>}

i=1

2

11-5



It is sufficient to assume
n n
1
f=)c (cb(xi) -y cb(Xs))
i=1 s=1

B Orthogonal directions to the data can be neglected, since for
f =Xt c(PX;) —% =1 P(Xs)) + fL, where f, is orthogonal to
the span{®(X;) —% i) CD(XS)}?zl, the objective function of kernel
PCA does not depend on f.

Then, Var[<f ,CI)(X)>]:CT IZ;‘;C
~ [Exercise]
I'fIf=c"Kyc

where Kx,ij = <C5(Xi),cf)(xj)> (centered Gram matrix)

n

with  d(X;)=®(X,) -1 ®(X,)

(centered feature vector)
11-6




B Objective function of kernel PCA
max c'K2c  subjectto ¢ K,Cc=1

The centered Gram matrix Ky is expressed with Gram matrix
Ky = (k(Xi,Xj))ij as

1
T
~ 1 1 1, ={:]€R"
Ry = (In — E1”1£> K (In - E1”1£> " <1>
L, = Unit matrix

(R ) =KX X ) == 37 k(X X,)

1 < 1 <N
_Hthlk(xt’ XJ) +FZt,s:1k(xt’ XS)

[Exercise]
1-7



— Kernel PCA can be solved by eigen-decomposition.

— Kernel PCA algorithm

» Compute centered Gram matrix }ZX
« Eigendecompsoition of K,

Ky = izlﬂ’iuiui
/31 > 22 >.00> ,1N > (0 eigenvalues
U, Us,..., Uy unit eigenvectors

e p-th principal component of Xi = /Ipu;)(i

11-8



Derivation of kernel method in general

— Consider feature vectors with kernels.
— Linear method is applied to the feature vectors. (Kernelization)
— Typically, only the inner products

(@(X,), D(X))) =k(X;, X))
<f ,CD(Xi)>

are used to express the objective function of the method.
— The solution is given in the form  f =» c.®(X,),
i=1

(representer theorem, see Sec.1V), and thus everything is written
by Gram matrices.

These are common in derivation of any kernel methods.
11-9



Example of Kernel PCA

B \\Vine data (from uci repository)

13 dim. chemical measurements of for three types of wine. 178 data.
Class labels are NOT used in PCA, but shown in the figures.

First two principal components:

4 Linear PCA _ Kernel PCA (Gaussian kernel)
| ° (c=3) ®
.. o oo o) 04+
o . ° S °%
° :&.‘. ° oo%)?i o oal .. o ooé’@(%g%
1 ?. o ©% ‘®» o ® %
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Kernel PCA (Gaussian)

5r 06
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.0. : ...:.:0

e @

Lo
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Noise Reduction with Kernel PCA

— PCA can be used for noise reduction
(principal directions represent signal, other directions noise).

— Apply kernel PCA for noise reduction:
» Compute d-dim subspace V, spanned by d-principal directions.
e For a new data X,
G,: Projection of ®(x) onto V; = noise reduced feacure vector.
e Compute a preimage X in
data sapce for the noise

reduced feature vector G,. ek . 5
~ . i: G \ /::o
% =argmin |O(x) -G, |’ . e
X! 0 L] \0";“

Note: G, is hot necessariy
given as an image of @.

-20




B USPS data

{ BN SRYRORA /ISRTH0

Original data (NOT used for PCA)

R N B BRI W B B

Noisy images

M ikl s [ v E e

Noise reduced images (linear PCA)

I Pl k]l ¥ & € il E] K [

Noise reduced images (kernel PCA, Gaussian kernel)

Generated by Matlab stprtool (by V. Franc)

11-13



Properties of Kernel PCA

Nonlinear features can be extracted.

Can be used for a preprocessing of other analysis like
classification. (dimension reduction / feature extraction)

The results depend on the choice of kernel and kernel parameters.
Interpreting the results may not be straightforward.

How to choose a kernel and kernel parameter?
e Cross-validation is not straightforward unlike SVM.

e If it is a preprocessing, the performance of the final analysis
should be maximized.

[1-14



Kernel Canonical Correlation
Analysis

[1-15



Canonical Correlation Analysis

— Canonical correlation analysis (CCA, Hotelling 1936)
Linear dependence of two multivariate random vectors.
e Data (X{,Y1), ..., Xn, Yn)
e X;: m-dimensional, Y;: £-dimensional

Find the directions a and b so that the correlation of a’ X and
bTY is maximized.

Cov[a' X,b"Y]
\/Var[a XVar[o'Y]

p= maxCorr[a X,b'Y]= max

[1-16



B Solution of CCA

mabX aTVXyb SUbJeCt to aTVXXa = bTVbe = 1.
a

— Rewritten as a generalized eigenproblem:

(e )@ =e (% )6

VYX VYY

[Exercise: derive this. (Hint. Use Lagrange multiplier method.)]

— Solution:

a= Vxl)?zul, b = Vyly/zvl

where u; (vq, resp) Is the left (right, resp.) first eigenvector

for the SVD of V, 1/ ZVXYVY 1/2,

-17



Kernel CCA

— Kernel CCA (Akaho 2000, Melzer et al. 2002, Bach et al 2002)
e Dependence (not only correlation) of two random variables.
e Data: (X1,Y7), ..., (Xy, Yy) arbitrary variables

e Consider CCA for the feature vectors with ky and ky:
Xy, Xy » Ox(X7),...,,Px(Xy) € Hy,
Yi,...Yy » ®y(Yy),..., Py(Yy) € Hy.

Cov[f(X), g(V)] . YN, Dx (XD NPy (Y1), 9)

penxgchy \[Varlf () Varlg(V)]  /<ixacty JEI B C0)2 200, By (1))

D, f g 4y
X | = (@,x) = F(X)] g(Y)<=| DY) |<=| v

[1-18




— We can assume f =YX, a;®x(X;) and g = I, BBy (V).
(same as kernel PCA)
a” KyKyp
aeRN,gerN \/ Ky and K, : centered

max

T 172 T 172 ;
a' Kya B Ky Gram matrices.

— Regqularization: to avoid trivial solution,
IiV:1<f» EI')X(XL.))(EIV)Y(YL.),g)
max

fEHyx,gEH ~ ~
RO I B 00 + el I, [Ei(, By ()2 +en gl

— Solution: generalized eigenproblem
0 KyKy\(ay  (Kg+eyKy 0 a
R, K () =7 2 +er ) ()
KyKy O 0 K? + exyKy

11-19



Application of KCCA

— Application to image retrieval (Hardoon, et al. 2004).

e X;: image,
Y;: corresponding texts (extracted from the same webpages).

» |ldea: use d eigenvectors f,,...,f;and g,,...,94 as the feature
spaces which contain the dependence between X and Y.

e Given a new word Y,,,,,, compute its feature vector, and find
the image whose feature has the highest inner product.

¢ ((0,X)))  [(g,®,(Y))

D, ®
@ || Eem)

(f., @, (%)) (95 @,(Y))

“at phoenix sky harbor
on july 6, 1997. 757-
2s7,n907wa, ..."

[1-20




— Example:
e Gaussian kernel for images.
e Bag-of-words kernel (frequency of words) for texts.

Text -- “height: 6-11, weight: 235 Ibs, position: forward,
born: september 18, 1968, split, croatia college: none”

Extracted images

11-21



Kernel Ridge Regression

11-22



Ridge regression

(X, Y1), ..., (X, Yy,): data (X; € R™, Y; € R)
Ridge regression: linear regression with L? penalty.

n
min ) |¥2 - X2 + Alall
a
i=1
(The constant term is omitted for simplicity)

— Solution (quadratic function):
@ — (VXX + Aln)_leY

where .
. X3 Y
VXX - gXTX, X = (S Rnxm, Y = (S Rn
Xr Ya

— Ridge regression is preferred, when Vyy is (close to) singular.
11-23



Kernel ridge regression

- (X, 1), ..., (X, Y,): X arbitrary data, Y € R.
— Kernelization of ridge regression: positive definite kernel k for X

n
rr}ler}{ z Y = (f, X ul?> + AIfll;  Ridge regression on H
i=1

equivalently,

n
rr}lel}{ z IV, — F(XD12 + AIfIE Nonlinear ridge reqgr.
i=1

[1-24



— Solution is given by the form  f =) ¢.®(X,),
=1

Let f=Y, qdX)+fL = fot S

case f, = 0.

—

— Objective function :
IY — Kyc||? + 2 cTKyc

— Solution: ¢é = (Ky + AL)"tY

Function:  f(x) = YT (Ky + AL,) " 'k(x)

(fo € Span{®(X;)}-,, fi: orthogonal complement)
Objective function = ¥L,|Y; — (fo + f1, PX* + A lfo + fLII°
= Xl Y = {fo, @ENN? + A Ifall>+IfLII)

The 1st term does not depend on f,, and 2nd term is minimized in the

k(x) =

—

k(x,X;)

k(x,. X,,)

[1-25



Regularization

— The minimization
mfinIYz — f(XDI?

may be attained with zero errors.
But the function may not be unique.

v

— Regularization

min - Y= Y - fXDI1? + AllfllE

e Regularization with smoothness
penalty is preferred for uniqueness
and smoothness.

e Link with some RKHS norm and
smoothness is discussed in Sec. V.

[1-26



Comparison

B Kernel ridge regression vs local linear regression
Y=1/15+||X|1®)+Z  X~N(0,1,), Z~N(0,0.1%)

_ 0.012 '
n = 100, 500 runs —— Kernel method

0.01- — Local linear

Kernel ridge regression

[9p] \—
with Gaussian kernel S 0.008r /
Local linear regression %
with Epanechnikov kernel g %%
o e - : 2
(‘locfit’ in R is used) % 0.004

Bandwidth parameters 0.002%
are chosen by CV. L.

01 | '””' '10
Dimension of X

-27



B | ocal linear regression (e.g., Fan and Gijbels 1996)

- K: smoothing kernel (K(x) =0, | K(x)dx = 1, not necessarily
positive definite)

— Local linear regression
E|Y|X = IS estimated b _
[ | xO] y Kh(X) = h dK (%)

n
mianIYi — a — bT(Xi—xo)|? Kn(X; — xo)
a,

[

e For each x,, this minimization can be solved by linear algebra.
Statistical property of this estimator is well studied.

e For one dimensional X, it works nicely with some theoretical
optimality.

But, weak for high-dimensional data.

[1-28



Some topics on kernel methods

 Representer theorem

e Structured data

« Kernel choice

e Low rank approximation

11-29



Representer theorem

(X]J Yl)) XL’ (Xn; YTL) data
k: positive definite kernel for X, H: corresponding RKHS.

¥: monotonically increasing function on R,.

4 Theorem 2.1 (representer theorem, Kimeldorf & Wahba 1970)
The solution to the minimization problem:

]rcréll? F((Xl'yl'f(Xl))r ) (an Yn' f(Xn))) + qj(llf”)

IS attained by
f=XY%t,¢®X;)  with some (c,...,c,) € R™.
- /
The proof is essentially the same as the one for the kernel ridge
regression. [Exercise: complete the proof]

[1-30



Structured Data

— Structured data: non-vectorial data with some structure.

e Sequence data (variable length):
DNA sequence, Protein (sequence of amino acid)
Text (sequence of words)

e Graph data (Koji's lecture)

Chemical compound etc. S
/ \
e Tree data
Parse tree / \ /
e Histograms / probability
measures Det V Det N

|
The cat chased the mouse.

— Many kernels uses counts of substructures (Haussler 1999).
[1-31



Spectrum kernel

— pspectrum kernel (Leslie et al 2002): positive definite kernel for string.

k,(s,t) = Occurrences of common subsequences of length p.

— Example:

s = “statistics”

3-spectrum

s: sta, tat, ati, tis,

t = “pastapistan”

ist, sti, tic,

ICS

t. pas, ast, sta, tap, api, pis, iIst, sta, tan

sta | tat | ati | tis | ist | sti | tic | ics | pas | ast | tap | api | pis | tan
d(s) | 1 1 1 1 1 1 1 1 0 0 0 0 0 0
D(t) 2 0 0 0 1 0 0 0 1 1 1 1 1 1
Ky, t) =12+ 11 = 3

— Linear time (O(p(|S| + |t]) ) algorithm with suffix tree is known

(Vishwanathan & Smola 2003).
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— Application: kernel PCA of ‘words’ with 3-spectrum kernel

@ bioinformatics

@ informatics

@Mathematics
cybernetics
<4— physics

biolog
| psycholo

statistiss

methodology : @
I metaphysics biostatistics
@ pioneering
'@ engineering
20 - 0 2 4 6 8
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Choice of kernel

B Choice of kernel

— Choice of kernel (polyn or Gauss)
— Choice of parameters (bandwidth parameter in Gaussian kernel)

B General principles
— Reflect the structure of data (e.g., kernels for structured data)

— For supervised learning (e.g., SVM) —-> Cross-validation

— For unsupervised learning (e.g. kernel PCA)
e No general methods exist.

e Guideline: make or use a relevant supervised problem, and use
CV.

— Learning a kernel: Multiple kernel learning (MKL)

k(x,y) = XiL; ciki(x,y)  optimize c; 1-34



Low rank approximation

— Gram matrix: n X n where n is the sample size.
Large n causes computational problems.
e.g. Inversion, eigendecomposition costs O(n3) in time.

— Low-rank approximation

K =~ RR", where R: nxr matrix (r < n)

— The decay of eigenvalues of a Gram matrix is often quite fast
(See Widom 1963, 1964; Bach & Jordan 2002).
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— Two major methods
e Incomplete Cholesky factorization (Fine & Sheinberg 2001)
O(nr?) in time and O(nr) in space
e Nystrom approximation (williams and Seeger 2001)
Random sampling + eigendecomposition

— Example: kernel ridge regression
YT(Ky + AL)  1k(x) time : 0(n?)
Low rank approximation: Ky ~ RRT. With Woodbury formula™
YT(Ky + AL) " 'k(x) = YT(RRT + AL) 'k(x)
= %{YTk(x) —YTR(RTR + AL.)"'RTk(x)}

time : 0(r*n + r3)

* Woodbury (Sherman—Morrison—Woodbury) formula:
A+U0V)t=a"1-Atug+vAa~tu)~tva—t. 1-36



Other kernel methods

— Kernel Fisher discriminant analysis (kernel FDA) (Mika et al. 1999)
— Kernel logistic regression (Roth 2001, Zhu&Hastie 2005)
— Kernel partial least square (kernel PLS) (Rosipal&Trejo 2001)

— Kernel K-means clustering (Dhillon et al 2004)
etc, etc, ...

— Variants of SVM - Section IlI.
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Summary: Properties of kernel methods

— Various classical linear methods can be kernelized
—> Linear algorithms on RKHS.

— The solution typically has the form

f=>co(X,). (representer theorem)
i=1

— The problem is reduced to manipulation of Gram matrices of size n
(sample size).
e Advantage for high dimensional data.

e For a large number of data, low-rank approximation is used
effectively.

— Structured data:
e kernel can be defined on any set.
e kernel methods can be applied to any type of data.
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Exercise for kernel PCA
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Large margin classifier

- (X1, 1), ..., (X, Y;): training data
e X;: Input (m-dimensional)
e Y, € {£1}: binary teaching data,

— Linear classifier
fw(@) =wlx + b

h(x) = sgn(f,, (x) y =1 (x)
f,(x) <0

We wish to make f,,(x) with
the training data so that a new
data x can be correctly classified.

f.(X)=0
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B Large margin criterion

Assumption: the data is linearly separable.

Among infinite number of separating hyperplanes, choose the one
to give the largest margin.

— Margin = distance of two classes
measured along the direction of w.

— Support vector machine: g
Hyperplane to give i
the largest margin. . \support
— The classifier is the middle of | { vector
the margin. ol
— “Supporting points” °l
on the two boundaries are T ' .
nargin
called support vectors. o :

1 1 1 1 1 1 1
-8 -6 -4 -2 0 2 4 6 8 III_3



— Fix the scale (rescaling of (w, b) does not change the plane)

min(w' X; +b)=1  ify =1,
max(w' X, +b)=-1 ifY;=—1

Then

[Exercise] Prove this.
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B Support vector machine (linear, hard margin)
(Boser, Guyon, Vapnik 1992)

Objective function:
wiX;+b =1 ifY; =1,

max — subject to
wiX;+b>1 ifY; = —1.

w,b lIwll

( SVM (hard margin)

: 2 : :
\ min lwl| subjectto  Y;(wTX; +b) =1 (Vi) )

— Quadratic program (QP):
e Minimization of a quadratic function with linear constraints.
e Convex, no local optima (Vandenberghe’ lecture)
e Many solvers available (Chih-Jen Lin’s lecture)
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W Soft-margin SVM

— “Linear separability” is too strong. Relax it.

-

-

Hard margin Soft margin
Y;(wl'X; +b) =1 | : Y(wl'X;+b) =21-¢, §&=0
. )
SVM (soft margin) .
. . Y(W'X;+b) =21,
2 n ) L l l
min lwll* + C X1 & subject to £> 0 Vi)
J
— This is also QP.

— The coefficient C must be given. Cross-validation is often used.
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SVM and regularization

— Soft-margin SVM is equivalent to the regularization problem:

n
min Z(1 — VWX + D)), + Allwl?

=1

regularization term
loss

(z)+ = max{0, z}

e loss function: Hinge loss

£(F 00, = (1 - F()), (1-2).4

e c.f. Ridge regression (squared error)

min Yo (Y, = w'X; + b))+ Alwll?

[Exercise] Confirm the above equivalence. -8



Kernelization: nonlinear SVM

- (X1, 1), ..., (X, Yy,): training data
e X;: Input on arbitrary space ()
e Y, € {£1}: binary teaching data,

— Kernelization: Positive definite kernel k on Q (RKHS H),
Feature vectors @(X;),..., ®(X,,)

— Linear classifier on H = nonlinear classifier on ()

h(x) = sgn({f, ®(x)) + b)
= sgn(f(x) + b), f EH.
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B Nonlinear SVM

n]gibn If11? + Cz ¢ subject to
' i=1

i((f, X)) +b) =1,

-

-

$i= 0 (Vi)
or equivalently,
n
min > (1= %D + b)) +AfI;
=)
By representer theorem, f = Y7, w;®(X;).
nonlinear SVM (soft margin) h
n
_ . Y;((Kw); + b) =1,
T l A
min - w Kw + Cz & subject to £>0 (Vi)
i=1
J

e This is again QP.
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B Dual problem

Y;((Kw); +b) =1,

T .
mlgl w Kw+CYl ¢ subject to £>0 (V)
— By Lagrangian multiplier method, the dual problem is
" SVM (dual problem) N
max Yiz1 @ — Xij=1;%;Y;Y;K;; subjectto 91< a; < C, (Vi)
= 1Ylal =0
J

e The dual problem is often preferred.
e The classifier is expressed by
n

f.(x)+ b, = Z a;.Y; K(x,X;) + b,

=1

— Sparse expression: Only the data with 0 < a;, < C appear
In the summation.

-> Support vectors.
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B KKT condition

Theorem

The solution of the primal and dual problem of SVM is
given by the following equations:

D 1-Y(f"X)+b")=& < 0(Vi) [primal constraint]
(2) & = 0(Vi) [primal constraint]
(B) 0<a; <C, (Vi) [dual constraint]
@) GA-Y, (f*X)+b) —&) = 0(vi)  [complementary]
6) &(C—af) = 0(VD), [complementary]

(7) Xj=1 Kywy — Xj o Ki; = 0,
(8) erl':la;Yj — 0;
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B Sparse expression

0.(x) = fi(x)+ b, =

— Two types of support vectors.

X;:supportvectors

8

support vectors )
Oli — C —4F LA
(Yio(X) <1)

L

ai*Yi K(X, Xl) + b*

support vectors
O0<g<C

(Yip(X)=1)
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Summary of SVM

One of the kernel methods:
e kernelization of linear large margin classifier.
e Computation depends on Gram matrices of size n.

Quadratic program:
e No local optimum.
e Many solvers are available.

e Further efficient optimization methods are available
(e.g. SMO, Piat 1999)

Sparse representation
e The solution is written by a small number of support vectors.

Regularization

e The objective function can be regarded as regularization with

hinge loss function. l-14



NOT discussed on SVM in this lecture are
e Many successful applications
e Multi-class extension
— Combination of binary classifiers (1-vs-1, 1-vs-rest)

— Generalization of large margin criterion

Crammer & Singer (2001), Mangasarian & Musicant (2001), Lee, Lin,
& Wahba (2004), etc

Other extensions
— Support vector regression (Vapnik 1995)
— v-SVM (Schélkopf et al 2000)

— Structured-output (Collins & Duffty 2001, Taskar et al 2004, Altun
et al 2003, etc)

— One-class SVM (Schokopf et al 2001)
Optimization

— Solving primal problem
e Implementation (Chih-Jen Lin’s lecture)
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C-valued Positive definite kernel

Definition.

Q: set. kK:QQx€Q — C is a positive definite kernel if for
arbitrary x, ...,x, € Q and ¢4, ..., ¢, € C,

> L Gck(x, )20,

Remark: From the above condition, the Gram matrix (k(xl-,xj)). is
ij

necessarily Hermitian, i.e. k(y,x) = k(x,y). [Exercise]
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Operations that preserve positive
definiteness

4 Proposition 4.1 R
If k;: XXX - C(i =1,2,..,) are positive definite kernels, then so
are the following:

1. (positive combination) ak, + bk, (a,b = 0).
2. (product) kik, (k1 Cx, ¥)k2 (x, )
3.  (limit) lim k;(x,y), assuming the limit exists.
- Lo /

Proof. 1 and 3 are trivial from the definition. For 2, it suffices to
prove that Hadamard product (element-wise) of two positive
semidefinite matrices is positive semidefinite.

Remark: The set of positive definite kernels on X is a closed cone,
where the topology is defined by the point-wise convergence.
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Proposition 4.2

Let A and B be positive semidefinite Hermitian matrices. Then,
Hadamard product K = A * B (element-wise product) is
positive semidefinite.

Proof) A1 00 S—
Eigendecomposition of A: A = UAUT = (U}) 0 /12.,“:' (Ué)
l.e., 0---0 A4,

A= AUUl (4 = 0by the positive semidefiniteness).
Then,
Z j=1 ' J IJ 2—12 —1C'CJiPUPUJB
=4l cUicuiB, )+ + 4,37 cUiculB;) 0.

|
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Normalization

/ Proposition 4.3

Let k be a positive definite kernel on (2, and f: Q — C be an
arbitrary function. Then,

k(x,y):= fOOkGy)f Q)

IS positive definite. In particular,

FOf )

\ IS a positive definite kernel.

~

— Proof [Exercise]
— Example. Normalization:

k(x,y)

VG 0k, y)
Is positive definite, and ||®(x)|| = 1 for any x € Q.

k(x,y) =

V-5



Proof of positive definiteness

— Euclidean inner product xTy: easy (Prop. 1.1).

— Polynomial kernel (xTy + ¢)¢ (c = 0):
xTy+0)%=Ty)4+a,(xTy)* 1+ -+ ay, a; =0.
Product and non-negative combination of p.d. kernels.

||x—y||2).

— Gaussian RBF kernel exp (— —

_ 2
exp <_ Ix 23’ I ) _ o-lxl2/0? xTy 0% H=lyII?/o?
o)

Note

eX'v/o* — 1 4

1! o2 )+ 2104 Gey)* 4

IS positive definite (Prop. 4.1). Proposition 4.3 then completes
the proof.

— Laplacian kernel is discussed later.
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Shift-invariant kernel

A positive definite kernel k(x,y) on R™ is called shift-invariant if
the kernel is of the form k(x,y) = ¥(x — y).

Examples: Gaussian, Laplacian kernel

Fourier kernel (C-valued positive definite kernel): for each w,

kp(x,y) = exp (V—_le(x — y)) = exp(V—1w"x) exp(V—1wTy)
(Prop. 4.3)

If k(x,y) = Y(x — y) is positive definite, the function v is called
positive definite.
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Bochner’s theorem

4 Theorem 4.4 (Bochner) )

Let ¥ be a continuous function on R™. Then, ¥ is (C-valued)
positive definite if and only if there is a finite non-negative Borel
measure A on R™ such that

Y(z) = fexp(\/—_lez) dA(w)

J

Bochner’s theorem characterizes all the continuous shift-invariant
positive definite kernels. {exp(vV—1w'z)|w € R™}is the generator
of the cone (see Prop. 4.1).

- Ais the inverse Fourier (or Fourier-Stieltjes) transform of .
— Roughly speaking, the shift invariant functions are the class that
have non-negative Fourier transform.
— Sufficiency is easy: Y;;ciG(z —2z) = [ | T;cie¥V"1 % 2dA(w).
Necessity is difficult.
V-8



RKHS in frequency domain

Suppose (shift-invariant) kernel k has a form

k(x,y) = f exp (V=1a" (x - y)) p(w)daw . p(w) > 0.

Then, RKHS Hj, is given by
A 2
H;, = {f (S LZ(R, d.X') |f((1))| do < OO},

flwiglw)

(F.9)= | =75

where f is the Fourier transform of f:

f(w) = 1)m [ fx)exp(—V—1wTx) dw.

2n

V-9



B Gaussian kernel

lx — ylI? 1 o?||w|l?
kG(x) y) = exXp <_ 20_2 ) ,0(;((1)) — (Zﬂ)m exXp\ — 2

2 2
j|f(w)|2exp <U szll )da) < oo}

2 2
(F,9) = @™ [ F(@)5(@) exp (“ ol >dw

Hy, = {f € I2(R, dx)

2

B Laplacian kernel (on R)

1
kL(ny) — exp(—,B|x _ yl)) ,DL((U) — 27'[((1)2 + ﬁ)
Hy, = {f € L*(R, dx) j|f(a))|2(a)2 + B)dw < oo}

(f,9) =2r | f(w)g(w)(w? + fdw

— Decay of f € H for high-frequency is different for Gaussian and
Laplacian. IV-10



RKHS by polynomial kernel

— Polynomial kernel on R:
ky(x,y) = (xTy 4+ ¢), (c>0,d €N)

ky(x,zo) = z8x?® + (Cll) czd x4 + (Czl) c?z82x%4 1 + o + 4,

Span of these functions are polynomials of degree d.

Proposition 4.5 A
If ¢ + 0, the RKHS is the space of polynomials of degree at
most d.
N\ J

[Proof: exercise. Hint. Find b; to satisfy XL, bik(x, ;) =
Z?:o a;x' as a solution to a linear equation.]
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Sum and product

(H, ky),(H,,k,): two RKHS’s and positive definite kernels on Q.
B Sum

RKHS for k, + k:
Hi+H, ={f:Q > R|3fy €EHy,3f, EHy, f = f1 + >}

IF11> = {||f1||1211 +1£2ll%, | f=fi+fofi € Hy, fo € Hp}

B Product

RKHS for kjk,:
H; @ H, =tensor product as a vector space.

{f =Xi.fi9i|fi € H, g; € Hy} isdense in H; Q H,.

Vg0 5 £ P9 =2 3 Y P, (9, g,

IV-12



Summary of Section IV

— Positive definiteness of kernels are preserved by
e Non-negative combinations,
e Product
e Point-wise limit
e Normalization

— Bochner’s theorem: characterization of the continuous shift-
invariance kernels on R™,

— Explicit form of RKHS

e RKHS with shift-invariance kernels has explicit expression in
frequency domain.

e Polynomial kerns gives RKHS of polynomials.

e Sum and product can be given.
IV-13
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Solution to Exercises

B C-valued positive definiteness

Using the definition for one point, we have k(x, x) is real and non-
negative for all x. For any x and y, applying the definition with
coefficient (¢, 1) where c € C, we have
lcl?k(x,x) + ck(x,y) + ck(y,x) + k(y,y) = 0.
Since the right hand side is real, its complex conjugate also satisfies
Ic|2k(x, x) + ¢k(x,y) + ck(y,x) + k(y,y) = 0.
The difference of the left hand side of the above two inequalities is
real, so that

C_'(k(y, X) — k(X;y)) _ C(k(y, X) _ k(x,y))

Is a real number. On the other hand, since « — @ must be pure
Imaginary for any complex number «a,

E(k(y, x) — k(x, y)) =0
holds for any ¢ € C. This implies k(y,x) = k(x,y).
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Outline

1. Mean and Variance on RKHS
2. Statistical tests with kernels

3. Conditional probabilities and beyond.
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Introduction

B “Kernel methods” for statistical inference

— We have seen that kernelization of linear methods provides
nonlinear methods, which capture ‘nonlinearity’ or ‘high-order
moments’ of original data.

e.g. nonlinear SVM, kernel PCA, kernel CCA, etc.

— This section discusses more basic statistics on RKHS

D (X) =k( , X)
X T

R SN

Q (original space)  feature map / | H (RKHS)

mean, covariance,
conditional covariance
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Mean and covariance on RKHS
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Mean on RKHS

X: random variable taking value on a measurable space (.
k: measurable positive definite kernel on Q. H: RKHS.

Always assumes “bounded” kernel for simplicity: sup k(x,x) < oo.
X

d(X)=k(-,X): feature vector = random variable on RKHS.

— Definition. The kernel mean my € H of X on H is defined by

my = E[®(X)] = [ k(-,x)dP(x).

— Reproducing expectation: (m,, f)=E[f(X)] (vf€H)

* Notation: my depends on k, also. But, we do not show it for simplicity.
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Covariance operator

(X,Y): random variable taking values on Qy, Qy, resp.
(Hy, ky), (Hy, ky): RKHS given by kernels on Qy and Qy, resp.

Definition. Cross-covariance operator: 3. : H, — H,

Yyx = E[Py(Y) ® Px(X)*] = E[Py (V)] & E[Px(X)]"

h* denotes the linear functional (h,-): f — (h, f)

— Simply, covariance of feature vectors.
c.f. Euclidean case V., = E[YXT] - E[Y]E[X]" : covariance matrix

— Reproducing covariance:
(9,2 F)=E[g(Y) f (X)]-E[g(V)IELf (X)] (=Cov[f(X),a(Y)])
forall f € Hy,g € Hy.

V-6



— Standard identification:
H*=H: <(h,,) o h.

— The operator is regarded as an element in H,y @ Hy,
l.e.,
Yyx = E[Py(Y) @ Ox(X)*] — E[Py(Y)] & E[Px(X)]”
can be regarded as
Zyx EMyx) —My @my € Hy ® Hy
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Characteristic kernel

(Fukumizu, Bach, Jordan 2004, 2009; Sriperumbudur et al 2010)

— Kernel mean can capture higher-order moments of the variable.
Example
X: R-valued random variable. k: pos.def. kernel on R.
Suppose k admits a Taylor series expansion on R.

k(u,X) = ¢, +C,(Xu)+c, (Xu)? +--- (c; > 0)
e.g.) k(x,u)=exp(xu)

The kernel mean my works as a moment generating function:
m, (u) = E[k(u, X)]=c¢, + ¢,E[ X Ju + C,E[ X ?Ju? +---

1d’ ,
——m, (U =E[X
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®: family of all the probabilities on a measurable space (Q2, B).

H: RKHS on Q with a bounded measurable kernel k.
me: kernel mean on H for a variable with probability P € ®

Definition. A bounded measureable positive definite k is called
characteristic (w.r.t. @) if the mapping

P —>H, P mg
IS one-to-one.

— The kernel mean with a characteristic kernel uniquely determines
a probability.
mp=m, < P=Q
l.e.

Ex plf(X)] = Ex olf(X)] (VfeH) & P=Q.
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— Analogy to “characteristic function”
With Fourier kernel F(x,y) = exp(\/—l X' y)

Chif., (u) = E[F(X,u)].

e The characteristic function uniquely determines a Borel
probability on R™.

e The kernel mean my (u) = E[k(u, X)] with a characteristic
kernel uniquely determines a probability on (Q, ®).

Note: QQ may not be Euclidean.

— The characteristic RKHS must be large enough!
Examples for R™ (proved later): Gaussian, Laplacian kernel.
Polynomial kernels are not characteristic.
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Statistical inference with kernel means

— Statistical inference: inference on some properties of
probabilities.

— With characteristic kernels, they can be cast into the inference
on kernel means.

Two sample problem: P = Q? mp =mg?
Independence test: Pyy = Py Q Py? Mxy) = My & my?
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Empirical Estimation

B Empirical kernel mean
— An advantage of RKHS approach is easy empirical estimation.

- Xy X, oridd. D> o(X),...,®(X,) :sample on RKHS

Empirical mean: E 1
mg(n) :HZ(D(XI) :sz(’ XI)
1=1 i=1

-

Theorem 5.1 (strong y/n-consistency)
Assume E[k(X, X)] < oo.

A —m,|=0,{/vh) (n — ).
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B Empirical covariance operator
(X1, Y1), ..., (X, Yy): 1i.d. sample on Qy X Q.
An estimator of X, is defined by

i\((r;() :li{k\/("Yi)_mY }® {kx(" Xi)_rﬁx}

N

4 Theorem 5.2

R -2ul =00 n) ()
S J

— Hilbert-Schmidt norm: same as Frobenius norm of a matrix, but
often used for infinite dimensional spaces.

1All7s = 2T X500 (), Agy)?

(sum of squares in matrix expression)
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Statistical test with kernels
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Two-sample problem

— Two sample homogeneity test
Two I.i.d. samples are given;

XX ~P  and  YyenY, ~Q.

Q: Are they sampled from the same distribution?
Null hypothesis H,: P = Q.
Alternative H;: P+ Q.

— Practically important: we often wish to distinguish two things.

e Are the experimental results of treatment and control significantly
different?

e Were the plays “Henry VI and “Henry IF’ written by the same author?

— If then means of X and Y are different, we may use it for test. If
they are identical, we need to look at higher order information.
V-15



— If mean and variance are the same, it is a very difficult problem.

— Example: do they have the same distribution?
n=+=100
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Kernel method for two-sample problem

(Gretton et al. NIPS 2007, 2010, JMLR2012).

B Kernel approach
— Comparison of Py and P, > comparison of my and my.

B Maximum Mean Discrepancy
— In population
MMD? =|m, —m, [, = E[k(X, X)]+ E[K(Y,Y)] - 2E[k(X,Y)].
(X,Y: independent copy of X,Y)

[my —m, ||, = sup [(f,m, —m, )= sup
Ay =L £y =L

[ £00dP) - [ £()dQ(x)
hence, MMD.

— With characteristic kernel, MMD =0 if and only if Py = Py.
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— Test statistics:
Empirical estimator MMD?,,

I\/IMDezmp = me - rﬁY Ha
Zk(X,,X )——ZZK(X,,Y )+—Zk(Ya,Y)

i,j=1 i=1 a=1 a,b=1

— Asymptotic distributions under H, and H, are known (see Appendix)
* Null distribution: (n + ¢)MMD¢,,, > infinite mixture of x*

- Alternative: vn+¢ (MMDZ2,, — MMD?) > normal distribution

— Approximation of null distribution
e Approximation of the mixture coefficients.
e Fitting it with Pearson curve by moment matching.
e Bootstrap (Arcones & Gine 1992)
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Experiments

Comparison of two databases.

Neural | Same 96.5 97.0 95.0

Data size / Dim Different 0.0 0.0 10.0

mgﬂ :I 1888; 138 Neural 11 Same 946 950 945
Health:  25/12600 ST Se] W] SLE
Subtype: 25/ 2118 Health Same 95.5 94.7 96.1
Different 1.0 2.8 44.0

Subtype Same 990.1 94.6 97.3

Different 0.0 0.0 28.4

WW: Wald-Walfovitz test Percentage of accepting P = Q.

KS: Kolmogorov-Smirnov test Significance level o = 0.05.

Classical methods (see Appendix) (Gretton et al. JIMLR 2012)
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Experiments for mixtures
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Independence test

B Independence
- X and Y are independent if and only if
e Probability density function:  pyy(x,y) = px(X)py (y).
e Cumulative distribution function: Fyy(x,y) = Fx(x)Fy(y).
e Characteristic function:
E [e\/—_lXTue\/—_lYTv] —E [e\/—_lXTu] E [e\/—_lYTv]

B Independence test
Given i.i.d. sample (X4,Y;), ..., (X,,, Y;,), are X and Y independent?
— Null hypothesis Hy: Pxy = Py ® Py (independent)
— Alternative H,: Pyy + Py @ Py (not independent)
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Independence with kernel

& Theorem 5.3. (Fukumizu, Bach, Jordan, JMLR 2004) A
If the product kernel kyky is characteristic, then
XY < %2,=0
- %

Recall ZYX = Myxy — My ® my € HX ® Hy.
Comparison between myy (kernel mean of Pyyx) and my @ my

(kernel mean of Py Py).

Dependence measure: Hilbert-Schmidt independence criterion

HSIC(X,Y) == |IZyxll%s

= |lmyx —my & mX”IZ-IY®HX [Exercise]

= Elkx(X,X)ky (Y, V)| + E|kx (X, X)|E|ky (Y, V)]
—2E |E[kx (X, X)|X]E[ky (v, 7)|Y]]

(X,Y): independent copy of (X,Y). Ve23



Independence test with kernels

(Gretton, Fukumizu, Teo, Song, Scholkopf, Smola. NIPS 2008)

— Test statistic: .
HSICqmypy (X, Y) = ”z(")HHS = —Tr[GxGy]

Gy, Gy: centered Gram matrices

Or equivalently,

I, (X,Y) =2 Yk (X, XK (YY) = K (X0 X Dk Y,0%,)

i,j=1 i,j,k=1

+—Zk (X,, X )Zk (Y..Y,)

i,j=1 k,/=1

— This is a special case of MMD comparing Pyxy and Py @ Py with
product kernel kxky.

— Asymptotic distributions are given similarly to MMD (Gretton et al
2009).
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Comparison with existing method

B Distance covariance (Székely et al., 2007; Székely & Rizzo, 2009)

— Distance covariance / distance correlation has gained popularity in
statistical community as a dependence measure beyond Pearson
correlation.

Definition. X,Y: m and £-dimensional random vectors .

Distance covariance:
VEX,Y) =E[IX =X'IlIY =Yl +EIIX = X"l ElY = Y'||
—2E[E[|IX — X" IX]IETIIY = Y'Il [Y]]
where (X', Y") and (X,Y) are i.i.d. ~ Pyy.
Distance correlation:
V(X,Y)

R T) = JVX, XV (YY)
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B Relation between distance covariance and MMD

/ Proposition 5.4 (Sejdinovic, Gretton, Sriperumbudur, F. ICML2012) I

A kernel on Euclidean spaces
kCe,y) = x|l + [yl =[x — yll.
IS positive definite, and

HSICZ(X,Y) = V3(X,Y).
N\ /
— Distance covariance is a specific instance of MMD.
— Positive definite kernel approach is more general in choosing
kernels, and thus may perform better.
— Extension 1
kg = lixlly + Iyllg = Ix = ylly (el = (Sals*))

k, Is positive definite for 0 < g < 2. We can define
VA(X,Y) = HSIC,%Q (X,Y)
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B Choice of kernel for MMD

— Heuristics for Gaussian kernel:
o = median { ||X; - X;|[ | i,j = 1,...,n}

— Using performance of statistical test:
Type Il error of the test statistics (Gretton et al NIPS 2012).

Challenging open gquestions.
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Conditional probabilities and
beyond
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Conditional probability

— Conditional probabilities appear in many machine learning problems

e Regression / classification: direct inference of E[Y|X] or p(y|x).
—> already seen in Section Il.

e Bayesian inference
p(ylx)m(x)

| p(y1xm(x")dx'

q(ylx) =

e Conditional independence / dependence
— Graphical modeling
Conditional independent relations
among variables.
— Causality
— Dimension reduction / feature extraction
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Conditional kernel mean

B Conditional kernel mean
Definition.

E[®y (Y)[X = x] = j ky G, V)P (1) dy

— Simply, kernel mean of p(y|x).
— It determines the conditional probability with a characteristic kernel.

— Again, inference problems on conditional probabilities can be solved
as inference on conditional kernel means.

— But, how can we estimate i1t?
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Covariance operator revisited

B (Uncentered) cross-covariance operator
X,Y: random variables on Qy, Qy,
ky, ky: positive definite kernels on Qy, Qy, Elkxy(X,X)ky(Y,Y)] < oo.

Definition. Uncentered cross-covariance operator

Cyx = E[Py(Y) ® Px(X)*] : Hy — Hy

(Or Cyxy € Hy Q@ Hy = Hy @ Hy)

— Reproducing property:
(9, Cyxu, = Elg(¥)f(X)] (Vg € Hy, f € Hy)
(f2, Cxxf1du, = Elf2(X)f1(X)] (Vf1, f2 € Hy)
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Conditional probability by regression

— Recall for zero-mean Gaussian random variable (X,Y),
E[Y|X = x] = VyxVgxx.

e Given by the solution to the least mean square
[l = AX|I?dP (X, Y)

— For the feature vector
E[®y(Y)|X = x] = CyxCxxPx(x).
e Given by the solution to the least mean square
J @y () — APy (XI5, dP(X,Y)

Cxs is not well defined in infinite dimensional cases, but
regularized estimator can be justified.
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Estimator for conditional kernel mean

— Empirical estimation: given (X1,Y;), ..., (X;,, Yy,),

A A -1
Crx(Cxx + &nl) ~Px(x)
In Gram matrix expression,
ky(*)"(Gx + ne L) " ky(x)

kx (X1, x) ky(* Y1)
ky(x) = : , Ky(*) = : .
kX (Xn: x) kY(*: Yn)

Proposition 5.5 (Consistency)

: .. p(y,x)
If ky is characteristic, P € H, @ Hy, and ¢, - 0,&,4/n -

oo as n — oo, then for every x

A A -1 .
Cyx(Cxx +&nl) kx(,x) = E[®y(Y)|X = x] in Hy
In probability.

V-34



Conditional covariance

B Review: Gaussian variables
Conditional covariance matrix: Vyyz = Vyx — Vi zVri Vox
Fact: Vyxiz = Covl[Y,X|Z = z] forany z

B Conditional cross-covariance operator
Definition: X, Y, Z: random variables on Qy, Qy, Q..
ky, ky, k. positive definite kernel on Qy, Qy, Q.
Conditional cross-covariance operator

Cyx|z = Cyx — CyzCz7 Czx

— Reproducing averaged conditional covariance
4 Proposition 5.6 If k, is characteristic, then for Vf € Hy, g € Hy,\

(g, CYX|Zf )HY = E[Cov[f(X),g(Y)|Z]]
= E[f(X)gM)] - E[E[fXIZIE[g()|Z]]
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— An interpretation: Compare the conditional kernel means for
p(y,x|z) and p(y|z)p(x|z).

E[®y(Y) ® Ox(X)|Z = z] —E[Py(V)|Z = z] Q E[Px(X)|Z = 2]
Dependence on z is not easy to handle - Average it out.

E[®y(Y) @ Ox(X)] — E[E[Py(V)]Z] @ E[Dx(X) | Z]]

Cyx — CyzCr7 - Czz - C77 Crx

—  Empirical estimator:
N N ~ N -1 A~
Cyx|z = Cyx — CYZ(CZZ + 5n1) Czx
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Conditional independence

— Recall: for Gaussian random variable
VyleZO = XJ_I_Y'Z

— By average over Z, Cyx z = O does not imply conditional
iIndependence, which requires p(y, x|z) = p(y|z)p(x|z) for each z.
— Trick: consider
Cyxiz = Cyx —Cyz C77 Czx,
where Y = (Y, Z) and the product kernel kyk, is used for Y.

Theorem 5.7 (Fukumizu et al. JMLR 2004)

Assume ky, ky, k, are characteristic, then

N /

- Cygz, Cyxz can be similarly used.
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Applications of conditional
dependence measures

B Conditional independence test (rukumizu et al. NIPS2007)

— Squared HS-norm ||5y5g|z||2s can be used for conditional
Independence test.

— Unlike the independence test, the asymptotic null distribution is
not available. Permutation test is needed.

— Background: The conditional independent test with continuous
non-Gaussian variables is not easy, and a challenging open
problem.
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B Causal inference

— Directional acyclic graph (DAG) is used for representing the
causal structure among variables.

— The structure can be learned by conditional independence tests.
The above test can be applied (Sun, Janzing, Schélkopf, F. ICML2007).

X Y X 1LY
v <:> and
Z XHY|Z

B Feature extraction / dimension reduction for
supervised learning > see next.
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Dimension reduction and conditional
independence

B Dimension reduction for supervised learning
Input: X=(X, ..., X,), Output: Y (either continuous or discrete)

Goal: find an effective dimension reduction space (EDR space)
spanned by an m x d matrix B s.t.

Prix (Y [ X) =Py gry (Y | B'X)  where BTX = (b,7X, ..., b,X)
linear feature vector
No further assumptions on cond. p.d.f. p.

- . — RT
B Conditional independence U=B %,
B spans effective subspace
<>  XILY|BTX , X
U %
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Gradient-based method

(Samarov 1993; Hristache et al 2001)

Average Derivative Estimation (ADE)

— Assumptions:
e Y is one dimensional

- EDR space p(Y | X)=p(Y |B"X)

0 O ~ T O ~

EIY|X =x] = [yB(y|BT)dy =BJy—B(y|2), g, 0y

— Gradient of the regression function
lies in the EDR space at each x

od.

> B = average or PCA
of the gradients at many x. ™|




Kernel Helps!

— Weakness of ADE:
 Difficulty of estimating gradients in high dimensional space.
ADE uses local polynomial regression.
» Sensitive to bandwidth
 May find only a subspace of the effective subspace.

eg. Y~f(X)+Z, Z~N(0,0c(X,)2).

— Kernel method

e Can handle conditional probability in regression form
E[®(V)|X = x]

- Characterizes conditional independence X 1LY | BTX
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Derivative with kernel

— Reproducing the derivative (e.g. Steinwart & Christmann, Chap. 4):

o (-9) _ |,
OX X

Assume K, (X, X) is differentiable and then

<f akx(-,x)>_af(x)
x| ox

forany f € Hy

— Combining with the estimation of conditional kernel mean,
M, () :<8E[cby ()X =x] 2@, (V)X = x]>

OX ox’

i aXj

(G ey T® @ (@ gy KX
YX XX n 8X YX XX n

The top d eigenvectors of M(x) estimates the EDR space
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Gradient-based kernel dimension
reduction (gKDR)

(Fukumizu & Leng, NIPS 2012)
— Method

e Compute
Mn :%ZVKX(Xi)T (G, +neg 1)'G, (G, +ng 1) Vk, (X))
i=1

ok, (X, ok, (X, X))
VKX(Xi):( (ax I (8X X))x_x GX:(kX(Xiixj))

N

e Compute top d eigenvectors of Mn_ - Estimator B,

— gKDR estimate the subspace to realize the conditional independence

— Choice of kernel:
Cross-validation with some regressor/classifier, e.g. KNN method.
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Experiment: ISOLET

Speech signals of 26 alphabets @
617 dim. (continuous)

6238 training data / 1559 test data

Data from UCI repository.
Results

gkDR 1443 750 500 475 -
gkDR-v 16.87 757 475 430 385 385 359 353 3.08
CCA 1309 866 654 6.09 - i i i i

Classification errors for test data by SVM (%)

c.f. C45+ ECOC: 6.61%
Neural Networks (best): 3.27%
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Experiment: Amazon Commerce Reviews

— Author identification for Amazon commerce reviews.

— Dim = 10000 (linguistic style: e.g. usage of digit, punctuation,
words and sentences' length, and frequency of words, etc)

- n = #authors x 30 (Data from UCI repository.)
Yolololos Worst book I've ever read, October 31, 2011
By el ®- See all my reviews amazon.com

RS
REAL NAME

Amazon Verified Purchase (What's this?)
This review is from: Steve Jobs (Hardcover)

I want to save you the time so here's a one line piece of advice: grab it from your library instead of buying it and you'll
thank yourself later.

Like many people, I pre-ordered this book, read it as soon as it came and was very disappointed. The book is literally a
description of events in chronological order. If you are the type that reads the news, especially tech news, you'll learn
very little here. There is no attempt at analysis and the author never bothered to ask Steve (or his colleagues, friends
or even his wife and kids) "Why?". If anything, it proves that the author Isaacson is a terrible interviewer. It takes
great skill to draw out from a human being his/her motivations and reasoning. I expect a biographer to possess that
skill. Unfortunately, Isaacson has done nothing more than compile a large number of facts and put them together in
order of Apple product releases. You'll find yourself saying "Is that all Steve was?" because he comes across as an
extremely shallow person.

Perhaps the issue lies in Isaacson's view of Steve Jobs' place in history. Elsewhere, he's speaks of Einstein and Jobs as
being comparable. I wish I'd read that before.

This is really just a terrible piece of work.

Help other customers find the most helpful reviews Report abuse Permalink V_46
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— Example of 2-dim plots

for 3 authors

— gKDR (dim = #authors)

vs correlation-based variable selection (dim=500/2000)
#Authors

10
20
30
40
50

gKDR
NN

9.3
16.2
20.1
22.8
22.7

gKDR
+ SVM

12.0
16.2
18.0
21.8
19.5

Corr (500)
+ SVM

15.7
30.2
29.2
35.4
41.1

10-fold cross-validation errors (%)

8.3
18.0
24.0
25.0
29.0
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Bayesian inference with kernels

(Fukumizu, Song, Gretton NIPS 2011)

B Bayes’ rule
p(y|x)m(x)
q(y)

q(x|y) = , q) = [ plx)m(x)dx.

B Kernel Bayes’ rule
- m > mp: kernel mean of prior, My =Y., v; kx(-U;)
- p(y|x) =2 Cyx: kernel representation of relation between X and Y,

(Xll Yl)' reny (XTU Yn)"’P, ||d

— Goal: compute kernel mean of posterior g(x|y).
ﬁlQX|Y=y = Yiz1 wikx(, X))
w(y) = RxyKy(¥)
-1
Rxyy = AGy ((AGy)? + 8,1,) A

A= Dlag((GX + nenln)_lGXU}/) V-48



Bayesian inference using kernel
Bayes' rule

— NO PARAMETRIC MODELS, BUT SAMPLES!

— When is it useful?

e Explicit form of cond. p.d.f. p(y|x) or prior m(x) is
unavailable, but sampling is easy.

— Approximate Bayesian Computation (ABC), Process prior.

e Cond. p.d.f. p(y|x) is unknown, but sample from p(x,y) is
given in training phase.

— Example: nonparametric HMM (shown later).

e If both of p(y|x) and m(x) are known, there are many good
sampling methods, such as MCMC, SMC, etc. But, they may
take long time. KBR uses matrix operations.
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Application: nonparametric HMM

Model: p(X,Y) = n(Xo) [Tt=0 P (Yl Xe) [TiZ0 9 (Xe411Xe)

— Assume: Xg Xy X, X
p(v¢|x¢) and/or q(xt|xt 1) IS not known. m g
But, data (X,,Y,)I_,is available
In training phase. Yo Y. Y, Y,

Examples:

 Measurement of hidden states is expensive,
e Hidden states are measured with time delay.

— Testing phase (e.q., filtering, e.g.):
given y,, ..., J;, estimate hidden state x;.

— Sequential filtering/prediction uses Bayes’ rule =» KBR applied.
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B Camera angles
— Hidden X;: angles of a video camera located at a corner of a room.
— Observed Y;: movie frame of a room + additive Gaussian noise.
- X;: 3600 downsampled frames of 20 x 20 RGB pixels (1200 dim. ).
— The first 1800 frames for training, and the second half for testing

noise KBR (Trace) Kalman
filter(Q)

o2 =104 0.15+<0.01 0.56 +0.02

o2 =103 0.21+0.01 0.54 £+ 0.02

Average MSE for camera angles (10 runs)

To represent SO(3) model, Tr[AB-1] for
KBR, and guaternion expression for Kalman
filter are used .
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Summary of Part V

B Kernel mean embedding of probabilities

— Kernel mean gives a representation of probability distribution.

— Inference on probabilities can be cast into inference on kernel
means. e.g. two sample test, independent test

B Conditional probabilities

— Conditional probabilities can be handled with kernel means and
covariances

e Conditional independence test
e Graphical modeling

e Causal inference

e Dimension reduction

e Bayesian inference

V-52



References

Fukumizu, K., Bach, F.R., and Jordan, M.I. (2004) Dimensionality reduction for
supervised learning with reproducing kernel Hilbert spaces. Journal of Machine
Learning Research. 5:73-99,

Fukumizu, K., F.R. Bach and M. Jordan. (2009) Kernel dimension reduction in regression.
Annals of Statistics. 37(4), pp.1871-1905

Fukumizu, K., L. Song, A. Gretton (2011) Kernel Bayes' Rule. Advances in Neural
Information Processing Systems 24 (NIPS2011) 1737-1745.

Gretton, A., K.M. Borgwardt, M.Rasch, B. Scholkopf, A.J. Smola (2007) A Kernel
Method for the Two-Sample-Problem. Advances in Neural Information Processing
Systems 19, 513-520.

Gretton, A., Z. Harchaoui, K. Fukumizu, B. Sriperumbudur (2010) A Fast, Consistent
Kernel Two-Sample Test. Advances in Neural Information Processing Systems 22,
673-681.

Gretton, A., K. Fukumizu, C.-H. Teo, L. Song, B. Scholkopf, A. Smola. (2008) A Kernel
Statistical Test of Independence. Advances in Neural Information Processing Systems
20, 585-592.

Gretton, A., K. Fukumizu, C.-H. Teo, L. Song, B. Scholkopf, A. Smola. (2008) A Kernel
Statistical Test of Independence. Advances in Neural Information Processing Systems
20, 585-592. V-53



Hristache, M., A. Juditsky, J. Polzehl, and V. Spokoiny. (2001) Structure Adaptive
Approach for Dimension Reduction. Annals of Statsitics, 29(6):1537-1566.

Samarov, A. (1993). Exploring regression structure using nonparametric functional
estimation. Journal of American Statistical Association. 88, 836-847.

Sejdinovic, D., A. Gretton, B. Sriperumbudur, K. Fukumizu. (2012) Hypothesis testing
using pairwise distances and associated kernels. Proc. 29th International
Conference on Machine Learning (ICML2012).

Sriperumbudur, B.K., A. Gretton, K. Fukumizu, B. Scholkopf, G.R.G. Lanckriet.
(2010) Hilbert Space Embeddings and Metrics on Probability Measures. Journal
of Machine Learning Research. 11:1517-1561.

Sun, X., D. Janzing, B. Schélkopf and K. Fukumizu. (2007) A kernel-based causal
learning algorithm. Proc. 24th Annual International Conference on Machine
Learning (ICML2007), 855-862.

Székely, G.J., M.L. Rizzo, and N.K. Bakirov. (2007) Measuring and testing
dependence by correlation of distances. Annals of Statistics, 35(6): 2769-2794.

Székely, G.J. and M.L. Rizzo. (2009) Brownian distance covariance. Annals of Applied
Statistics, 3(4):1236-1265.

V-54



Appendices

V-55



Statistical Test: quick introduction

B How should we set the threshold?

Example) Based on MMD, we wish to make a decision whether the
two variables have the same distribution.

Simple-minded idea: Set a small value like t = 0.001
MMD(X,Y) <t => Perhaps, same
MMD(X,Y) >t => Different

But, the threshold should depend on the properties of X and Y.

B Statistical hypothesis test

— A statistical way of deciding whether a hypothesis is true or not.
— The decision is based on sample - We cannot be 100% certain.
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B Procedure of hypothesis test

e Null hypothesis H, = hypothesis assumed to be true
“X'and Y have the same distribution”

= Prepare a test statistic Ty
e.g. TN — MMDemp2

Null distribution: Distribution of Ty, under H,

e Set significance level «  Typically « = 0.05 or 0.01

Compute the critical region: o = Pr(Ty >t, under Hy)

Reject the null hypothesis if T >,
The probability that MMD,,,,* > t, under
HO is very small.

otherwise, accept H, negatively.
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One-sided test

1

p.d.f. of Null distribution

09

08

0.7

area = p-value ] Ty>t, < p-value< a

06 a

05|

area = a (5%, 1% etc)
significance level

03}

P PRt

‘ ‘ | el 18 ...,.-.“.‘f.“..‘.a’.:‘.., P ‘
0 05 1 15 25 3 35 4 45 5
T 5

threshold t critical region

If H, is the truth, the value of 7, should follow the null distribution.
If H, is the truth, the value of 7, should be very large.
Set the threshold with risk ¢.

The threshold depends on the distribution of the data.

V-58



W Type | and Type Il error
— Type | error = false positive (e.g. “P # Q” = positive)
— Type Il error = false negative

TRUTH
Ho Alternative
Type Il error

True negative
False negative

Type I error True positive

TEST RESULT
Reject H,| Accept H,

False positive

« Significance level controls the type I error.
 Under a fixed type | error, a good test statistics should
give small type Il error.
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MMD: Asymptotic distribution

B Under H,
Xy X ~P, Yy, Yp~0Q: ii.d. Let N =n + 2.
Assume%—w, £—>(1—y) (0<y<1)as N - oo.

Under the null hypothesis of P = Q,

= 1
N MMD%,,, = E A; (zl? — > (N — o0),
l —
aw L y(1—=vy)

where Z,,Z,, ... are i.i.d. with law N(0; 1/y(1 —y)), and {4;};2, are
the eigenvalues of the integral operator on L?(P)

Tf = j k(x, y)f )dP(y)

with k the centered kernel
k(x,y) = k(x,y) — E[k(x, X)] — E[k(X,y)] + E[k(X, X)].

X:independent copy of X. .,



B Under H,
Under the alternative P # Q,

VN (MMDZ,, — MMD?) = N(0; 02) (N - ),

52 = 4 (Var[E[k(X,X;—k(X,Y)IX]] + Var[E[k(Y,lY_);k(X,Y)W]]).

— The asymptotic distributions are derived by the general theory of
U-statistics (e.g. see van der Vaart 1998, Chapter 12).

— Estimation of the null distribution:
e Estimation of A;
e Approximation by Pearson curve with moment matching.
e Bootstrap MMD (Arcones & Gine 1992)
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Conventional methods for two

sample problem
B Kolmogorov-Smirnov (K-S) test for two samples

One-dimensional variables

— Empirical distribution function

1N

Fu®) = 210X <1

i=1
— KS test statistics

Dy, =sup|Fy (t) - Fd (1)
teR

— Asymptotic null distribution
IS known (not shown here).

—

N
j{HVDw F )
|
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H \Wald-Wolfowitz run test

One-dimensional samples
— Combine the samples and plot the points in ascending order.
— Label the points based on the original two groups.

— Count the number of “runs”, I.e. consecutive sequences of the
same label.

— Test statistics R = Number of runs

_REERE ) Nog) A

JVar[R] R = 10

— In one-dimensional case, less powerful than KS test

LY

B Multidimensional extension of KS and WW test
— Minimum spanning tree is used (Friedman Rafsky 1979)
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