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Example #1: Handwritten Digit Recognition

Imagine you are asked to write a computer program that recognizes postal
codes on envelopes. You observe the huge amount of variation and
ambiguity in the data:

One can try to hard-code all the possibilities, but likely to fail. It would be
nice if a program looked at a large corpus of data and learned the
distinctions!

This picture of MNIST dataset was yanked from http://www.heikohoffmann.de/htmlthesis/node144.html
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Example #1: Handwritten Digit Recognition

Need to represent data in the computer. Pixel intensities is one possibility,
but not necessarily the best one. Feature representation:

1.1
5.3
6.2
2.9
2.3
.
.
.feature map

We also need to specify the “label” of this example: “3”. The labeled
example is then

1.1
5.3
6.2
2.9
2.3
.
.
.( ,3

(
After looking at many of these examples, we want the program to predict
the label of the next hand-written digit.
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Example #2: Predict Topic of a News Article
You would like to automatically collect news stories from the web and
display them to the reader in the best possible way. You would like to
group or filter these articles by topic. Hard-coding possible topics for
articles is a daunting task!

Representation in the computer:

0
1
0
2
5
0
1
10
.
.
.

This is a bag-of-words representation. If “1” stands for the category
“politics”, then this example can be represented as

0
1
0
2
5
0
1
10
.
.
.

( ,1

(

After looking at many of such examples, we would like the program to
predict the topic of a new article.
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Why Machine Learning?

▸ Impossible to hard-code all the knowledge into a computer program.

▸ The systems need to be adaptive to the changes in the environment.

Examples:

▸ Computer vision: face detection, face recognition

▸ Audio: voice recognition, parsing

▸ Text: document topics, translation

▸ Ad placement on web pages

▸ Movie recommendations

▸ Email spam detection
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Machine Learning

(Human) learning is the process of acquiring knowledge or skill.

Quite vague. How can we build a mathematical theory for something so
imprecise?

Machine Learning is concerned with the design and analysis of algorithms
that improve performance after observing data.

That is, the acquired knowledge comes from data.

We need to make mathematically precise the following terms: performance,
improve, data.
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Learning from Examples

How is it possible to conclude something general from specific examples?

Learning is inherently an ill-posed problem, as there are many alternatives
that could be consistent with the observed examples.

Learning can be seen as the process of induction (as opposed to deduction):
“extrapolating” from examples.

Prior knowledge is how we make the problem well-posed.

Memorization is not learning, not induction. Our theory should make this
apparent.

Very important to delineate assumptions. Then we will be able to prove
mathematically that certain learning algorithms perform well.
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Data
Space of inputs (or, predictors): X

▷ e.g. x ∈ X ⊂ {0, 1, . . . , 216}64 is a string of pixel intensities in an 8 × 8
image.

▷ e.g. x ∈ X ⊂ R33,000 is a set of gene expression levels.

x1 = x2 = . . .

x1 = x2 = . . .

x1 =

5

1

22...

x2 =

...

1

0

17

# cigarettes/day

# drinks/day

BMI

10 / 130



Data

Sometimes the space X is uniquely defined for the problem. In other cases,
such as in vision/text/audio applications, many possibilities exist, and a
good feature representation is key to obtaining good performance.

This important part of machine learning applications will not be discussed
in this lecture, and we will assume that X has been chosen by the
practitioner.
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Data

Space of outputs (or, responses): Y

▷ e.g. y ∈ Y = {0, 1} is a binary label (1 = “cat”)

▷ e.g. y ∈ Y = [0, 200] is life expectancy

A pair (x,y) is a labeled example.

▷ e.g. (x,y) is an example of an image with a label y = 1, which stands for
the presence of a face in the image x

Dataset (or training data): examples {(x1,y1), . . . , (xn,yn)}

▷ e.g. a collection of images labeled according to the presence or absence
of a face
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The Multitude of Learning Frameworks

Presence/absence of labeled data:

▸ Supervised Learning: {(x1,y1), . . . , (xn,yn)}
▸ Unsupervised Learning: {x1, . . . ,xn}
▸ Semi-supervised Learning: a mix of the above

This distinction is important, as labels are often difficult or expensive to
obtain (e.g. can collect a large corpus of emails, but which ones are spam?)

Types of labels:

▸ Binary Classification / Pattern Recognition: Y = {0, 1}
▸ Multiclass: Y = {0, . . . ,K}
▸ Regression: Y ⊆ R
▸ Structure prediction: Y is a set of complex objects (graphs,

translations)
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The Multitude of Learning Frameworks

Problems also differ in the protocol for obtaining data:

▸ Passive

▸ Active

and in assumptions on data:

▸ Batch (typically i.i.d.)

▸ Online (i.i.d. or worst-case or some stochastic process)

Even more involved: Reinforcement Learning and other frameworks.
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Why Theory?

“... theory is the first term in the Taylor series of practice”
– Thomas M. Cover, “1990 Shannon Lecture”

Theory and Practice should go hand-in-hand.

Boosting, Support Vector Machines – came from theoretical considerations.

Sometimes, theory is suggesting practical methods, sometimes practice
comes ahead and theory tries to catch up and explain the performance.
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This tutorial

First 2/3 of the tutorial: we will study the problem of supervised learning
(with a focus on binary classification) with an i.i.d. assumption on the data.

The last 1/3 of the tutorial: we will turn to online learning without the
i.i.d. assumption.
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Statistical Learning Theory

The variable x is related to y, and we would like to learn this relationship
from data.

The relationship is encapsulated by a distribution P on X ×Y.

Example: x = [weight, blood glucose, . . .] and y is the risk of diabetes. We
assume there is a relationship between x and y: it is less likely to see
certain x co-occur with “low risk” and unlikely to see some other x co-occur
with “high risk”. This relationship is encapsulated by P(x,y).

This is an assumption about the population of all (x,y). However, what we
see is a sample.
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Statistical Learning Theory

Data denoted by {(x1,y1), . . . , (xn,yn)}, where n is the sample size.

The distribution P is unknown to us (otherwise, there is no learning to be
done).

The observed data are sampled independently from P (the i.i.d.
assumption)

It is often helpful to write P = Px ×Py∣x. The distribution Px on the inputs is
called the marginal distribution, while Py∣x is the conditional distribution.
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Statistical Learning Theory

Upon observing the training data {(x1,y1), . . . , (xn,yn)}, the learner is
asked to summarize what she had learned about the relationship between x
and y.

The learner’s summary takes the form of a function f̂n ∶ X ↦ Y. The hat
indicates that this function depends on the training data.

Learning algorithm: a mapping {(x1,y1), . . . , (xn,yn)}z→ f̂n.

The quality of the learned relationship is given by comparing the response
f̂n(x) to y for a pair (x,y) independently drawn from the same distribution
P:

E(x,y)`(f̂n(x),y)
where ` ∶ Y ×Y ↦ R is a loss function. This is our measure of performance.
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Loss Functions

▸ Indicator loss (classification): `(y,y ′) = I{y≠y ′}

▸ Square loss: `(y,y ′) = (y − y ′)2

▸ Absolute loss: `(y,y ′) = ∣y − y ′∣
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Examples

Probably the simplest learning algorithm that you are probably familiar
with is linear least squares:

Given (x1,y1), . . . , (xn,yn), let

β̂ = arg min
β∈Rd

1

n

n

∑
i=1

(yi − ⟨β,xi⟩)2

and define
f̂n(x) = ⟨β̂,x⟩

Another basic method is regularized least squares:

β̂ = arg min
β∈Rd

1

n

n

∑
i=1

(yi − ⟨β,xi⟩)2 + λ∥β∥2
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Methods vs Problems

Algorithms f̂n Distributions P
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Expected Loss and Empirical Loss

The expected loss of any function f ∶ X ↦ Y is

L(f) = E`(f(x),y)

Since P is unknown, we cannot calculate L(f).

However, we can calculate the empirical loss of f ∶ X ↦ Y

L̂(f) = 1

n

n

∑
i=1

`(f(xi),yi)
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... again, what is random here?

Since data (x1,y1), . . . , (xn,yn) are a random i.i.d. draw from P,

▸ L̂(f) is a random quantity

▸ f̂n is a random quantity (a random function, output of our learning
procedure after seeing data)

▸ hence, L(f̂n) is also a random quantity

▸ for a given f ∶ X → Y, the quantity L(f) is not random!

It is important that these are understood before we proceed further.
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The Gold Standard

Within the framework we set up, the smallest expected loss is achieved by
the Bayes optimal function

f
∗ = arg min

f
L(f)

where the minimization is over all (measurable) prediction rules f ∶ X ↦ Y.

The value of the lowest expected loss is called the Bayes error:

L(f∗) = inf
f
L(f)

Of course, we cannot calculate any of these quantities since P is unknown.
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Bayes Optimal Function

Bayes optimal function f∗ takes on the following forms in these two
particular cases:

▸ Binary classification (Y = {0, 1}) with the indicator loss:

f
∗(x) = I{η(x)≥1/2}, where η(x) = E[Y∣X = x]

0

1

⌘(x)

▸ Regression (Y = R) with squared loss:

f
∗(x) = η(x), where η(x) = E[Y∣X = x]
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The big question: is there a way to construct a learning algorithm with a
guarantee that

L(f̂n) − L(f∗)
is small for large enough sample size n?
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Consistency

An algorithm that ensures

lim
n→∞

L(f̂n) = L(f∗) almost surely

is called consistent. Consistency ensures that our algorithm is approaching
the best possible prediction performance as the sample size increases.

The good news: consistency is possible to achieve.

▸ easy if X is a finite or countable set

▸ not too hard if X is infinite, and the underlying relationship between x
and y is “continuous”
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The bad news...

In general, we cannot prove anything “interesting” about L(f̂n) − L(f∗),
unless we make further assumptions (incorporate prior knowledge).

What do we mean by “nothing interesting”? This is the subject of the
so-called “No Free Lunch” Theorems. Unless we posit further assumptions,

▸ For any algorithm f̂n, any n and any ε > 0, there exists a distribution
P such that L(f∗) = 0 and

EL(f̂n) ≥
1

2
− ε

▸ For any algorithm f̂n, and any sequence an that converges to 0, there
exists a probability distribution P such that L(f∗) = 0 and for all n

EL(f̂n) ≥ an

Reference: (Devroye, Györfi, Lugosi: A Probabilistic Theory of Pattern Recognition),

(Bousquet, Boucheron, Lugosi, 2004)
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is this really “bad news”?

Not really. We always have some domain knowledge.

Two ways of incorporating prior knowledge:

▸ Direct way: assume that the distribution P is not arbitrary (also known
as a modeling approach, generative approach, statistical modeling)

▸ Indirect way: redefine the goal to perform as well as a reference set F
of predictors:

L(f̂n) − inf
f∈F

L(f)

This is known as a discriminative approach. F encapsulates our
inductive bias.
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Pros/Cons of the two approaches

Pros of the discriminative approach: we never assume that P takes some
particular form, but we rather put our prior knowledge into “what are the
types of predictors that will do well”. Cons: cannot really interpret f̂n.

Pros of the generative approach: can estimate the model / parameters of
the distribution (inference). Cons: it is not clear what the analysis says if
the assumption is actually violated.

Both approaches have their advantages. A machine learning researcher or
practitioner should ideally know both and should understand their
strengths and weaknesses.

In this tutorial we only focus on the discriminative approach.
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Example: Linear Discriminant Analysis

Consider the classification problem with Y = {0, 1}. Suppose the
class-conditional densities are multivariate Gaussian with the same
covariance Σ = I:

p(x∣y = 0) = (2π)
−k/2

exp{−
1

2
∥x −µ0∥

2
}

and
p(x∣y = 1) = (2π)

−k/2
exp{−

1

2
∥x −µ1∥

2
}

The “best” (Bayes) classifier is f∗ = I{P(y=1∣x)≥1/2} which corresponds to the
half-space defined by the decision boundary p(x∣y = 1) ≥ p(x∣y = 0). This
boundary is linear.
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Example: Linear Discriminant Analysis

The (linear) optimal decision boundary comes from our generative
assumption on the form of the underlying distribution.

Alternatively, we could have indirectly postulated that we will be looking
for a linear discriminant between the two classes, without making
distributional assumptions. Such linear discriminant (classification)
functions are

I{⟨w,x⟩≥b}

for a unit-norm w and some bias b ∈ R.

Quadratic Discriminant Analysis: If unequal correlation matrices Σ1 and Σ2

are assumed, the resulting boundary is quadratic. We can then define
classification function by

I{q(x)≥0}

where q(x) is a quadratic function.
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Bias-Variance Tradeoff
How do we choose the inductive bias F?

L(f̂n) − L(f∗) = L(f̂n) − inf
f∈F

L(f)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Estimation Error

+ inf
f∈F

L(f) − L(f∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Approximation Error

F

f̂n f⇤fF

Clearly, the two terms are at odds with each other:

▸ Making F larger means smaller approximation error but (as we will
see) larger estimation error

▸ Taking a larger sample n means smaller estimation error and has no
effect on the approximation error.

▸ Thus, it makes sense to trade off size of F and n. This is called
Structural Risk Minimization, or Method of Sieves, or Model Selection.
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Bias-Variance Tradeoff

We will only focus on the estimation error, yet the ideas we develop will
make it possible to read about model selection on your own.

Note: if we guessed correctly and f∗ ∈ F , then

L(f̂n) − L(f∗) = L(f̂n) − inf
f∈F

L(f)

For a particular problem, one hopes that prior knowledge about the problem
can ensure that the approximation error inff∈F L(f) − L(f∗) is small.
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Occam’s Razor

Occam’s Razor is often quoted as a principle for choosing the simplest
theory or explanation out of the possible ones.

However, this is a rather philosophical argument since simplicity is not
uniquely defined. We will discuss this issue later.

What we will do is to try to understand “complexity” when it comes to
behavior of certain stochastic processes. Such a question will be
well-defined mathematically.
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Looking Ahead

So far: represented prior knowledge by means of the class F .

Looking forward, we can find an algorithm that, after looking at a dataset
of size n, produces f̂n such that

L(f̂n) − inf
f∈F

L(f)

decreases (in a certain sense which we will make precise) at a non-trivial
rate which depends on “richness” of F .

This will give a sample complexity guarantee: how many samples are
needed to make the error smaller than a desired accuracy.
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Types of Bounds

In expectation vs in probability (control the mean vs control the tails):

E{L(f̂n) − inf
f∈F

L(f)} < ψ(n) vs P (L(f̂n) − inf
f∈F

L(f) ≥ ε) < ψ(n,ε)

The in-probability bound can be inverted as

P (L(f̂n) − inf
f∈F

L(f) ≥ φ(δ,n)) < δ

by setting δ ∶= ψ(ε,n) and solving for ε.

In this lecture, we are after the function φ(δ,n). We will call it “the rate”.

“With high probability” typically means logarithmic dependence of φ(δ,n)
on 1/δ. Very desirable: the bound grows only modestly even for high
confidence bounds.
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Sample Complexity

Sample complexity is the sample size required by the algorithm f̂n to
guarantee L(f̂n) − inff∈F L(f) ≤ ε with probability at least 1 − δ. Of course,
we just need to invert a bound

P (L(f̂n) − inf
f∈F

L(f) ≥ φ(δ,n)) < δ

by setting ε ∶= φ(δ,n) and solving for n. In other words, n(ε, δ) is sample
complexity of the algorithm f̂n if

P (L(f̂n) − inf
f∈F

L(f) ≥ ε) ≤ δ

as soon as n ≥ n(ε, δ).

Hence, “rate” can be translated into “sample complexity” and vice versa.

Easy to remember: rate O(1/
√
n) means O(1/ε2) sample complexity,

whereas rate O(1/n) is a smaller O(1/ε) sample complexity.
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Types of Bounds
Other distinctions to keep in mind: We can ask for bounds (either in
expectation or in probability) on the following random variables:

L(f̂n) − L(f∗) (A)

L(f̂n) − inf
f∈F

L(f) (B)

L(f̂n) − L̂(f̂n) (C)

sup
f∈F

{L(f) − L̂(f)} (D)

sup
f∈F

{L(f) − L̂(f) − penn(f)} (E)

Let’s make sure we understand the differences between these random
quantities!
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Types of Bounds

Upper bounds on (D) and (E) are used as tools for achieving the other
bounds. Let’s see why.

Obviously, for any algorithm that outputs f̂n ∈ F ,

L(f̂n) − L̂(f̂n) ≤ sup
f∈F

{L(f) − L̂(f)}

and so a bound on (D) implies a bound on (C).

How about a bound on (B)? Is it implied by (C) or (D)? It depends on
what the algorithm does!

Denote fF = arg minf∈F L(f). Suppose (D) is small. It then makes sense to
ask the learning algorithm to minimize or (approximately minimize) the
empirical error (why?)

45 / 130



Canonical Algorithms

Empirical Risk Minimization (ERM) algorithm:

f̂n = arg min
f∈F

L̂(f)

Regularized Empirical Risk Minimization algorithm:

f̂n = arg min
f∈F

L̂(f) + penn(f)

We will deal with the regularized ERM a bit later. For now, let’s focus on
ERM.

Remark: to actually compute f ∈ F minimizing the above objectives, one
needs to employ some optimization methods. In practice, the objective
might be optimized only approximately.
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Performance of ERM

If f̂n is an ERM,

L(f̂n) − L(fF) ≤ {L(f̂n) − L̂(f̂n)} + {L̂(f̂n) − L̂(fF)} + {L̂(fF) − L(fF)}
≤ {L(f̂n) − L̂(f̂n)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(C)

+{L̂(fF) − L(fF)}

≤ sup
f∈F

{L(f) − L̂(f)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(D)

+{L̂(fF) − L(fF)}

because the second term is negative. So, (C) also implies a bound on (B)
when f̂n is ERM (or “close” to ERM). Also, (D) also implies a bound on
(B).

What about this extra term L̂(fF) − L(fF)? Central Limit Theorem says
that for i.i.d. random variables with bounded second moment, the average
converges to the expectation. Let’s quantify this.
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Hoeffding Inequality

Let W,W1, . . . ,Wn be i.i.d. such that P (a ≤W ≤ b) = 1. Then

P (EW − 1

n

n

∑
i=1

Wi > ε) ≤ exp(− 2nε2

(b − a)2
)

and

P ( 1

n

n

∑
i=1

Wi − EW > ε) ≤ exp(− 2nε2

(b − a)2
)

Let Wi = `(fF(xi),yi). Clearly, W1, . . . ,Wi are i.i.d. Then,

P (∣L(fF) − L̂(fF)∣ > ε) ≤ 2 exp(− 2nε2

(b − a)2
)

assuming a ≤ `(fF(x),y) ≤ b for all x ∈ X ,y ∈ Y.
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Wait, Are We Done?

Can’t we conclude directly that (C) is small? That is,

P (E`(f̂n(x),y) −
1

n

n

∑
i=1

`(f̂n(xi),yi) > ε) ≤ 2 exp(− 2nε2

(b − a)2
) ?

No! The random variables `(f̂n(xi),yi) are not necessarily independent and
it is possible that

E`(f̂n(x),y) = EW ≠ E`(f̂n(xi),yi) = EWi

The expected loss is “out of sample performance” while the second term is
“in sample”.

We say that `(f̂n(xi),yi) is a biased estimate of E`(f̂n(x),y).

How bad can this bias be?

49 / 130



Wait, Are We Done?

Can’t we conclude directly that (C) is small? That is,

P (E`(f̂n(x),y) −
1

n

n

∑
i=1

`(f̂n(xi),yi) > ε) ≤ 2 exp(− 2nε2

(b − a)2
) ?

No! The random variables `(f̂n(xi),yi) are not necessarily independent and
it is possible that

E`(f̂n(x),y) = EW ≠ E`(f̂n(xi),yi) = EWi

The expected loss is “out of sample performance” while the second term is
“in sample”.

We say that `(f̂n(xi),yi) is a biased estimate of E`(f̂n(x),y).

How bad can this bias be?

49 / 130



Example

▸ X = [0, 1], Y = {0, 1}
▸ `(f(Xi),Yi) = I{f(Xi)≠Yi}

▸ distribution P = Px × Py∣x with Px = Unif[0, 1] and Py∣x = δy=1

▸ function class

F = ∪n∈N{f = fS ∶ S ⊂ X , ∣S∣ = n, fS(x) = I{x∈S}}

0

1

1

ERM f̂n memorizes (perfectly fits) the data, but has no ability to
generalize. Observe that

0 = E`(f̂n(xi),yi) ≠ E`(f̂n(x),y) = 1

This phenomenon is called overfitting.
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Example

Not only is (C) large in this example. Also, uniform deviations (D) do not
converge to zero.

For any n ∈ N and any (x1,y1), . . . , (xn,yn) ∼ P

sup
f∈F

{Ex,y`(f(x),y) −
1

n

n

∑
i=1

`(f(xi),yi)} = 1

Where do we go from here? Two approaches:

1. understand how to upper bound uniform deviations (D)
2. find properties of algorithms that limit in some way the bias of
`(f̂n(xi),yi). Stability and compression are two such approaches.
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Uniform Deviations

We first focus on understanding

sup
f∈F

{Ex,y`(f(x),y) −
1

n

n

∑
i=1

`(f(xi),yi)}

If F = {f0} consists of a single function, then clearly

sup
f∈F

{E`(f(x),y) − 1

n

n

∑
i=1

`(f(xi),yi)} = {E`(f0(x),y) −
1

n

n

∑
i=1

`(f0(xi),yi)}

This quantity is OP(1/
√
n) by Hoeffding’s inequality, assuming

a ≤ `(f0(x),y) ≤ b.

Moral: for “simple” classes F the uniform deviations (D) can be bounded
while for “rich” classes not. We will see how far we can push the size of F .
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A bit of notation to simplify things...

To ease the notation,

▸ Let zi = (xi,yi) so that the training data is {z1, . . . , zn}
▸ g(z) = `(f(x),y) for z = (x,y)
▸ Loss class G = {g ∶ g(z) = `(f(x),y)} = ` ○F
▸ ĝn = `(f̂n(⋅), ⋅), gG = `(fF(⋅), ⋅)
▸ g∗ = arg ming Eg(z) = `(f∗(⋅), ⋅) is Bayes optimal (loss) function

We can now work with the set G, but keep in mind that each g ∈ G
corresponds to an f ∈ F :

g ∈ G ←→ f ∈ F

Once again, the quantity of interest is

sup
g∈G

{Eg(z) − 1

n

n

∑
i=1

g(zi)}

On the next slide, we visualize deviations Eg(z) − 1
n ∑

n
i=1 g(zi) for all

possible functions g and discuss all the concepts introduces so far.
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Empirical Process Viewpoint
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Empirical Process Viewpoint

A stochastic process is a collection of random variables indexed by some set.

An empirical process is a stochastic process

{Eg(z) − 1

n

n

∑
i=1

g(zi)}
g∈G

indexed by a function class G.

Uniform Law of Large Numbers:

sup
g∈G

∣Eg − 1

n

n

∑
i=1

g(zi)∣→ 0

in probability.

Key question: How “big” can G be for the supremum of the empirical
process to still be manageable?
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Union Bound (Boole’s inequality)

Boole’s inequality: for a finite or countable set of events,

P (∪jAj) ≤∑
j

P (Aj)

Let G = {g1, . . . ,gN}. Then

P (∃g ∈ G ∶ Eg − 1

n

n

∑
i=1

g(zi) > ε) ≤
N

∑
j=1

P (Egj −
1

n

n

∑
i=1

gj(zi) > ε)

Assuming P (a ≤ g(zi) ≤ b) = 1 for every g ∈ G,

P (sup
g∈G

{Eg − 1

n

n

∑
i=1

g(zi)} > ε) ≤ N exp(− 2nε2

(b − a)2
)
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Finite Class

Alternatively, we set δ = N exp (− 2nε2

(b−a)2 ) and write

P
⎛
⎝

sup
g∈G

{Eg − 1

n

n

∑
i=1

g(zi)} > (b − a)
√

log(N) + log(1/δ)
2n

⎞
⎠
≤ δ

Another way to write it: with probability at least 1 − δ,

sup
g∈G

{Eg − 1

n

n

∑
i=1

g(zi)} ≤ (b − a)
√

log(N) + log(1/δ)
2n

Hence, with probability at least 1 − δ, the ERM algorithm f̂n for a class F
of cardinality N satisfies

L(f̂n) − inf
f∈F

L(f) ≤ 2(b − a)
√

log(N) + log(1/δ)
2n

assuming a ≤ `(f(x),y) ≤ b for all f ∈ F , x ∈ X , y ∈ Y.

The constant 2 is due to the L(f
F
) − L̂(f

F
) term. This is a loose upper bound.
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Once again...

A take-away message is that the following two statements are worlds apart:

with probability at least 1 − δ, for any g ∈ G, Eg − 1

n

n

∑
i=1

g(zi) ≤ ε

vs

for any g ∈ G, with probability at least 1 − δ, Eg − 1

n

n

∑
i=1

g(zi) ≤ ε

The second statement follows from CLT, while the first statement is often
difficult to obtain and only holds for some G.
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Countable Class: Weighted Union Bound

Let G be countable and fix a distribution w on G such that ∑g∈G w(g) ≤ 1.
For any δ > 0, for any g ∈ G

P
⎛
⎝
Eg − 1

n

n

∑
i=1

g(zi) ≥ (b − a)
√

log 1/w(g) + log(1/δ)
2n

⎞
⎠
≤ δ ⋅w(g)

by Hoeffding’s inequality (easy to verify!). By the Union Bound,

P
⎛
⎝
∃g ∈ G ∶ Eg − 1

n

n

∑
i=1

g(zi) ≥ (b − a)
√

log 1/w(g) + log(1/δ)
2n

⎞
⎠
≤ δ∑

g∈G
w(g) ≤ δ

Therefore, with probability at least 1 − δ, for all f ∈ F

L(f) − L̂(f) ≤ (b − a)
√

log 1/w(f) + log(1/δ)
2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
penn(f)
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Countable Class: Weighted Union Bound

If f̂n is a regularized ERM,

L(f̂n) − L(fF) ≤ {L(f̂n) − L̂(f̂n) − penn(f̂n)}
+ {L̂(f̂n) + penn(f̂n) − L̂(fF) − penn(fF)}
+ {L̂(fF) − L(fF)} + penn(fF)
≤ sup
f∈F

{L(f) − L̂(f) − penn(f)} + {L̂(fF) − L(fF)} + penn(fF)

So, (E) implies a bound on (B) when f̂n is regularized ERM.
From the weighted union bound for a countable class:

L(f̂n) − L(fF) ≤ {L̂(fF) − L(fF)} + penn(fF)

≤ 2(b − a)
√

log 1/w(fF) + log(1/δ)
2n
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Uncountable Class: Compression Bounds

Let us make the dependence of the algorithm f̂n on the training set
S = {(x1,y1), . . . , (xn,yn)} explicit: f̂n = f̂n[S].

Suppose F has the property that there exists a “compression function” Ck
which selects from any dataset S of any size n a subset of k labeled
examples Ck(S) ⊆ S such that the algorithm can be written as

f̂n[S] = f̂k[Ck(S)]

Then,

L(f̂n) − L̂(f̂n) = E`(f̂k[Ck(S)](x),y) −
1

n

n

∑
i=1

`(f̂k[Ck(S)](xi),yi)

≤ max
I⊂{1,...,n},∣I∣≤k

{E`(f̂k[SI](x),y) −
1

n

n

∑
i=1

`(f̂k[SI](xi),yi)}
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Uncountable Class: Compression Bounds

Since f̂k[SI] only depends on k out of n points, the empirical average is
“mostly out of sample”. Adding and subtracting

1

n
∑

(x ′,y ′)∈W
`(f̂k[SI](x ′),y ′)

for an additional set of i.i.d. random variables W = {(x ′1,y ′1), . . . , (x ′k,y ′k)}
results in an upper bound

max
I⊂{1,...,n},∣I∣≤k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E`(f̂k[SI](x),y) −

1

n
∑

(x,y)∈S∖SI∪W∣I∣
`(f̂k[SI](x),y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ (b − a)k

n

We appeal to the union bound over the (n
k
) possibilities, with a Hoeffding’s

bound for each. Then with probability at least 1 − δ,

L(f̂n) − inf
f∈F

L(f) ≤ 2(b − a)
√
k log(en/k) + log(1/δ)

2n
+ (b − a)k

n

assuming a ≤ `(f(x),y) ≤ b for all f ∈ F , x ∈ X , y ∈ Y.
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Example: Classification with Thresholds in 1D

▸ X = [0, 1], Y = {0, 1}
▸ F = {fθ ∶ fθ(x) = I{x≥θ},θ ∈ [0, 1]}
▸ `(fθ(x),y) = I{fθ(x)≠y}

0 1

f̂n

For any set of data (x1,y1), . . . , (xn,yn), the ERM solution f̂n has the
property that the first occurrence xl on the left of the threshold has label
yl = 0, while first occurrence xr on the right – label yr = 1.

Enough to take k = 2 and define f̂n[S] = f̂2[(xl, 0), (xr, 1)].
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Stability

Yet another way to limit the bias of `(f̂n(xi),yi) as an estimate of L(f̂n) is
through a notion of stability.

An algorithm f̂n is stable if a change (or removal) of a single data point
does not change (in a certain mathematical sense) the function f̂n by much.

Of course, a dumb algorithm which outputs f̂n = f0 without even looking at
data is very stable and `(f̂n(xi),yi) are independent random variables...
But it is not a good algorithm! We would like to have an algorithm that
both approximately minimizes the empirical error and is stable.

Turns out, certain types of regularization methods are stable. Example:

f̂n = arg min
f∈F

1

n

n

∑
i=1

(f(xi) − yi)2 + λ∥f∥2
K

where ∥ ⋅ ∥ is the norm induced by the kernel of a reproducing kernel
Hilbert space (RKHS) F .
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Summary so far

We proved upper bounds on L(f̂n) − L(fF) for

▸ ERM over a finite class

▸ Regularized ERM over a countable class (weighted union bound)

▸ ERM over classes F with the compression property

▸ ERM or Regularized ERM that are stable (only sketched it)

What about a more general situation? Is there a way to measure complexity
of F that tells us whether ERM will succeed?
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Uniform Convergence and Symmetrization

Let z ′1, . . . , z ′n be another set of n i.i.d. random variables from P.
Let ε1, . . . ,εn be i.i.d. Rademacher random variables:

P (εi = −1) = P (εi = +1) = 1/2

Let’s get through a few manipulations:

E sup
g∈G

{Eg(z) − 1

n

n

∑
i=1

g(zi)} = Ez1∶n sup
g∈G

{Ez ′
1∶n

{ 1

n

n

∑
i=1

g(z ′i)} −
1

n

n

∑
i=1

g(zi)}

By Jensen’s inequality, this is upper bounded by

Ez1∶n,z ′
1∶n

sup
g∈G

{ 1

n

n

∑
i=1

g(z ′i) −
1

n

n

∑
i=1

g(zi)}

which is equal to

Eε1∶nEz1∶n,z ′
1∶n

sup
g∈G

{ 1

n

n

∑
i=1

εi(g(z ′i) − g(zi))}
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Uniform Convergence and Symmetrization

Eε1∶nEz1∶n,z ′
1∶n

sup
g∈G

{ 1

n

n

∑
i=1

εi(g(z ′i) − g(zi))}

≤ E sup
g∈G

{ 1

n

n

∑
i=1

εig(z ′i)} + E sup
g∈G

{ 1

n

n

∑
i=1

−εig(zi)}

= 2E sup
g∈G

{ 1

n

n

∑
i=1

εig(zi)}

The empirical Rademacher averages of G are defined as

R̂n(G) = E [sup
g∈G

{ 1

n

n

∑
i=1

εig(zi)} ∣ z1, . . . , zn]

The Rademacher average (or Rademacher complexity) of G is

Rn(G) = Ez1∶nR̂n(G)
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Classification: Loss Function Disappears

Let us focus on binary classification with indicator loss and let F be a class
of {0, 1}-valued functions. We have

`(f(x),y) = I{f(x)≠y} = (1 − 2y)f(x) + y

and thus

R̂n(G) = E [sup
f∈F

{ 1

n

n

∑
i=1

εi(f(xi)(1 − 2yi) + yi)} ∣ (x1,y1) . . . , (xn,yn)]

= E [sup
f∈F

{ 1

n

n

∑
i=1

εif(xi)} ∣ x1, . . . ,xn] = R̂n(F)

because, given y1, . . . ,yn, the distribution of εi(1 − 2yi) is the same as εi.
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Vapnik-Chervonenkis Theory for Classification

We are now left examining

E [sup
f∈F

{ 1

n

n

∑
i=1

εif(xi)} ∣ x1, . . . ,xn]

Given x1, . . . ,xn, define the projection of F onto sample:

F ∣x1∶n = {(f(x1), . . . , f(xn)) ∈ {0, 1}n ∶ f ∈ F} ⊆ {0, 1}n

Clearly, this is a finite set and

R̂n(F) = Eε1∶n max
v∈F ∣x1∶n

1

n

n

∑
i=1

εivi ≤
√

2 log card(F ∣x1∶n)
n

This is because a maximum of N (sub)Gaussian random variables ∼
√

logN.

The bound is nontrivial as long as log card(F ∣x1∶n) = o(n).

71 / 130



Vapnik-Chervonenkis Theory for Classification

The growth function is defined as

ΠF(n) = max{card(F ∣x1,...,xn) ∶ x1, . . . ,xn ∈ X}

The growth function measures expressiveness of F . In particular, if F can
produce all possible signs (that is, ΠF(n) = 2n), the bound becomes useless.

We say that F shatters some set x1, . . . ,xn if F ∣xn = {0, 1}n.

The Vapnik-Chervonenkis (VC) dimension of the class F is defined as

vc(F) = max{d ∶ ΠF(t) = 2t}

Vapnik-Chervonenkis-Sauer-Shelah Lemma: If d = vc(F) <∞, then

ΠF(n) ≤
d

∑
i=0

(n
d
) ≤ (en

d
)
d
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Vapnik-Chervonenkis Theory for Classification

Conclusion: for any F with vc(F) <∞, the ERM algorithm satisfies

E{L(f̂n) − inf
f∈F

L(f)} ≤ 2

√
2d log(en/d)

n

While we proved the result in expectation, the same type of bound holds
with high probability.

VC dimension is a combinatorial dimension of a binary-valued function
class. Its finiteness is necessary and sufficient for learnability if we place no
assumptions on the distribution P.

Remark: the bound is similar to that obtained through compression. In
fact, the exact relationship between compression and VC dimension is still
an open question.
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Vapnik-Chervonenkis Theory for Classification

Examples of VC classes:

▸ Half-spaces F = {I{⟨w,x⟩+b≥0} ∶ w ∈ Rd, ∥w∥ = 1,b ∈ R} has vc(F) = d + 1

▸ For a vector space H of dimension d, VC dimension of
F = {I{h(x)≥0} ∶ h ∈H} is at most d

▸ The set of Euclidean balls F = {I{∑di=1 ∥xi−ai∥2≤b}
∶ a ∈ Rd,b ∈ R} has

VC dimension at most d + 2.

▸ Functions that can be computed using a finite number of arithmetic
operations (see (Goldberg and Jerrum, 1995))

However: F = {fα(x) = I{sin(αx)≥0} ∶ α ∈ R} has infinite VC dimension, so it
is not correct to think of VC dimension as the number of parameters!

Unfortunately, the VC theory is unable to explain the good performance of
neural networks and Support Vector Machines! This prompted the
development of a margin-based theory.
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Classification with Real-Valued Functions

Many methods use
I(F) = {I{f≥0} ∶ f ∈ F}

for classification. The VC dimension can be very large, yet in practice the
methods work well.

Example: f(x) = fw(x) = ⟨w,ψ(x)⟩ where ψ is a mapping to a high-
dimensional feature space (see Kernel Methods). The VC dimension of the
set is typically huge (equal to the dimensionality of ψ(x)) or infinite, yet
the methods perform well!

Is there an explanation beyond VC theory?
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Margins

Hard margin:
∃f ∈ F ∶ ∀i, yif(xi) ≥ γ

f(x)

More generally, we hope to have

∃f ∈ F ∶ card({i ∶ yif(xi) < γ})
n

is small
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Surrogate Loss
Define

φ(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if s ≤ 0

1 − s/γ if 0 < s < γ
0 if s ≥ γ

Then: I{y≠sign(f(x))} = I{yf(x)≤0} ≤ φ(yf(x)) ≤ ψ(yf(x)) = I{yf(x)≤γ}

The function φ is an example of a surrogate loss function.

�(yf(x))

�

 (yf(x))I{yf(x)60}

yf(x)

Let

Lφ(f) = Eφ(yf(x)) and L̂φ(f) =
1

n

n

∑
i=1

φ(yif(xi))

Then
L(f) ≤ Lφ(f), L̂φ(f) ≤ L̂ψ(f)

78 / 130



Surrogate Loss

Now consider uniform deviations for the surrogate loss:

E sup
f∈F

{Lφ(f) − L̂φ(f)}

We had shown that this quantity is at most 2Rn(φ(F)) for

φ(F) = {g(z) = φ(yf(x)) ∶ f ∈ F}

A useful property of Rademacher averages:

Rn(φ(F)) ≤ LRn(F) if φ is L-Lipschitz.

Observe that in our example φ is 1/γ-Lipschitz. Hence,

E sup
f∈F

{Lφ(f) − L̂φ(f)} ≤
2

γ
Rn(F)
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Margin Bound
Same result in high probability: with probability at least 1 − δ,

sup
f∈F

{Lφ(f) − L̂φ(f)} ≤
2

γ
Rn(F) +

√
log(1/δ)

2n

With probability at least 1 − δ, for all f ∈ F

L(f) ≤ L̂ψ(f) +
2

γ
Rn(F) +

√
log(1/δ)

2n

If f̂n is minimizing margin loss

f̂n = arg min
f∈F

1

n

n

∑
i=1

φ(yif(xi))

then with probability at least 1 − δ

L(f̂n) ≤ inf
f∈F

Lψ(f) +
4

γ
Rn(F) + 2

√
log(1/δ)

2n

Note: φ assumes knowledge of γ, but this assumption can be removed.
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Useful Properties

1. If F ⊆ G, then R̂n(F) ≤ R̂n(G)
2. R̂n(F) = R̂n(conv(F))
3. For any c ∈ R, R̂n(cF) = ∣c∣R̂n(F)
4. If φ ∶ R↦ R is L-Lipschitz (that is, φ(a) −φ(b) ≤ L∣a − b∣ for all
a,b ∈ R), then

R̂n(φ ○F) ≤ LR̂n(F)
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Rademacher Complexity of Kernel Classes

▸ Feature map φ ∶ X ↦ `2 and p.d. kernel K(x1,x2) = ⟨φ(x1),φ(x2)⟩
▸ The set FB = {f(x) = ⟨w,φ(x)⟩ ∶ ∥w∥ ≤ B} is a ball in H
▸ Reproducing property f(x) = ⟨f,K(x, ⋅)⟩

An easy calculation shows that empirical Rademacher averages are upper
bounded as

R̂n(FB) = E sup
f∈F1

1

n

n

∑
i=1

εif(xi) = E sup
f∈FB

1

n

n

∑
i=1

εi ⟨f,K(xi, ⋅)⟩

= E sup
f∈FB

⟨f, 1

n

n

∑
i=1

εiK(xi, ⋅)⟩ = B ⋅ E∥ 1

n

n

∑
i=1

εiK(xi, ⋅)∥

= B
n
E
⎛
⎝
n

∑
i,j=1

εiεj ⟨K(xi, ⋅),K(xj, ⋅)⟩
⎞
⎠

−1/2

≤ B
n

(
n

∑
i=1

K(xi,xi))
−1/2

A data-independent bound of O(Bκ/
√
n) can be obtained if

supx∈X K(x,x) ≤ κ2. Then κ and B are the effective “dimensions”.
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Other Examples

Using properties of Rademacher averages, we may establish guarantees for
learning with neural networks, decision trees, and so on.

Powerful technique, typically requires only a few lines of algebra.

Occasionally, covering numbers and scale-sensitive dimensions can be easier
to deal with.
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Real-Valued Functions: Covering Numbers
Consider

▸ a class F of [−1, 1]-valued functions

▸ let Y = [−1, 1], `(f(x),y) = ∣f(x) − y∣

We have
E sup
f∈F

L(f) − L̂(f) ≤ 2Ex1∶nR̂n(F)

For real-valued functions the cardinality of F ∣x1∶n is infinite. However,
similar functions f and f ′ with

(f(x1), . . . , f(xn)) ≈ (f ′(x1), . . . , f ′(xn))

should be treated as the same.

↵
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Real-Valued Functions: Covering Numbers

Given α > 0, suppose we can find V ⊂ [−1, 1]n of finite cardinality such that

∀f,∃vf ∈ V, s.t.
1

n

n

∑
i=1

∣f(xi) − vfi ∣ ≤ α

Then

R̂n(F) = Eε1∶n sup
f∈F

1

n

n

∑
i=1

εif(xi)

= Eε1∶n sup
f∈F

1

n

n

∑
i=1

εi(f(xi) − vfi) + Eε1∶n sup
f∈F

1

n

n

∑
i=1

εiv
f
i

≤ α + Eε1∶n max
v∈V

1

n

n

∑
i=1

εivi

Now we are back to the set of finite cardinality:

R̂n(F) ≤ α +
√

2 log card(V)
n
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Real-Valued Functions: Covering Numbers

Such a set V is called an α-cover (or α-net). More precisely, a set V is an
α-cover with respect to `p norm if

∀f,∃vf ∈ V, s.t.
1

n

n

∑
i=1

∣f(xi) − vfi ∣p ≤ αp

The size of the smallest α-cover is denoted by Np(F ∣x1∶n ,α).

x1 x2 xT

Above : Two sets of levels provide an α-cover for the four functions. Only
the values of functions on x1, . . . ,xT are relevant.
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Real-Valued Functions: Covering Numbers

We have proved that for any x1, . . . ,xn,

R̂n(F) ≤ inf
α≥0

{α + 1√
n

√
2 log card(N1(F ∣x1∶n ,α))}

A better bound (called Dudley entropy integral):

R̂n(F) ≤ inf
α≥0

{4α + 12√
n
∫

1

α

√
2 log card(N2(F ∣x1∶n , δ))dδ}
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Example: Nondecreasing functions.

Consider the set F of nondecreasing functions R↦ [−1, 1].

While F is a very large set, F ∣x1∶n is not that large:

N1(F ∣x1∶n ,α) ≤ N2(F ∣x1∶n ,α) ≤ n2/α.

The first bound on the previous slide yields

inf
α≥0

{α + 1√
αn

√
4 log(n)} = Õ(n−1/3)

while the second bound (the Dudley entropy integral)

inf
α≥0

{4α + 12√
n
∫

1

α

√
4/δ log(n)dδ} = Õ(n−1/2)

where the Õ notation hides logarithmic factors.
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Scale-Sensitive Dimensions

We say that F ⊆ RX α-shatters a set (x1, . . . ,xT ) if there exist
(y1, . . . ,yT ) ∈ RT (called a witness to shattering) with the following
property:

∀(b1, . . . ,bT ) ∈ {0, 1}T , ∃f ∈ F s.t.

f(xt) > yt +
α

2
if bt = 1 and f(xt) < yt −

α

2
if bt = 0

The fat-shattering dimension of F at scale α, denoted by fat(F ,α), is the
size of the largest α-shattered set.

Wait, another measure of complexity of F? How is it related to covering
numbers?

Theorem (Mendelson & Vershynin): For F ⊆ [−1, 1]X and any 0 < α < 1,

N2(F ∣x1∶n ,α) ≤ ( 2

α
)
K⋅fat(F,cα)

where K, c are positive absolute constants.
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Quick Summary

We are after uniform deviations in order to understand performance of
ERM. Rademacher averages is a nice measure with useful properties. They
can be further upper bounded by covering numbers through the Dudley
entropy integral. In turn, covering numbers can be controlled via the
fat-shattering combinatorial dimension. Whew!
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Faster Rates

Are there situations when

EL(f̂n) − inf
f∈F

L(f)

approaches 0 faster than O(1/
√
n)?

Yes! We can beat the Central Limit Theorem!

How is this possible??

Recall that the CLT tells us about convergence of average to the
expectation for random variables with bounded second moment. What if
this variance is small?
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Faster Rates: Classification

Consider the problem of binary classification with the indicator loss and a
class F of {0, 1}-valued functions. For any f ∈ F ,

1

n

n

∑
i=1

`(f(xi),yi)

is an average of n Bernoulli random variables with bias p = E`(f(x),y).
Exact expression for the binomial tails:

P (L(f) − L̂(f) > ε) =
⌊n(p−ε)⌋
∑
i=0

(n
i
)pi(1 − p)n−i

Further upper bounds:

exp{− nε2

2p(1 − p) + 2ε/3} Bernstein

exp{−2nε2} Hoeffding
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Faster Rates: Classification

Inverting

exp{− nε2

2p(1 − p) + 2ε/3} ≤ exp{− nε2

2p + 2ε/3} =∶ δ

yields that for any f ∈ F , with probability at least 1 − δ

L(f) ≤ L̂(f) +
√

2L(f) log(1/δ)
n

+ 2 log(1/δ)
3n

For non-negative numbers A,B,C

A ≤ B +C
√
A implies A ≤ B +C2 +

√
BC

Therefore for any f ∈ F , with probability at least 1 − δ,

L(f) ≤ L̂(f) +
√

2L̂(f) log(1/δ)
n

+ 4 log(1/δ)
n
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Faster Rates: Classification

By the Union Bound, for F with finite N = card(F), with probability at
least 1 − δ,

∀f ∈ F ∶ L(f) ≤ L̂(f) +
√

2L̂(f) log(N/δ)
n

+ 4 log(N/δ)
n

For an empirical minimizer f̂n, with probability at least 1 − δ, a zero
empirical loss L̂(f̂n) = 0 implies

L(f̂n) ≤
4 log(N/δ)

n

This happens, for instance, in the so-called noiseless case: L(fF) = 0.
Indeed, then L̂(fF) = 0 and thus L̂(f̂n) = 0.

97 / 130



Summary: Minimax Viewpoint

Value of a game where we choose an algorithm, Nature chooses a
distribution P ∈ P, and our payoff is the expected loss of our algorithm
relative to the best in F :

Viid(F ,P,n) = inf
f̂n

sup
P∈P

{L(f̂n) − inf
f∈F

L(f)}

If we make no assumption on the distribution P, then P is the set of all
distributions. Many of the results we obtained in this lecture are for this
distribution-free case. However, one may view margin-based results and the
above fast rates for the noiseless case as studying Viid(F ,P,n) when P is
“nicer”.
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Model Selection

For a given class F , we have proved statements of the type

P (sup
f∈F

{L(f) − L̂(f)} ≥ φ(δ,n,F)) < δ

Now, take a countable nested sieve of models

F1 ⊆ F2 ⊆ ...

such that H = ∪∞i=1Fi is a very large set that will surely capture the Bayes
function.

For a function f ∈H, let k(f) be the smallest index of Fk that contains f.
Let us write φn(δ, i) for φ(δ,n,Fi).

Let us put a distribution w(i) on the models, with ∑∞
i=1w(i) = 1. Then for

every i,

P (sup
f∈Fi

{L(f) − L̂(f)} ≥ φn(δw(i), i)) < δ ⋅w(i)

simply by replacing δ with δw(i).
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Now, taking a union bound:

P (sup
f∈H

{L(f) − L̂(f)} ≥ φn(δw(k(f)),k(f))) <∑
i

δw(i) ≤ δ

Consider the penalized method

f̂n = arg min
f∈H

{L̂(f) +φn(δw(k(f)),k(f))}

= arg min
i,f∈Fi

{L̂(f) +φn(δw(i), i)}

This balances fit to data and the complexity of the model. Of course, this
is exactly a regularized ERM form analyzed earlier.

F1

Fk⇤

f⇤
. . .. . .

Let k∗ = k(f∗) be the (smallest) model Fi that contains the optimal
function.
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Exactly as on the slide “Countable Class: Weighted Union Bound”,

L(f̂n) − L(f∗) ≤ {L(f̂n) − L̂(f̂n) − penn(f̂n)}
+ {L̂(f̂n) + penn(f̂n) − L̂(fF) − penn(fF)}
+ {L̂(fF) − L(fF)} + penn(fF)
≤ L̂(f∗) − L(f∗) + penn(f

∗)
= L̂(f∗) − L(f∗) +φn(δw(k∗),k∗)

The first part of this bound is OP(1/
√
n) by the CLT, just as before.

If the dependence of φ on 1/δ is logarithmic, then taking w(i) = 2−i simply
implies an additional additive i∗, a penalty for not knowing the model in
advance.

Conclusion: given uniform deviation bounds for a single class F , as
developed earlier, we can perform model selection by penalizing model
complexity!
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Looking back: Statistical Learning

▸ future looks like the past

▸ modeled as i.i.d. data

▸ evaluated on a random sample from the same distribution

▸ developed various measures of complexity of F
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Example #1: Bit Prediction

Predict a binary sequence y1,y2, . . . ∈ {0, 1}, which is revealed one by one.
At step t, make a prediction zt of the t-th bit, then yt is revealed.

Let ct = I{zt=yt}. Goal: make c̄n = 1
n ∑

n
t=1 ct large.

Suppose we are told that the sequence presented is Bernoulli with an
unknown bias p. How should we choose predictions?
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Example #1: Bit Prediction

Of course, we should do majority vote over the past outcomes

zt = I{ȳt−1≥1/2}

where ȳt−1 = 1
t−1 ∑

t−1
s=1 ys. This algorithm guarantees c̄t →max{p, 1−p} and

lim inf
t→∞

(c̄t −max{z̄t, 1 − z̄t}) ≥ 0 almost surely (∗)

Claim: there is an algorithm that ensures (∗) for an arbitrary sequence.
Any idea how to do it?

Another way to formulate (∗): number of mistakes should be not much
more than made by the best of the two “experts”, one predicting “1” all the
time, the other constantly predicting “0”.

Note the difference: estimating a hypothesized model vs
competing against a reference set. We had seen this distinction in
the previous lecture.
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Example #2: Email Spam Detection

We are tasked with developing a spam detection program that
needs to be adaptive to malicious attacks.

▸ x1, . . . ,xn are email messages, revealed one-by-one

▸ upon observing the message xt, the learner (spam detector) needs to
decide whether it is spam or not spam (ŷt ∈ {0, 1})

▸ the actual label yt ∈ {0, 1} is revealed (e.g. by the user)

Do it seem plausible that (x1,y1), . . . , (xn,yn) are i.i.d. from some
distribution P?

Probably not... In fact, the sequence might even be adversarially chosen. In
fact, spammers adapt and try to improve their strategies.
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Online Learning (Supervised)

▸ No assumption that there is a single distribution P

▸ Data not given all at once, but rather in the online fashion

▸ As before, X is the space of inputs, Y the space of outputs

▸ Loss function `(y1,y2)

Online protocol (supervised learning):

For t = 1, . . . ,n
Observe xt, predict ŷt, observe yt

Goal: keep regret small:

Regn =
1

n

n

∑
t=1

`(ŷt,yt) − inf
f∈F

1

n

n

∑
t=1

`(f(xt),yt)

A bound on Regn should hold for any sequence (x1,y1), . . . , (xn,yn)!
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Pros/Cons of Online Learning

The good:

▸ An upper bound on regret implies good performance relative to the set
F no matter how adversarial the sequence is.

▸ Online methods are typically computationally attractive as they
process one data point at a time. Used when data sets are huge.

▸ Interesting research connections to Game Theory, Information Theory,
Statistics, Computer Science.

The bad:

▸ A regret bound implies good performance only if one of the elements
of F has good performance (just as in Statistical Learning). However,
for non-iid sequences a single f ∈ F might not be good at all! To
alleviate this problem, the comparator set F can be made into a set of
more complex strategies.

▸ There might be some (non-i.i.d.) structure of sequences that we are
not exploiting (this is an interesting area of research!)
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Setting Up the Minimax Value

First, it turns out that ŷt has to be a randomized prediction: we need to
decide on a distribution qt ∈ ∆(Y) and then draw ŷt from qt.

The minimax best that both the learner and the adversary (or, Nature) can
do is

V(F ,n) = ⟪ sup
xt∈X

inf
qt∈∆

sup
yt∈Y

E
yt∼qt

⟫
n

t=1

{ 1

n

n

∑
t=1

`(ŷt,yt) − inf
f∈F

1

n

n

∑
t=1

`(f(xt),yt)}

This is an awkward and long expression, so no need to be worried. All you
need to know right now is:

▸ An upper bound on V(F ,n) guarantees existence of a strategy
(learning algorithm) that will suffer at most that much regret.

▸ A lower bound on V(F ,n) means the adversary can inflict at least
that much damage, no matter what the learning algorithm does.

It is interesting to study V(F ,n)! It turns out, many of the tools we used
in Statistical Learning can be extended to study Online Learning!
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Sequential Rademacher Complexity

A (complete binary) X -valued tree x of depth n is a collection of functions
x1, . . . ,xn such that xi ∶ {±1}i−1 ↦ X and x1 is a constant function.

A sequence ε = (ε1, . . . ,εn) defines a path in x:

x1, x2(ε1), x3(ε1,ε2), . . . , xn(ε1, . . . ,εn−1)

Define sequential Rademacher complexity as

Rseq
n (F ,n) = sup

x
Eε1∶n sup

f∈F
{ 1

n

n

∑
t=1

εtf(xt(ε1∶t−1))}

where the supremum is over all X -valued trees of depth n.

Theorem
Let Y = {0, 1} and F is a class of binary-valued functions. Let ` be the
indicator loss. Then

V(F ,n) ≤ 2Rseq
n (F ,n)
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Finite Class

Suppose F is finite, N = card(F). Then for any tree x,

Eε1∶n sup
f∈F

{ 1

n

n

∑
t=1

εtf(xt(ε1∶t−1))} ≤
√

2 logN

n

because, again, this is a maximum of N (sub)Gaussian Random variables!

Hence,

V(F ,n) ≤ 2

√
2 logN

n

This bound is basically the same as that for Statistical Learning with a
finite number of functions!

Therefore, there must exist an algorithm for predicting ŷt given xt such

that regret scales as O(
√

logN
n

). What is it?
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Exponential Weights, or the Experts Algorithm

We think of each element {f1, . . . , fN} = F as an expert who gives a
prediction fi(xt) given side information xt. We keep distribution wt over
experts, according to their performance.

Let w1 = (1/N, . . . , 1/N), η =
√

(8 logN)/T .

To predict at round t, observe xt, pick it ∼ wt and set ŷt = fit(xt).

Update
wt+1(i)∝ wt(i) exp{−ηI{fi(xt)≠yt}}

Claim: for any sequence (x1,y1), . . . , (xn,yn), with probability at least 1− δ

1

n

n

∑
t=1

I{ŷt≠yt} − inf
f∈F

1

n

n

∑
t=1

I{f(xt)≠yt} ≤
√

logN

2n
+
√

log(1/δ)
2n
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Useful Properties of Sequential Rademacher Complexity

Sequential Rademacher complexity enjoys the same nice properties as its iid
cousin, except for the Lipschitz contraction (4). At the moment we can
only prove

Rseq
n (φ ○F) ≤ LRseq

n (F) ×O(log3/2
n)

It is an open question whether this logarithmic factor can be removed...
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Theory for Online Learning

There is now a theory with combinatorial parameters, covering numbers,
and even a recipe for developing online algorithms!

Many of the relevant concepts (e.g. sequential Rademacher complexity) are
generalizations of the i.i.d. analogues to the case of dependent data.

Coupled with the online-to-batch conversion we introduce in a few slides,
there is now an interesting possibility of developing new computationally
attractive algorithms for statistical learning. One such example will be
presented.
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Theory for Online Learning

Statistical Learning Online Learning

i.i.d. data arbitrary sequences

tuples of data binary trees

Rademacher averages sequential Rademacher complexity

covering / packing numbers tree cover

Dudley entropy integral analogous result with tree cover

VC dimension Littlestone’s dimension

Scale-sensitive dimension analogue for trees

Vapnik-Chervonenkis-Sauer-Shelah
Lemma analogous combinatorial result for trees

ERM and regularized ERM many interesting algorithms
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Online Convex and Linear Optimization

For many problems, `(f, (x,y)) is convex in f and F is a convex set. Let us
simply write `(f, z), where the move z need not be of the form (x,y).

▷ e.g. square loss `(f, (x,y)) = (⟨f,x⟩ − y)2 for linear regression.

▷ e.g. hinge loss `(f, (x,y)) = max{0, 1 − y ⟨f,x⟩}, a surrogate loss for
classification.

We may then use optimization algorithms for updating our hypothesis after
seeing each additional data point.
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Online Convex and Linear Optimization

Online protocol (Online Convex Optimization):

For t = 1, . . . ,n
Predict ft ∈ F , observe zt

Goal: keep regret small:

Regn =
1

n

n

∑
t=1

`(ft, zt) − inf
f∈F

1

n

n

∑
t=1

`(f, zt)

Online Linear Optimization is a particular case when `(f, z) = ⟨f, z⟩.
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Gradient Descent

At time t = 1, . . . ,n, predict ft ∈ F , observe zt, update

f
′
t+1 = ft − η∇`(ft, zt)

and project f ′t+1 to the set F , yielding ft+1.

▸ η is a learning rate (step size)

▸ gradient is with respect to the first coordinate

This simple algorithm guarantees that for any f ∈ F

1

n

n

∑
t=1

`(ft, zt) −
1

n

n

∑
t=1

`(f, zt) ≤
1

n

n

∑
t=1

⟨ft,∇`(ft, zt)⟩ −
1

n

n

∑
t=1

⟨f,∇`(ft, zt)⟩

≤ O(n−1/2)

as long as ∥∇`(ft, zt)∥ ≤ c for some constant c, for all t, and F has a
bounded diameter.
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Gradient Descent for Strongly Convex Functions

Assume that for any z, `(⋅, z) is strongly convex in the first argument. That
is, `(f, z) − 1

2
∥f∥2 is a convex function.

The same gradient descent algorithm with a different step size η guarantees
that for any f∗ ∈ F

1

n

n

∑
t=1

`(ft, zt) −
1

n

n

∑
t=1

`(f, zt) ≤ O( log(n)
n

) ,

a faster rate.
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How to use regret bounds for i.i.d. data

Suppose we have a regret bound

1

n

n

∑
t=1

`(ft, zt) − inf
f∈F

1

n

n

∑
t=1

`(f, zt) ≤ Rn

that holds for all sequences z1, . . . , zn, for some Rn → 0.

Assume z1, . . . , zn are i.i.d. with distribution P. Run the regret
minimization algorithm on these data and let f̄ = 1

n ∑
n
t=1 ft. Then

Ez,z1,...,zn`(f̄, z) ≤ E{ 1

n

n

∑
t=1

`(ft, z)} = E{ 1

n

n

∑
t=1

`(ft, zt)}

where the last step holds because ft only depends on z1, . . . , zt−1. Also,

E{inf
f∈F

1

n

n

∑
t=1

`(f, zt)} ≤ inf
f∈F

E{ 1

n

n

∑
t=1

`(f, zt)} = Ez`(fF , z)

Combining,
EL(f̄) − inf

f∈F
L(f) ≤ Rn
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How to use regret bounds for i.i.d. data

This gives an alternative way of proving bounds on

EL(f̂n) − inf
f∈F

L(f)

by using f̂n = f̄, the average of the trajectory of an online learning
algorithm.

Next, we present an interesting application of this idea.
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Pegasos

Support Vector Machine is a fancy name for the algorithm

f̂n = arg min
f∈Rd

1

m

m

∑
i=1

max{0, 1 − yi ⟨f,xi⟩} +
λ

2
∥f∥2

in the linear case.

The objective can be “kernelized” for representing linear separators in
higher-dimensional feature space. The hinge loss is convex in f.

Write

`(f, z) = max{0, 1 − y ⟨f,x⟩} + λ
2
∥f∥2

for z = (x,y). Then the objective of SVM can be written as

min
f

E`(f, z)

The expectation is with respect to the empirical distribution 1
m ∑

m
i=1 δ(xi,yi).

Then an i.i.d. sample z1, . . . , zn from the empirical distribution is simply a
draw with replacement from the dataset {(x1,y1), . . . , (xm,ym)}.
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Pegasos

A gradient descent ft+1 = ft − η∇`(ft, zt) with

∇`(ft, zt) = −ytxtI{yt⟨ft,xt⟩<1} + λft

then gives a guarantee

E`(f̄, z) − inf
f∈F

E`(f, z) ≤ Rn

Since `(f, z) is λ-strongly convex, the rate Rn = O(log(n)/n).

Pegasos (Shalev-Shwartz et al, 2010)
For t = 1, . . . ,n
Choose a random example (xit ,yit) from the dataset. Set η = 1/(λt)
If yit ⟨ft,xit⟩ < 1, update ft+1 = (1 − ηtλ)ft + ηtxityit
else, update ft+1 = (1 − ηtλ)ft

The algorithm and analysis are due to (S. Shalev-Shwartz, Singer, Srebro, Cotter, 2010)
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Pegasos

We conclude that f̄ = 1
n ∑

n
t=1 ft computed using the gradient descent

algorithm is an Õ(n−1)-approximate minimizer of the SVM objective after
n steps.

This gives an O(d/(λε)) time to converge to an ε-minimizer. Very fast
SVM solver, attractive for large datasets!
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Summary

Key points for both statistical and online learning:

▸ obtained performance guarantees with minimal assumptions

▸ prior knowledge is captured by the comparator term

▸ understanding the inherent complexity of the comparator set

▸ key techniques: empirical processes for iid and non-iid data

▸ interesting relationships between statistical and online learning

▸ computation and statistics – a basis of machine learning
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