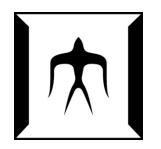
MLSS2012, Kyoto, Japan

Sep. 7, 2012

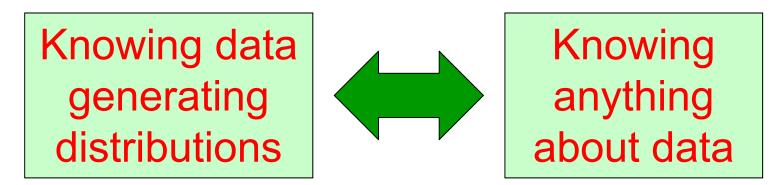
Density Ratio Estimation in Machine Learning



Masashi Sugiyama Tokyo Institute of Technology, Japan sugi@cs.titech.ac.jp http://sugiyama-www.cs.titech.ac.jp/~sugi/ Generative Approach to Machine Learning (ML)

2

All ML tasks can be solved if data generating probability distributions are identified.



- Thus, distribution estimation is the most general approach to ML.
- However, distribution estimation is hard without prior knowledge (i.e., non-parametric methods).

Discriminative Approach to ML³

- Alternative approach: Solving a target ML task directly without distribution estimation.
- Ex: Support vector machine (SVM)
 - Without estimating data generating distributions, SVM directly learns a decision boundary.

Cortes & Vapnik (ML1995)

$$\begin{array}{c|c} \circ \circ \times \\ \circ \circ \circ \times \times \\ \text{Class +1 } \circ \circ \times \times \\ \circ \circ \times \times \times \end{array} Class -1$$

Discriminative Approach to ML⁴

However, there exist various ML tasks:

- Learning under non-stationarity, domain adaptation, multi-task learning, two-sample test, outlier detection, change detection in time series, independence test, feature selection, dimension reduction, independent component analysis, causal inference, clustering, object matching, conditional probability estimation, probabilistic classification
- For each task, developing an ML algorithm that does not include distribution estimation is cumbersome/difficult.

Density-Ratio Approach to ML ⁵

All ML tasks listed in the previous page include multiple probability distributions.

 $p(oldsymbol{x}),q(oldsymbol{x})$

For solving these tasks, individual densities are actually not necessary, but only the ratio of probability densities is enough:

$$r(oldsymbol{x}) = rac{p(oldsymbol{x})}{q(oldsymbol{x})}$$

We directly estimate the density ratio without going through density estimation.

Intuitive Justification

6

Vapnik's principle: Vapnik (1998) When solving a problem of interest, one should not solve a more general problem as an intermediate step

Knowing densities p(x), q(x) p(x), q(x) $r(x) = \frac{p(x)}{q(x)}$

Estimating the density ratio is substantially easier than estimating densities!

Quick Conclusions

- Simple kernel least-squares (KLS) approach allows accurate and computationally efficient estimation of density ratios!
- Many ML tasks can be solved just by KLS:
 - Importance sampling:

$$\sum_{i=1}^n rac{p_{ ext{test}}(oldsymbol{x}_i)}{p_{ ext{train}}(oldsymbol{x}_i)} ext{loss}(oldsymbol{x}_i)$$

- KL divergence estimation: $\int p(x) \log \frac{p(x)}{q(x)} dx$
- Mutual information estimation: $\iint p(x, y) \log \frac{p(x, y)}{p(x)p(y)} dx dy$
- Conditional probability estimation: $p(y|x) = \frac{p(x, y)}{p(x)}$

Books on Density Ratios

 Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning, Cambridge University Press, 2012

Sugiyama & Kawanabe Machine Learning in Non-Stationary Environments, MIT Press, 2012

- 1. Introduction
- 2. Methods of Density Ratio Estimation
- 3. Usage of Density Ratios
- 4. More on Density Ratio Estimation
- 5. Conclusions

Density Ratio Estimation: Problem Formulation

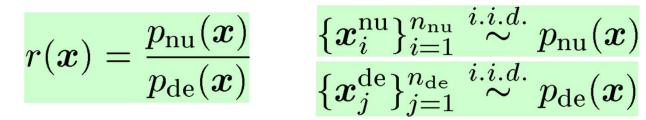
Goal: Estimate the density ratio

$$r(oldsymbol{x}) = rac{p_{ ext{nu}}(oldsymbol{x})}{p_{ ext{de}}(oldsymbol{x})}$$

from data

$$egin{aligned} \{oldsymbol{x}_i^{ ext{nu}}\}_{i=1}^{n_{ ext{nu}}} & \stackrel{i.i.d.}{\sim} p_{ ext{nu}}(oldsymbol{x}) \ \{oldsymbol{x}_j^{ ext{de}}\}_{j=1}^{n_{ ext{de}}} & \stackrel{i.i.d.}{\sim} p_{ ext{de}}(oldsymbol{x}) \end{aligned}$$

Density Estimation Approach ¹¹



Naïve 2-step approach:

1. Perform density estimation: $\widehat{p}_{nu}(x), \widehat{p}_{de}(x)$

2. Compute the ratio of estimated densities:

$$\widehat{r}(oldsymbol{x}) = rac{\widehat{p}_{ ext{nu}}(oldsymbol{x})}{\widehat{p}_{ ext{de}}(oldsymbol{x})}$$

However, this works poorly because
 1. is performed without regard to 2.

Organization of This Lecture ¹²

- 1. Introduction
- 2. Methods of Density Ratio Estimation
 - A) Probabilistic Classification
 - **B)** Moment Matching
 - C) Density Fitting
 - D) Density-Ratio Fitting
- 3. Usage of Density Ratios
- 4. More on Density Ratio Estimation
- 5. Conclusions

Probabilistic Classification ¹³

Qin (Biometrika1998), Bickel, Brückner & Scheffer (ICML2007)

Idea: Separate numerator and denominator samples by a probabilistic classifier.

Via Bayes theorem

$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})}{p(\boldsymbol{y})}$$

density ratio is given by

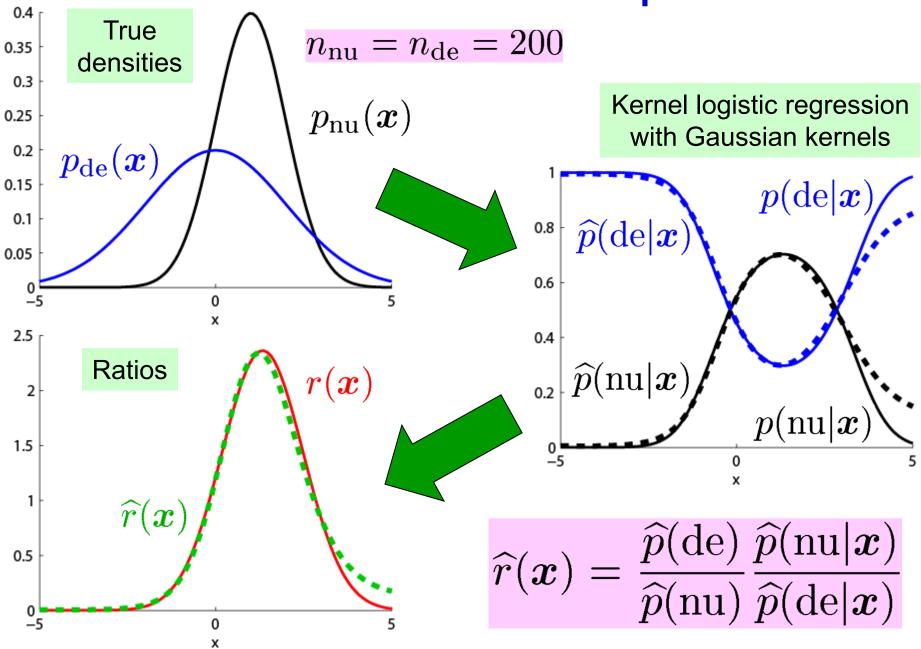
$$r(\boldsymbol{x}) = \frac{p_{\mathrm{nu}}(\boldsymbol{x})}{p_{\mathrm{de}}(\boldsymbol{x})} = \frac{p(\boldsymbol{x}|\mathrm{nu})}{p(\boldsymbol{x}|\mathrm{de})}$$
$$= \frac{p(\mathrm{de})}{p(\mathrm{nu})} \frac{p(\mathrm{nu}|\boldsymbol{x})}{p(\mathrm{de}|\boldsymbol{x})}$$

$$\{x_{i}^{\mathrm{nu}}\}_{i=1}^{n_{\mathrm{nu}}} \{x_{j}^{\mathrm{de}}\}_{j=1}^{n_{\mathrm{de}}}$$

$$\begin{array}{c|c} & & & \\ & &$$

Numerical Example

14



Probabilistic Classification: ¹⁵ Summary

- Off-the-shelf software can be directly used.
- Logistic regression achieves the minimum asymptotic variance for correctly specified models.
 Qin (Biometrika1998)
 - However, not reliable for misspecified models. Kanamori, Suzuki & MS (IEICE2010)

Multi-class classification gives density ratio estimates among multiple densities. Bickel, Bogojeska, Lengauer & Scheffer (ICML2008)

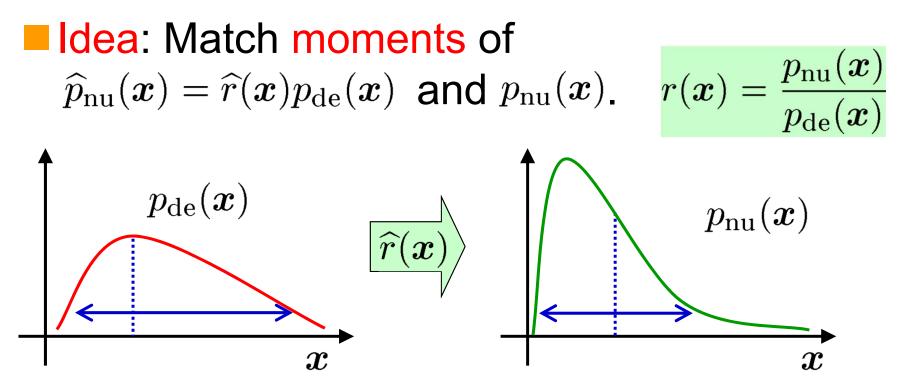
Organization of This Lecture ¹⁶

- 1. Introduction
- 2. Methods of Density Ratio Estimation
 - A) Probabilistic Classification
 - **B)** Moment Matching
 - C) Density Fitting
 - D) Density-Ratio Fitting
- 3. Usage of Density Ratios
- 4. More on Density Ratio Estimation
- 5. Conclusions

Moment Matching

Qin (Biometrika1998)

17



• Ex. Matching the mean:

$$\int \boldsymbol{x} \ \widehat{r}(\boldsymbol{x}) p_{\mathrm{de}}(\boldsymbol{x}) d\boldsymbol{x} = \int \boldsymbol{x} \ p_{\mathrm{nu}}(\boldsymbol{x}) d\boldsymbol{x}$$

Moment Matching with Kernels¹⁸

Matching a finite number of moments does not necessarily yield the true density ratio even asymptotically.

Kernel mean matching: All moments are efficiently matched in Gaussian RKHS H: Huang, Smola, Gretton, Borgwardt & Schölkopf (NIPS2006)

$$\min_{\widehat{r} \in \mathcal{H}} \left\| \int K(\boldsymbol{x}, \cdot) \widehat{r}(\boldsymbol{x}) p_{de}(\boldsymbol{x}) d\boldsymbol{x} - \int K(\boldsymbol{x}, \cdot) p_{nu}(\boldsymbol{x}) d\boldsymbol{x} \right\|_{\mathcal{H}}^{2}$$
$$K(\boldsymbol{x}, \boldsymbol{x}') : \text{Gaussian kernel}$$

Kernel Mean Matching

Empirical optimization problem:

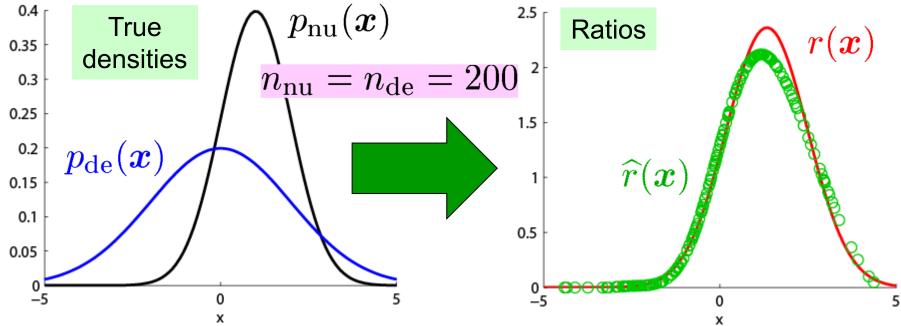
$$\min_{\beta_1, \dots, \beta_{n_{de}}} \frac{1}{2} \sum_{j,j'=1}^{n_{de}} \beta_j \beta_{j'} K(\boldsymbol{x}_j^{de}, \boldsymbol{x}_{j'}^{de}) - \frac{n_{de}}{n_{nu}} \sum_{j=1}^{n_{de}} \beta_j \sum_{i=1}^{n_{nu}} K(\boldsymbol{x}_i^{nu}, \boldsymbol{x}_j^{de})$$
subject to $0 \le \beta_1, \dots, \beta_{n_{de}} \le B$ and $\left| \frac{1}{n_{de}} \sum_{j=1}^{n_{de}} \beta_j - 1 \right| \le \epsilon$

$$K(\boldsymbol{x}, \boldsymbol{x'}) : \text{Gaussian kernel}$$

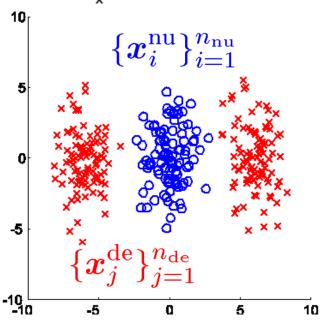
- This is a convex quadratic program.
- The solution directly gives density ratio estimates:

$$\widehat{eta}_j = \widehat{r}(oldsymbol{x}_j^{ ext{de}})$$

Numerical Example



- Kernel mean matching works well, given that the Gaussian width is appropriately chosen.
- A heuristic is to use the median distance between samples, but it may fail in a multi-modal case.



20

Moment Matching: Summary ²¹

Finite moment matching is not consistent.

Infinite moment matching with kernels:

- Consistent and computationally efficient.
- A convergence proof exists for reweighted means. Gretton, Smola, Huang, Schmittfull, Borgwardt & Schölkopf (InBook 2009)
- Kernel parameter selection is cumbersome:
 - Changing kernels means changing error metrics.
 - Using the median distance between samples as the Gaussian width is a practical heuristic.
- A variant for learning the entire ratio function under general losses is also available.

Kanamori, Suzuki & MS (MLJ2012)

Organization of This Lecture ²²

- 1. Introduction
- 2. Methods of Density Ratio Estimation
 - A) Probabilistic Classification
 - **B)** Moment Matching
 - c) Density Fitting
 - D) Density-Ratio Fitting
- 3. Usage of Density Ratios
- 4. More on Density Ratio Estimation
- 5. Conclusions

Kullback-Leibler Importance ²³ Estimation Procedure (KLIEP)

Nguyen, Wainwright & Jordan (NIPS2007) MS, Nakajima, Kashima, von Bünau & Kawanabe (NIPS2007)

Minimize KL divergence from $p_{nu}(\boldsymbol{x})$

to
$$\widehat{p}_{nu}(\boldsymbol{x}) = \widehat{r}(\boldsymbol{x})p_{de}(\boldsymbol{x})$$
:

$$\min_{\widehat{r}} \int p_{nu}(\boldsymbol{x})\log \frac{p_{nu}(\boldsymbol{x})}{\widehat{r}(\boldsymbol{x})p_{de}(\boldsymbol{x})}d\boldsymbol{x}$$

$$=:KL(\widehat{r})$$

Decomposition of KL:

$$\operatorname{KL}(\widehat{r}) = C - \int p_{\operatorname{nu}}(\boldsymbol{x}) \log \widehat{r}(\boldsymbol{x}) d\boldsymbol{x}$$

Formulation

Objective function:

$$\max_{\widehat{r}} \int p_{\mathrm{nu}}(oldsymbol{x}) \log \widehat{r}(oldsymbol{x}) doldsymbol{x}$$

Constraints:

•
$$\widehat{p}_{
m nu}(\boldsymbol{x}) = \widehat{r}(\boldsymbol{x})p_{
m de}(\boldsymbol{x})$$
 is a probability density:

$$\int \widehat{r}(\boldsymbol{x})p_{
m de}(\boldsymbol{x})d\boldsymbol{x} = 1 \qquad \widehat{r}(\boldsymbol{x}) \ge 0$$

Linear-in-parameter density-ratio model:

$$\widehat{r}(oldsymbol{x}) = \sum_{\ell=1}^b lpha_\ell \phi_\ell(oldsymbol{x}) = oldsymbol{lpha}^ op \phi(oldsymbol{x})$$
 (expansion)

$$\phi_\ell(oldsymbol{x}) \geq 0$$

(ex. Gauss kernel)

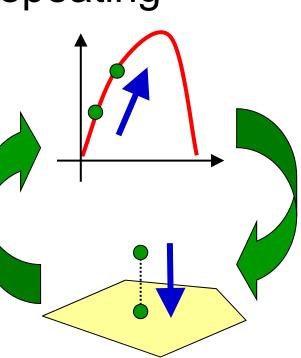
Algorithm

Approximate expectations by sample averages:

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{n_{\mathrm{nu}}} \log(\boldsymbol{\alpha}^{\top} \boldsymbol{\phi}(\boldsymbol{x}_{i}^{\mathrm{nu}})) \quad \text{subject to } \frac{1}{n_{\mathrm{de}}} \sum_{j=1}^{n_{\mathrm{de}}} \boldsymbol{\alpha}^{\top} \boldsymbol{\phi}(\boldsymbol{x}_{j}^{\mathrm{de}}) = 1 \text{ and } \boldsymbol{\alpha} \geq \boldsymbol{0}$$

This is convex optimization, so repeating

- Gradient ascent
- Projection onto the feasible region leads to the global solution.
 The global solution is sparse!



25

Convergence Properties ²⁶

Nguyen, Wainwright & Jordan (IEEE-IT2010) MS, Suzuki, Nakajima, Kashima, von Bünau & Kawanabe (AISM2008)

Parametric case:
$$\widehat{r}(x) = \sum_{\ell=1}^{b} \alpha_{\ell} \phi_{\ell}(x)$$

• Learned parameter converge to the optimal value with order $n^{-\frac{1}{2}}$, which is the optimal rate.

 $n = \min(n_{\mathrm{nu}}, n_{\mathrm{de}})$

Non-parametric case:

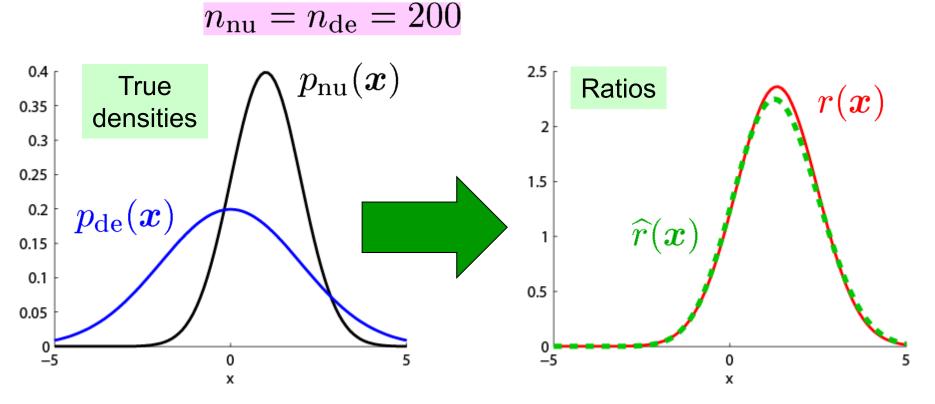
$$\widehat{r}(\boldsymbol{x}) = \sum_{\ell=1}^{n_{\mathrm{nu}}} \alpha_{\ell} K(\boldsymbol{x}, \boldsymbol{x}_{\ell}^{\mathrm{nu}})$$

• Learned function converges to the optimal function with order $n^{-\frac{1}{2+\gamma}}$, which is the optimal rate.

 $0 < \gamma < 2$: Complexity of the function class related to the covering number or bracketing entropy

Numerical Example

27



Gaussian width can be determined by cross-validation with respect to KL.

 $\int p_{
m nu}(oldsymbol{x})\log\widehat{r}(oldsymbol{x})doldsymbol{x}$

Density Fitting under KL Divergence: Summary

28

Nguyen, Wainwright

& Jordan (NIPS2007)

- Cross-validation is available for kernel parameter selection.
- Variations for various models exist:
 - Log-linear, Gaussian mixture, PCA mixture, etc.
- Elaborate ratios such as $\frac{p(x,y)}{p(x)}$ can also be estimated.
- An unconstrained variant corresponds to maximizing a lower-bound of KL divergence.

$$\int p_{
m nu}(oldsymbol{x}) \log rac{p_{
m nu}(oldsymbol{x})}{p_{
m de}(oldsymbol{x})} {
m d}oldsymbol{x}$$

Organization of This Lecture ²⁹

- 1. Introduction
- 2. Methods of Density Ratio Estimation
 - A) Probabilistic Classification
 - **B)** Moment Matching
 - C) Density Fitting
 - D) Density-Ratio Fitting
- 3. Usage of Density Ratios
- 4. More on Density Ratio Estimation
- 5. Conclusions

Least-Squares Importance ³⁰ Fitting (LSIF) Kanamori, Hido & MS (NIPS2008)

 $p_{nu}(\boldsymbol{x})$

Minimize squared-loss:

$$\min_{\widehat{r}} \int \left(\widehat{r}(x) - r(x)\right)^2 p_{de}(x) dx$$

$$=:SQ(\widehat{r})$$

Decomposition and approximation of SQ:

$$\begin{split} \mathrm{SQ}(\widehat{r}) &= \int \left(\widehat{r}(\boldsymbol{x})\right)^2 p_{\mathrm{de}}(\boldsymbol{x}) d\boldsymbol{x} - 2 \int \widehat{r}(\boldsymbol{x}) p_{\mathrm{nu}}(\boldsymbol{x}) d\boldsymbol{x} + C \\ &\approx \frac{1}{n_{\mathrm{de}}} \sum_{j=1}^{n_{\mathrm{de}}} \widehat{r}(\boldsymbol{x}_j^{\mathrm{de}})^2 - \frac{2}{n_{\mathrm{nu}}} \sum_{i=1}^{n_{\mathrm{nu}}} \widehat{r}(\boldsymbol{x}_i^{\mathrm{nu}}) + C \end{split}$$

Constrained Formulation

Linear (or kernel) density-ratio model:

$$\widehat{r}(\boldsymbol{x}) = \sum_{\ell=1}^{b} lpha_{\ell} \phi_{\ell}(\boldsymbol{x}) = \boldsymbol{lpha}^{ op} \boldsymbol{\phi}(\boldsymbol{x})$$

Constrained LSIF (cLSIF):

• Non-negativity constraint with ℓ_1 -regularizer

$$\min_{\boldsymbol{\alpha}} \left[\frac{1}{2} \boldsymbol{\alpha}^{\top} \widehat{\boldsymbol{H}} \boldsymbol{\alpha} - \widehat{\boldsymbol{h}}^{\top} \boldsymbol{\alpha} + \lambda \boldsymbol{\alpha}^{\top} \boldsymbol{1} \right]$$

subject to $\boldsymbol{lpha} \geq \mathbf{0}$

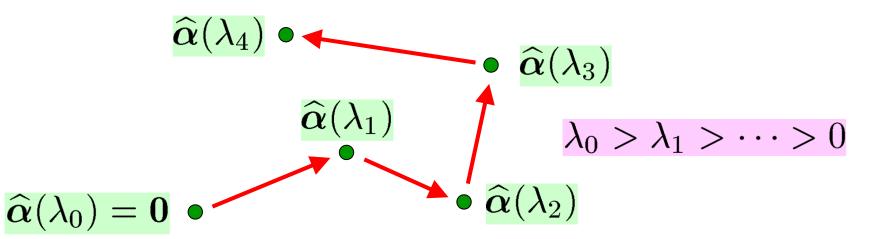
• A convex quadratic program with sparse solution.

$$\widehat{\boldsymbol{H}} = \frac{1}{n_{\mathrm{de}}} \sum_{j=1}^{n_{\mathrm{de}}} \boldsymbol{\phi}(\boldsymbol{x}_{j}^{\mathrm{de}}) \boldsymbol{\phi}(\boldsymbol{x}_{j}^{\mathrm{de}})^{\top} \quad \widehat{\boldsymbol{h}} = \frac{1}{n_{\mathrm{nu}}} \sum_{i=1}^{n_{\mathrm{nu}}} \boldsymbol{\phi}(\boldsymbol{x}_{i}^{\mathrm{nu}})$$

Regularization Path Tracking ³²

$$\min_{\boldsymbol{\alpha}} \left[\frac{1}{2} \boldsymbol{\alpha}^{\top} \widehat{\boldsymbol{H}} \boldsymbol{\alpha} - \widehat{\boldsymbol{h}}^{\top} \boldsymbol{\alpha} + \lambda \boldsymbol{\alpha}^{\top} \mathbf{1} \right] \text{ subject to } \boldsymbol{\alpha} \geq \mathbf{0}$$

The solution path is piece-wise linear with respect to the regularization parameter λ .



Solutions for all \(\lambda\) can be computed efficiently without QP solvers!

Unconstrained Formulation ³³

$$\widehat{r}({m x}) = \sum_{\ell=1}^b lpha_\ell \phi_\ell({m x}) = {m lpha}^ op {m \phi}({m x})$$

Unconstrained LSIF (uLSIF):

• **uLSIF**: No constraint with ℓ_2 -regularizer

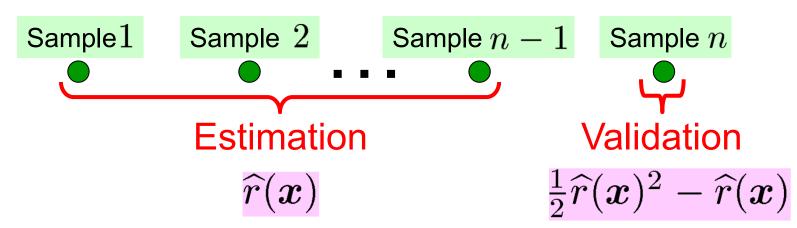
$$\min_{\boldsymbol{\alpha}} \left[\frac{1}{2} \boldsymbol{\alpha}^\top \widehat{\boldsymbol{H}} \boldsymbol{\alpha} - \widehat{\boldsymbol{h}}^\top \boldsymbol{\alpha} + \frac{\lambda}{2} \boldsymbol{\alpha}^\top \boldsymbol{\alpha} \right]$$

• Analytic solution is available: $(\widehat{H} + \lambda I)^{-1}\widehat{h}$

$$\widehat{\boldsymbol{H}} = \frac{1}{n_{\mathrm{de}}} \sum_{j=1}^{n_{\mathrm{de}}} \boldsymbol{\phi}(\boldsymbol{x}_{j}^{\mathrm{de}}) \boldsymbol{\phi}(\boldsymbol{x}_{j}^{\mathrm{de}})^{\top} \quad \widehat{\boldsymbol{h}} = \frac{1}{n_{\mathrm{nu}}} \sum_{i=1}^{n_{\mathrm{nu}}} \boldsymbol{\phi}(\boldsymbol{x}_{i}^{\mathrm{nu}})$$

Analytic LOOCV Score

Leave-one-out cross-validation (LOOCV):



LOOCV generally requires n repetitions.

However, it can be analytically computed for uLSIF (Sherman-Woodbury-Morrison formula).

Computation time including model selection is significantly reduced.

Theoretical Properties of uLSIF³⁵

Parametric convergence:

- Learned parameter converge to the optimal value with order $n^{-\frac{1}{2}}$, which is the optimal rate. $n = \min(n_{nu}, n_{de})$ Kanamori, Hido & MS (JMLR2009)
- Non-parametric convergence:
 - Learned function converges to the optimal function with order $n^{-\frac{1}{2+\gamma}}$ (depending on the bracketing entropy), which is the optimal rate.

 $0 < \gamma < 2$

Kanamori, Suzuki & MS (MLJ2012)

Non-parametric numerical stability:

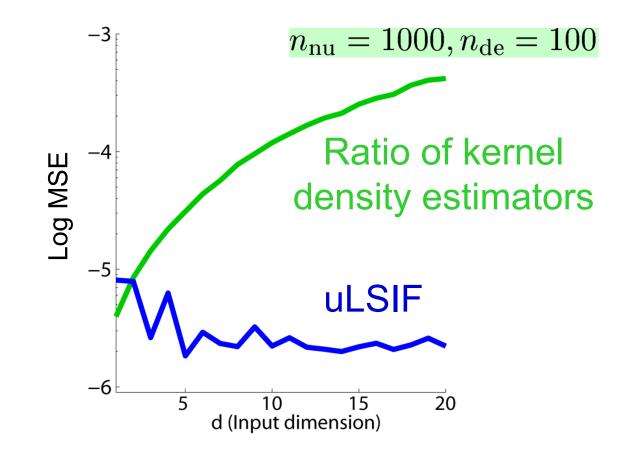
• uLSIF has the smallest condition number among a class of density ratio estimators.

Kanamori, Suzuki & MS (ArXiv2009)

Numerical Example

36

 $p_{\mathrm{nu}}(\boldsymbol{x}) = N(\boldsymbol{x}; (0, 0, \dots, 0)^{\top}, \boldsymbol{I}_d)$ $p_{\mathrm{de}}(\boldsymbol{x}) = N(\boldsymbol{x}; (1, 0, \dots, 0)^{\top}, \boldsymbol{I}_d)$ $r(\boldsymbol{x}) = \frac{p_{\mathrm{nu}}(\boldsymbol{x})}{p_{\mathrm{de}}(\boldsymbol{x})}$



Density-Ratio Fitting: Summary³⁷

LS formulation is computationally efficient:

- cLSIF: Regularization path tracking
- uLSIF: Analytic solution and LOOCV
- Gives an accurate approximator of Pearson (PE) divergence (an *f*-divergence):

$$\int p_{\rm de}(\boldsymbol{x}) \left(\frac{p_{\rm nu}(\boldsymbol{x})}{q_{\rm de}(\boldsymbol{x})} - 1\right)^2 {\rm d}\boldsymbol{x}$$

- Analytic solution of uLSIF allows us to compute the derivative of PE divergence approximator:
 - Useful in dimension reduction, independent component analysis, causal inference etc.

Qualitative Comparison of ³⁸ Density Ratio Estimation Methods

	Density estimation	Computation cost	Elaborate ratio estimation	Cross validation	Model flexibility
Probabilistic classification	Avoided	$n_{ m nu}+n_{ m de}$ parameters learned by quasi Newton	Not possible	Possible	Kernel
Moment matching	Avoided	$n_{ m nu}$ parameters learned by QP	Not possible	Not possible	Kernel
Density fitting	Avoided	$n_{ m nu}$ parameters learned by gradient and projection	Possible	Possible	Kernel, log-kernel, Gauss-mix, PCA-mix
Density ratio fitting	Avoided	$n_{ m nu}$ parameters learned analytically	Possible	Possible	Kernel

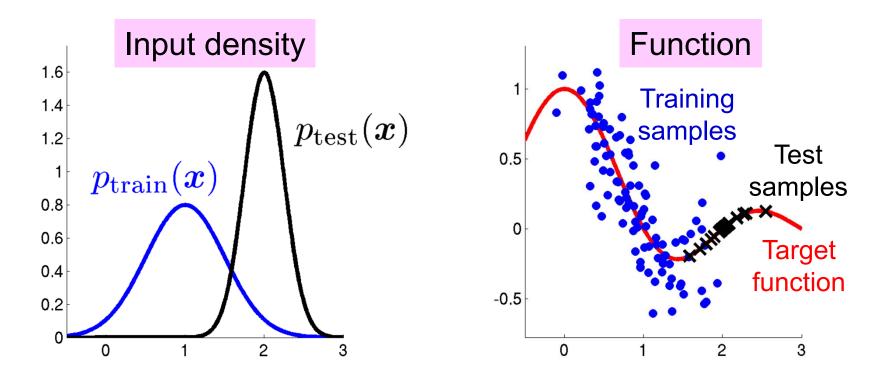
Organization of This Lecture ³⁹

- 1. Introduction
- 2. Methods of Density Ratio Estimation
- 3. Usage of Density Ratios
 - A) Importance sampling
 - B) Distribution comparison
 - c) Mutual information estimation
 - D) Conditional probability estimation
- 4. More on Density Ratio Estimation
- 5. Conclusions

Learning under Covariate Shift⁴⁰

Covariate shift: Shimodaira (JSPI2000)

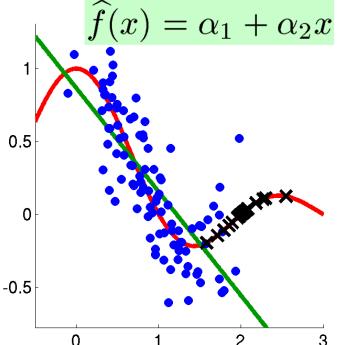
- Training/test input distributions are different, but target function remains unchanged.
- (Weak) extrapolation.



Ordinary Least-Squares (OLS)⁴¹

$$\min_{\boldsymbol{\alpha}} \left[\sum_{i=1}^{n} \left(\widehat{f}(\boldsymbol{x}_{i}) - y_{i} \right)^{2} \right]$$

In standard setting, OLS is consistent, i.e., the learned function converges to the output best solution when n → ∞.
 Under covariate shift, OLS is no longer consistent. -0.



Law of Large Numbers

Sample average converges to the population mean:

$$\frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}(\boldsymbol{x}_{i}) \longrightarrow \int \operatorname{loss}(\boldsymbol{x}) p_{train}(\boldsymbol{x}) d\boldsymbol{x}$$
$$\boldsymbol{x}_{i} \overset{i.i.d.}{\sim} p_{train}(\boldsymbol{x})$$

We want to estimate the expectation over test input points only using training input points $\{x_i\}_{i=1}^n$.

 $\int loss(\boldsymbol{x}) \boldsymbol{p_{test}}(\boldsymbol{x}) d\boldsymbol{x}$

Importance Weighting Importance : Ratio of test and training input densities $\frac{p_{test}(x)}{p_{train}(x)}$

Importance-weighted average:

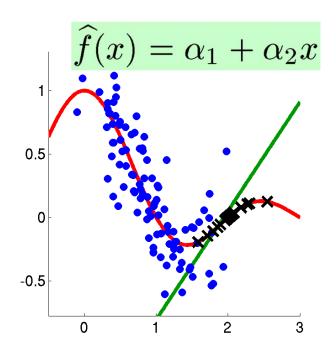
$$\frac{1}{n} \sum_{i=1}^{n} \frac{p_{test}(\boldsymbol{x}_i)}{p_{train}(\boldsymbol{x}_i)} \operatorname{loss}(\boldsymbol{x}_i) \qquad \begin{array}{l} \boldsymbol{x}_i \stackrel{i.i.d.}{\sim} p_{train}(\boldsymbol{x}) \\ & \longrightarrow \int \frac{p_{test}(\boldsymbol{x})}{p_{train}(\boldsymbol{x})} \operatorname{loss}(\boldsymbol{x}) p_{train}(\boldsymbol{x}) d\boldsymbol{x} \\ & = \int \operatorname{loss}(\boldsymbol{x}) p_{test}(\boldsymbol{x}) d\boldsymbol{x} \end{array}$$

Importance-Weighted Least-Squares

$$\min_{\boldsymbol{\alpha}} \left[\sum_{i=1}^{n} \frac{p_{test}(\boldsymbol{x}_i)}{p_{train}(\boldsymbol{x}_i)} \left(\widehat{f}(\boldsymbol{x}_i) - y_i \right)^2 \right]$$

IWLS is consistent even under covariate shift.

- The idea is applicable to any likelihood-based methods!
 - Support vector machine, logistic regression, conditional random field, etc.

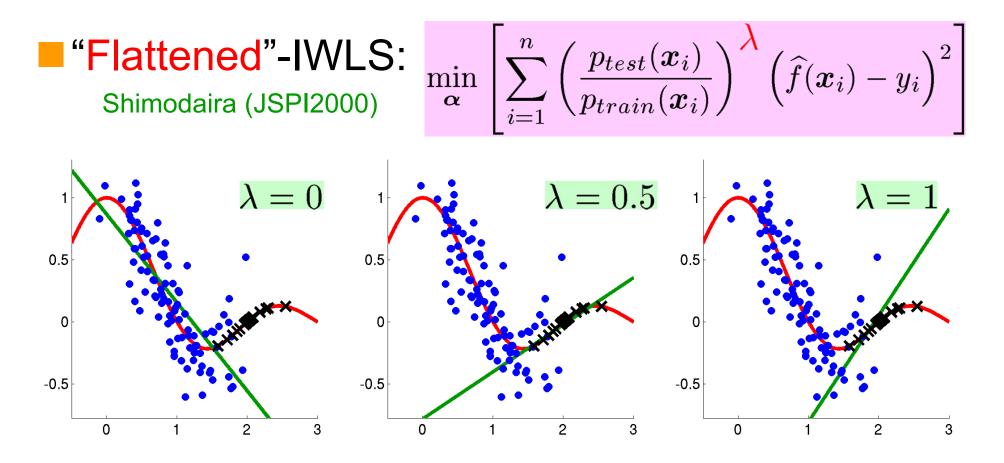


Model Selection

45

Controlling bias-variance trade-off is important.

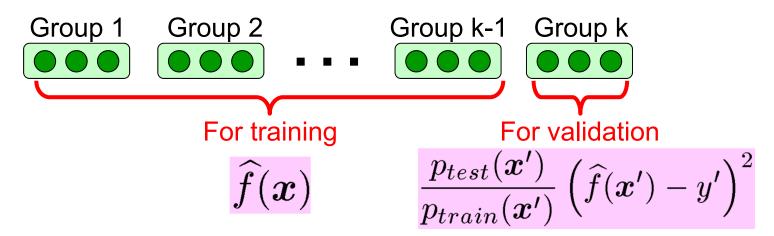
- No weighting: low-variance, high-bias
- Importance weighting: low-bias, high-variance



Model Selection

- Importance weighting also plays a central role for unbiased model selection:
 - Akaike information criterion (regular models) Shimodaira (JSPI2000)
 - Subspace information criterion (linear models) MS & Müller (Stat&Dec.2005)
 - Cross-validation (arbitrary models)

MS, Krauledat & Müller (JMLR2007)



Experiments: Speaker Identification

Yamada, MS & Matsui (SigPro2010)

- **NTT Japanese speech dataset:** Matsui & Furui (ICASSP1993)
- Text-independent speaker identification accuracy for 10 male speakers.
- Kernel logistic regression (KLR) with sequence kernel.

Training data	Speech length	IWKLR+IWCV+KLIEP	KLR+CV
9 months before	1.5 [sec]	91.0 %	88.2 %
	3.0 [sec]	95.0 %	92.9 %
	4.5 [sec]	97.7 %	96.1 %
0 11	1.5 [sec]	91.0 %	87.7 %
6 months before	3.0 [sec]	95.3 %	91.1 %
belore	4.5 [sec]	97.4 %	93.4 %
3 months before	1.5 [sec]	94.8 %	91.7 %
	3.0 [sec]	97.9 %	96.3 %
	4.5 [sec]	98.8 %	98.3 %

Experiments: Text Segmentation⁴⁸

Tsuboi, Kashima, Hido, Bickel & MS (JIP2009)

こんな失敗はご愛敬だよ. → こんな/失敗/は/ご/愛敬/だ/よ/.

Japanese word segmentation dataset.

Tsuboi, Kashima, Mori, Oda & Matsumoto (COLING2008)

Adaptation from daily conversation to medical domain.

Segmentation by conditional random field (CRF).

	IWCRF+IWCV +KLIEP	CRF+CV	CRF+CV (use additional test labels)
F-measure (larger is better)	94.46	92.30	94.43

Semi-supervised adaptation with importance weighting is comparable to supervised adaptation!

Other Applications

Age prediction from faces:

Illumination change

Ueki, MS & Ihara (ICPR2010)

Brain-computer interface:

Mental condition change

MS, Krauledat & Müller (JMLR2007) Li, Kambara, Koike & MS (IEEE-TBME2010)

Robot control:

• Efficient sample reuse

Hachiya, Akiyama, MS & Peters (NN2009) Hachiya, Peters & MS (NeCo2011)

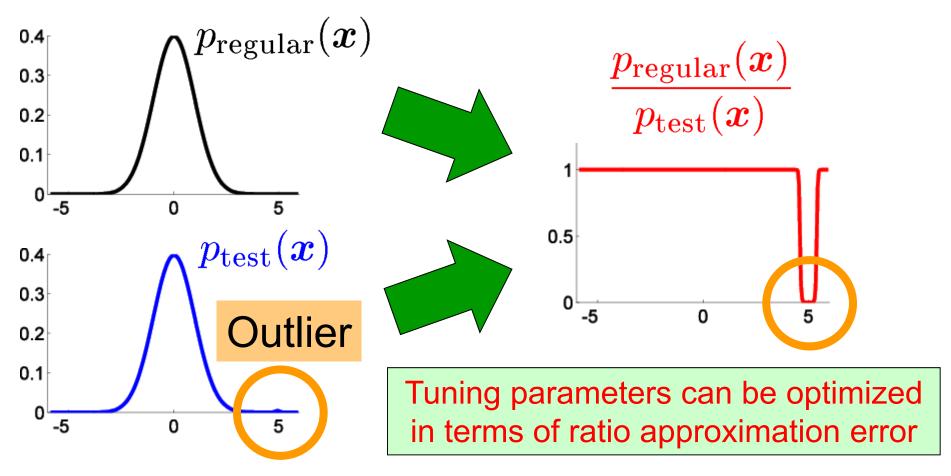
Organization of This Lecture ⁵⁰

- 1. Introduction
- 2. Methods of Density Ratio Estimation
- 3. Usage of Density Ratios
 - A) Importance sampling
 - **B)** Distribution comparison
 - c) Mutual information estimation
 - D) Conditional probability estimation
- 4. More on Density Ratio Estimation
- 5. Conclusions

Inlier-Based Outlier Detection ⁵¹

Hido, Tsuboi, Kashima, MS & Kanamori (ICDM2008, KAIS2011) Smola, Song & Teo (AISTATS2009)

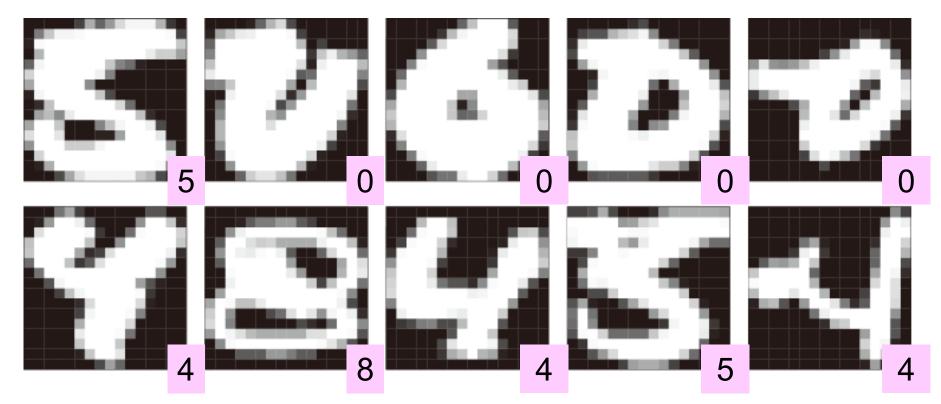
Goal: Given a set of inlier samples, find outliers in a test set (if exist)



Hido, Tsuboi, Kashima, MS & Kanamori (ICDM2008, KAIS2011)

52

Top10 outliers in the USPS test dataset found based on the USPS training dataset.



Most of them are not readable even by human.

Failure Prediction in Hard-Disk Drives

53

Self-Monitoring And Reporting Technology (SMART): Murray, Hughes & Kreutz-Delgado (JMLR 2005)

	Least-squares	One-class	Local outlier factor	
	density ratio	SVM	#NN=5	#NN= 30
AUC (larger is better)	0.881	0.843	0.847	0.924
Comp. time	1	26.98	65	.31

- LOF works well, given #NN is set appropriately. But there is no objective model selection method.
- Density ratio method can use cross-validation for model selection, and is computationally efficient.

OSVM: Schölkopf, Platt, Shawe-Taylor, Smola & Williamson (NeCo2001) LOF: Breunig, Kriegel, Ng & Sander (SIGMOD2000)

Other Applications

Steel plant diagnosis Hirata, Kawahara & MS (Patent2011)

Printer roller quality control

Takimoto, Matsugu & MS (DMSS2009)

Loan customer inspection

Sleep therapy

Hido, Tsuboi, Kashima, MS & Kanamori (KAIS2011)

Kawahara & MS (SADM2012)

Divergence Estimation 55

Nguyen, Wainwright & Jordan (IEEE-IT2010) MS, Suzuki, Ito, Kanamori & Kimura (NN2011)

Goal: Estimate a divergence functional from

$$\{\boldsymbol{x}_i\}_{i=1}^n \overset{i.i.d.}{\sim} p(\boldsymbol{x}) \quad \{\boldsymbol{x}_j'\}_{j=1}^{n'} \overset{i.i.d.}{\sim} p'(\boldsymbol{x})$$

• Kullback-Leibler divergence: $\int p(x)$

$$p(oldsymbol{x})\log rac{p(oldsymbol{x})}{p'(oldsymbol{x})}\mathrm{d}oldsymbol{x}$$

• Pearson divergence: (an *f*-divergence)

$$\int p'(\boldsymbol{x}) \left(\frac{p(\boldsymbol{x})}{p'(\boldsymbol{x})} - 1\right)^2 \mathrm{d}\boldsymbol{x}$$

Use density ratio estimation: r

$$r(oldsymbol{x}) = rac{p(oldsymbol{x})}{p'(oldsymbol{x})}$$

Real-World Applications

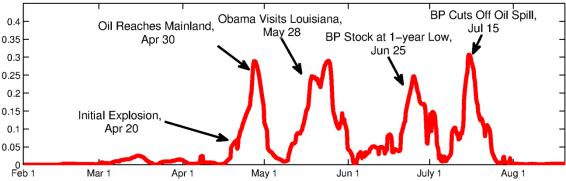
Regions-of-interest detection in images:

Yamanaka, Matsugu & MS (IEEJ2011)

Event detection in movies:

Matsugu, Yamanaka & MS (VECTaR2011)

Liu, Yamada, Collier & MS (arXiv2012)



Organization of This Lecture 57

- 1. Introduction
- 2. Methods of Density Ratio Estimation
- 3. Usage of Density Ratios
 - A) Importance sampling
 - B) Distribution comparison
 - c) Mutual information estimation
 - D) Conditional probability estimation
- 4. More on Density Ratio Estimation
- 5. Conclusions

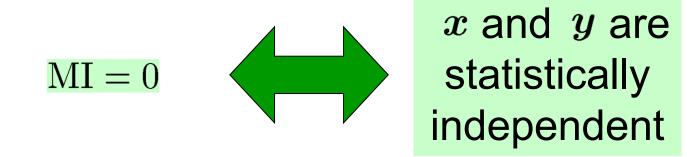
Mutual Information Estimation ⁵⁸

Suzuki, MS, Sese & Kanamori (FSDM2008)

Mutual information (MI): Shannon (1948)

$$\mathrm{MI} = \iint p(\boldsymbol{x}, \boldsymbol{y}) \log \frac{p(\boldsymbol{x}, \boldsymbol{y})}{p(\boldsymbol{x}) p(\boldsymbol{y})} \mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{y}$$

MI works as an independence measure:



Use KL-based density ratio estimation (KLIEP): $r(x, y) = \frac{p(x, y)}{p(x)p(y)}$

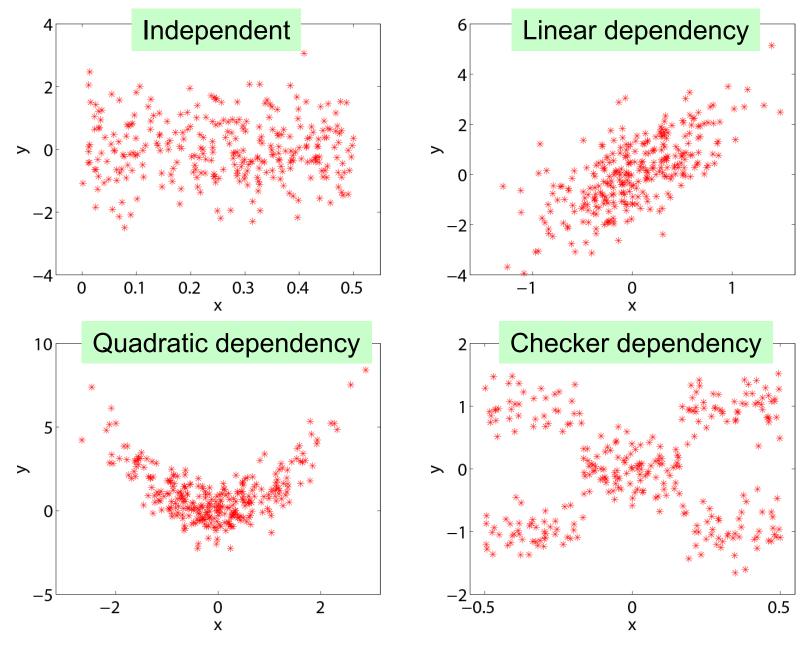
Experiments: Methods Compare&

KL-based density ratio method.

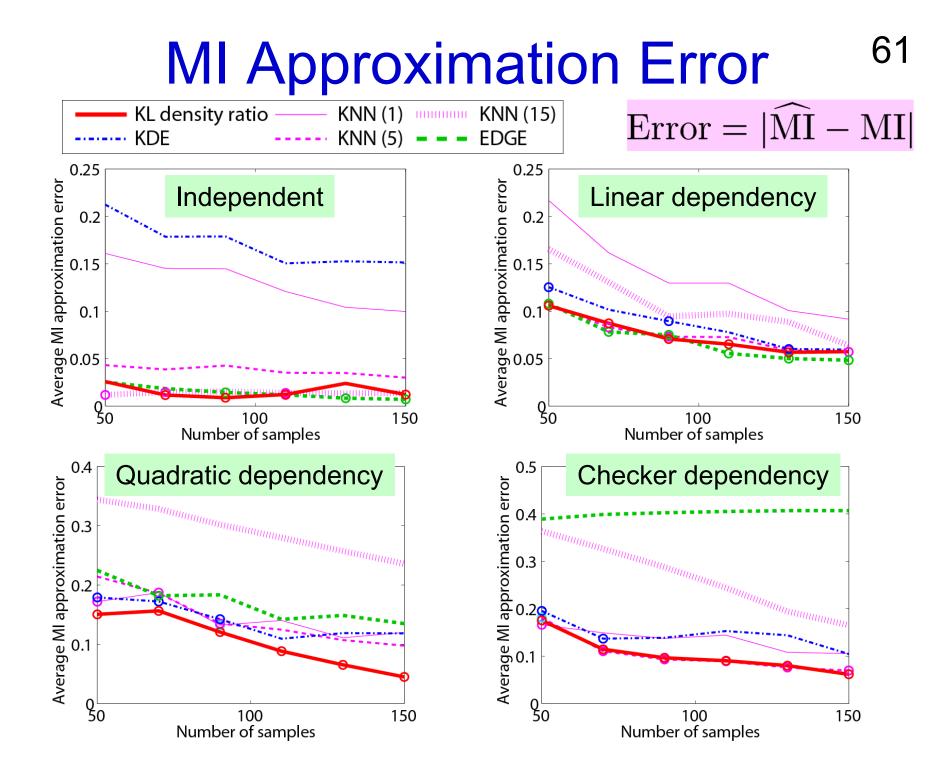
Kernel density estimation (KDE).

 K-nearest neighbor density estimation (KNN). Kraskov, Stögbauer & Grassberger (PRE2004)
 The number of NNs is a tuning parameter.
 Edgeworth expansion density estimation (EDGE). van Hulle (NeCo2005)

Datasets for Evaluation



60



Estimation of Squared-Loss ⁶² Mutual Information (SMI)

Suzuki, MS, Sese & Kanamori (BMC Bioinfo. 2009)

Ordinary MI is based on the KL-divergence.SMI is the Pearson divergence:

$$SMI = \iint p(\boldsymbol{x})p(\boldsymbol{y}) \left(\frac{p(\boldsymbol{x}, \boldsymbol{y})}{p(\boldsymbol{x})p(\boldsymbol{y})} - 1\right)^2 d\boldsymbol{x} d\boldsymbol{y}$$

- Can also be used as an independence measure.
- Can be approximated analytically and efficiently by least-squares density ratio estimation (uLSIF).

Usage of SMI Estimator ⁶³

Between input and output:

- Feature ranking Suzuki, MS, Sese & Kanamori (BMCBioinfo 2009)
- Sufficient dimension reduction Suzuki & MS (NeCo2012)
- Clustering MS, Yamada, Kimura & Hachiya (ICML2011) Kimura & MS (JACIII2011)

Suzuki & MS

Karasuyama

Output

& MS (NN2012)

- Between inputs:
 - Independent component analysis
 - Object matching (NeCo2010)
 Yamada & MS (AISTATS2011)

 $\boldsymbol{\epsilon}$

Input

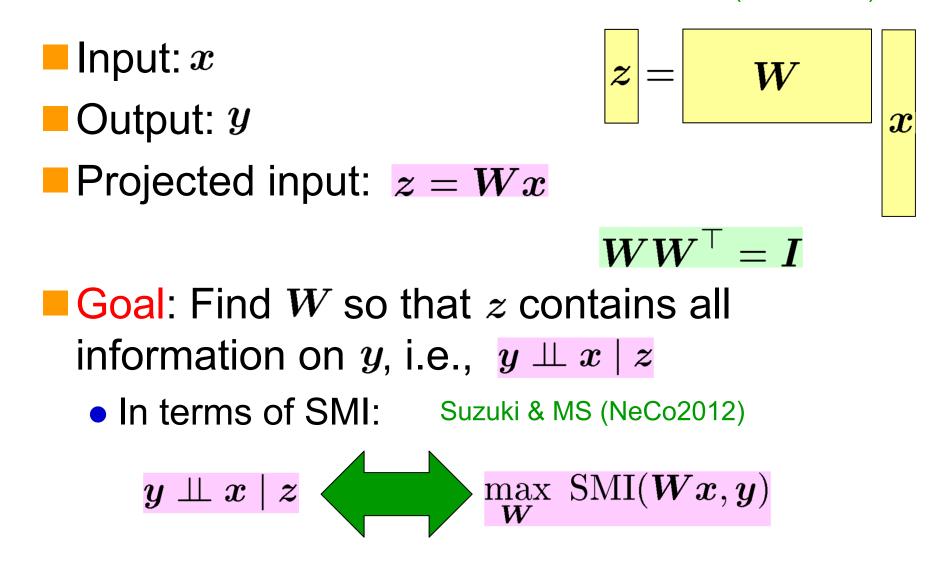
 \boldsymbol{x}

Residual

- Canonical dependency analysis
- Between input and residual:
 - Causal inference

Yamada & MS (AAAI2010)

Sufficient Dimension Reduction⁶⁴ Li (JASA1991)



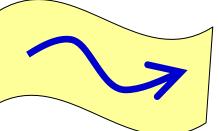
Sufficient Dimension Reduction⁶⁵ via SMI Maximization

Let's solve $\max_{W} \widehat{SMI}(W)$ subject to $WW^{\top} = I$.

$$\widehat{SMI}(\boldsymbol{W}) = 2\widehat{\boldsymbol{h}}^{\top}\widehat{\boldsymbol{\alpha}} - \widehat{\boldsymbol{\alpha}}^{\top}\widehat{\boldsymbol{H}}\widehat{\boldsymbol{\alpha}} - 1 \quad \widehat{\boldsymbol{\alpha}} : \text{uLSIF solution}$$

Since W is on a Grassmann manifold, natural gradient gives the steepest direction: Amari (NeCo1998)

$$V \longleftarrow \boldsymbol{W} + \epsilon \frac{\partial \widehat{\mathrm{SMI}}}{\partial \boldsymbol{W}} \left(\boldsymbol{I} - \boldsymbol{W}^{ op} \boldsymbol{W}
ight)$$



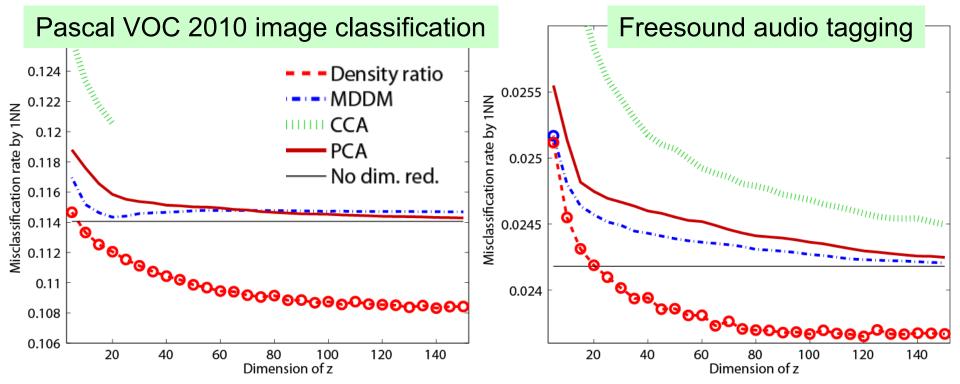
A computationally efficient heuristic update is also available.
Yamada, Niu, Takagi & MS (ACML2011)

Experiments

Yamada, Niu, Takagi & MS (ACML2011)

66

Dimension reduction for multi-label data:



- MDDM: Multi-label dimensionality reduction via dependence maximization (MDDM) Zhang & Zhou (ACM-TKDD2010)
- CCA: Canonical correlation analysis
- PCA: Principal component analysis

Organization of This Lecture ⁶⁷

- 1. Introduction
- 2. Methods of Density Ratio Estimation
- 3. Usage of Density Ratios
 - A) Importance sampling
 - B) Distribution comparison
 - c) Mutual information estimation
 - D) Conditional probability estimation
- 4. More on Density Ratio Estimation
- 5. Conclusions

Conditional Density Estimation⁶⁸

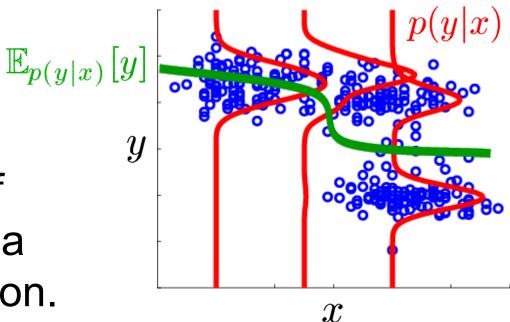
$$p(\boldsymbol{y}|\boldsymbol{x}) = rac{p(\boldsymbol{x}, \boldsymbol{y})}{p(\boldsymbol{x})}$$

MS, Takeuchi, Suzuki, Kanamori, Hachiya & Okanohara (IEICE-ED2010)

 Regression = Conditional mean estimation
 However, regression is not informative enough for complex data analysis:

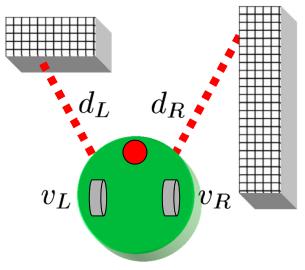
- Multi-modality
- Asymmetry
- Hetero-scedasticity

Directly estimation of conditional density via density-ratio estimation.



Experiments: Transition ⁶⁹
Estimation for Mobile Robot
Transition probability p(s'|s,a): Probability of being at state s' when action a is taken at s.

Khepera robotState: Infrared sensorsAction: Wheel speed



Mean (std.) test negative log-likelihood over 10 runs (smaller is better) (red: comparable by 5% t-test)

Data	uLSIF	ε -KDE	MDN
Khepera1	1.69(0.01)	2.07(0.02)	1.90(0.36)
Khepera2	1.86(0,01)	2.10(0.01)	1.92(0.26)
Pendulum1	1.27(0.05)	2.04(0.10)	1.44(0.67)
Pendulum2	1.38(0.05)	2.07(0.10)	1.43(0.58)
Comp. Time	1	0.164	1134

ε-KDE: ε-neighbor kernel density estimation
 MDN: Mixture density network Bishop (Book2006)

Probabilistic Classification ⁷⁰

$$p(\boldsymbol{y}|\boldsymbol{x}) = rac{p(\boldsymbol{x}, \boldsymbol{y})}{p(\boldsymbol{x})}$$

MS (IEICE-ED2010)

Class 1

Class 2

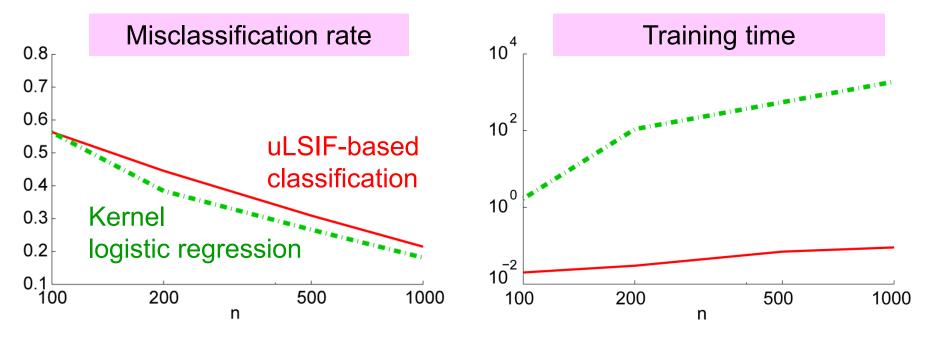
Class 3

- If y is categorical, conditional probability estimation corresponds to learning classposterior probability.
- Least-squares density ratio estimation (uLSIF) provides an analytic estimator:
 - Computationally efficient alternative to kernel logistic regression.
 - No normalization term included.
 - Classwise training is possible.

Numerical Example

71

Letter dataset (26 classes):



uLSIF-based classification method:

- Comparable accuracy with KLR.
- Training is 1000 times faster!

More Experiments

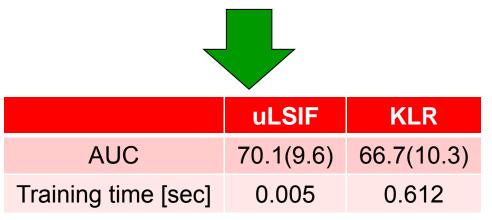
Dataset	uLSIF	KLR
Aeroplane	82.6(1.0)	83.0(1.3)
Bicycle	77.7(1.7)	76.6(3.4)
Bird	68.7(2.0)	70.8(2.2)
Boat	74.4(2.0)	72.8(2.6)
Bottle	65.4(1.8)	62.1(4.3)
Bus	85.4(1.4)	85.6(1.4)
Car	73.0(0.8)	72.1(1.2)
Cat	73.6(1.4)	74.1(1.7)
Chair	71.0(1.0)	70.5(1.0)
Cow	71.7(3.2)	69.3(3.6)
Diningtable	75.0(1.6)	71.4(2.7)
Dog	69.6(1.0)	69.4(1.8)
Horse	64.4(2.5)	61.2(3.2)
Motorbike	77.0(1.7)	75.9(3.3)
Person	67.6(0.9)	67.0(0.8)
Pottedplant	66.2(2.6)	61.9(3.2)
Sheep	77.8(1.6)	74.0(3.8)
Sofa	67.4(2.7)	65.4(4.6
Train	79.2(1.3)	78.4(3.0)
Tvmonitor	76.7(2.2)	76.6(2.3)
Training time [sec]	0.7	24.6

Yamada, MS, Wichern & Simm (IEICE2011)

72

Pascal VOC 2010 image classification: Mean AUC (std) over 50 runs (red: comparable by 5% t-test)

Freesound audio tagging: Mean AUC (std) over 50 runs



Other Applications

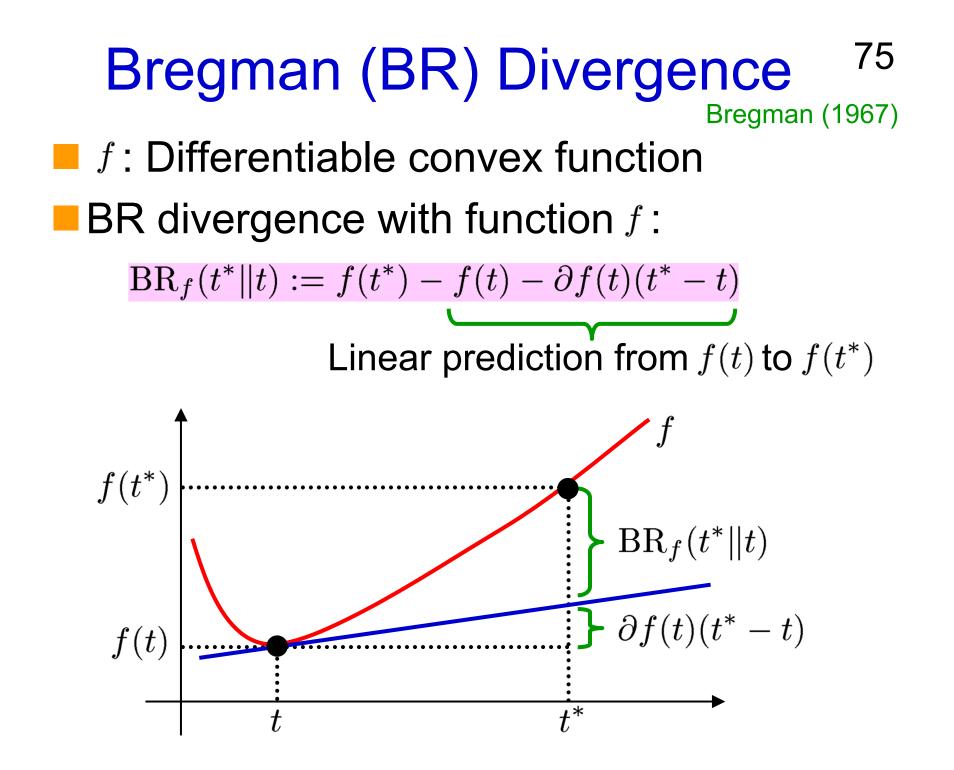
Action recognition from accelerometer

Hachiya, MS & Ueda (Neurocomputing 2011)

Age prediction from faces Ueki, MS, Ihara & Fujita (ACPR2011)

Organization of This Lecture ⁷⁴

- 1. Introduction
- 2. Methods of Density Ratio Estimation
- 3. Usage of Density Ratios
- 4. More on Density Ratio Estimation
 - A) Unified Framework
 - **B)** Dimensionality Reduction
 - c) Relative Density Ratios
- 5. Conclusions



Density-Ratio Fitting under BR Divergence

MS, Suzuki & Kanamori (AISM2012)

76

Fit a ratio model $\hat{r}(x)$ to true ratio r(x)under the BR divergence:

 $\min_{\widehat{r}} \mathrm{BR}_{f}\left(\widehat{r}\right)$ $\mathrm{BR}_{f}\left(\widehat{r}\right) = \int p_{\mathrm{de}}(\boldsymbol{x}) \nabla f(\widehat{r}(\boldsymbol{x})) \widehat{r}(\boldsymbol{x}) d\boldsymbol{x} - \int p_{\mathrm{de}}(\boldsymbol{x}) f(\widehat{r}(\boldsymbol{x})) d\boldsymbol{x}$ $-\int p_{
m nu}(oldsymbol{x})
abla f(\widehat{r}(oldsymbol{x})) doldsymbol{x} + C$ $\approx \frac{1}{n_{\mathrm{de}}} \sum_{j=1}^{n_{\mathrm{de}}} \nabla f(\widehat{r}(\boldsymbol{x}_{j}^{\mathrm{de}})) \widehat{r}(\boldsymbol{x}_{j}^{\mathrm{de}}) - \frac{1}{n_{\mathrm{de}}} \sum_{j=1}^{n_{\mathrm{de}}} f(\widehat{r}(\boldsymbol{x}_{j}^{\mathrm{de}}))$ $-\frac{1}{n_{\mathrm{nu}}}\sum_{i=1}^{n_{\mathrm{nu}}}\nabla f(\widehat{r}(\boldsymbol{x}_{i}^{\mathrm{nu}}))+C$ $r(oldsymbol{x}) = rac{p_{ ext{nu}}(oldsymbol{x})}{n_{ ext{de}}(oldsymbol{x})}$

Unified View

Logistic regression: $f(t) = t \log t - (1+t) \log(1+t)$ (Extended) kernel mean matching: $\min_{\widehat{r}} \|\nabla J(\widehat{r})\|^2$ $f(t) = (t-1)^2/2$ KL-based method: $f(t) = t \log t - t$ uLSIF: $\min_{\widehat{r}} J(\widehat{r})$ $f(t) = (t-1)^2/2$ Robust estimator (power divergence): $f(t) = \alpha^{-1}(t^{1+\alpha} - t) \quad \alpha > 0$

Organization of This Lecture ⁷⁸

- 1. Introduction
- 2. Methods of Density Ratio Estimation
- 3. Usage of Density Ratios
- 4. More on Density Ratio Estimation
 - A) Unified Framework
 - **B)** Dimensionality Reduction
 - c) Relative Density Ratios
- 5. Conclusions

Direct Density-Ratio Estimation⁷⁹ with Dimensionality Reduction (D³)

Directly density-ratio estimation without density estimation is promising.

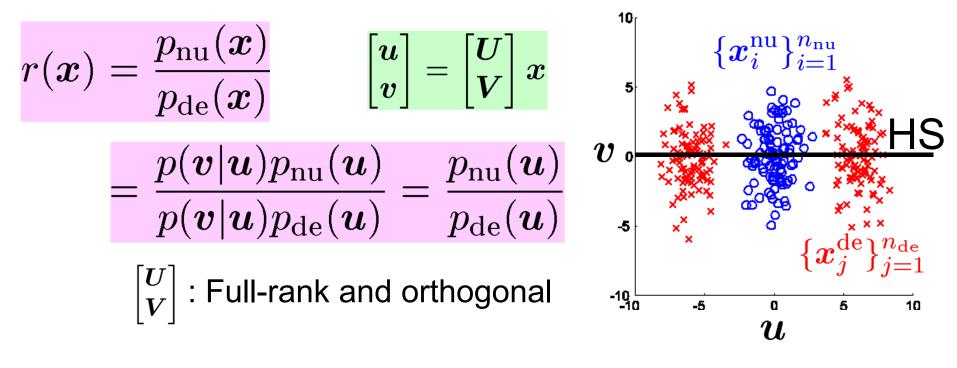
However, for high-dimensional data, density-ratio estimation is still challenging.

We combine direct density-ratio estimation with dimensionality reduction!

Hetero-distributional Subspace (H⁸S)

MS, Kawanabe & Chui (NN2010)

Key assumption: $p_{nu}(x)$ and $p_{de}(x)$ are different only in a subspace (called HS).



This allows us to estimate the density ratio only within the low-dimensional HS!

Characterization of HS⁸¹

MS, Yamada, von Bünau, Suzuki, Kanamori & Kawanabe (NN2011)

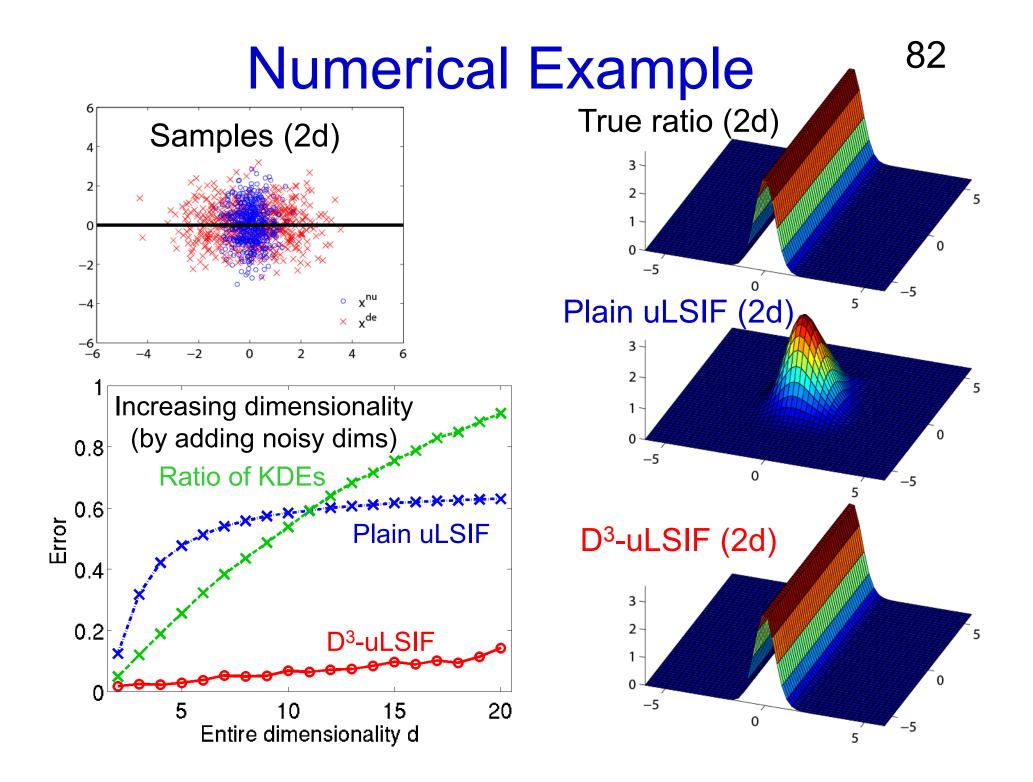
HS is given as the maximizer of the Pearson divergence with respect to U:

$$\operatorname{PE}[p_{\mathrm{nu}}(\boldsymbol{u}), p_{\mathrm{de}}(\boldsymbol{u})] = \int \left(\frac{p_{\mathrm{nu}}(\boldsymbol{u})}{p_{\mathrm{de}}(\boldsymbol{u})} - 1\right)^2 p_{\mathrm{de}}(\boldsymbol{u}) \mathrm{d}\boldsymbol{u}$$

PE can be analytically approximated by uLSIF (with good convergence property).

HS search by

- Natural gradient
- A heuristic update Yamada & MS (AAAI2011)

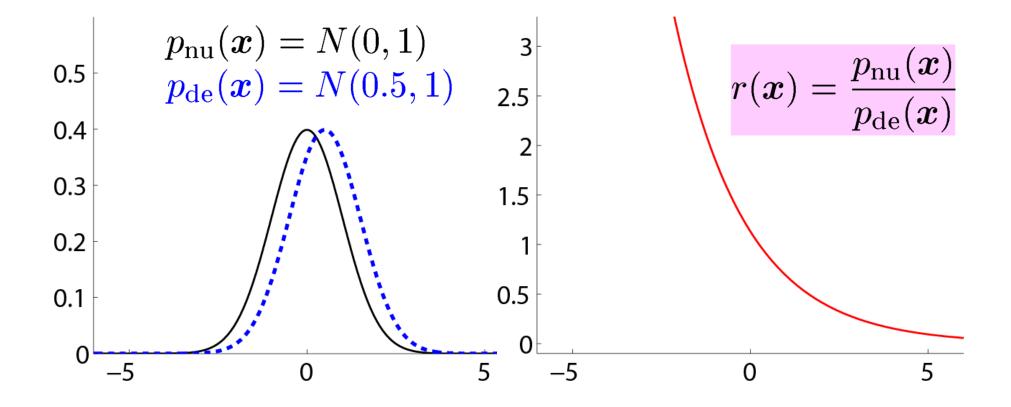


Organization of This Lecture ⁸³

- 1. Introduction
- 2. Methods of Density Ratio Estimation
- 3. Usage of Density Ratios
- 4. More on Density Ratio Estimation
 - A) Unified Framework
 - **B)** Dimensionality Reduction
 - c) Relative Density Ratios
- 5. Conclusions

Weakness of Density Ratios⁸⁴

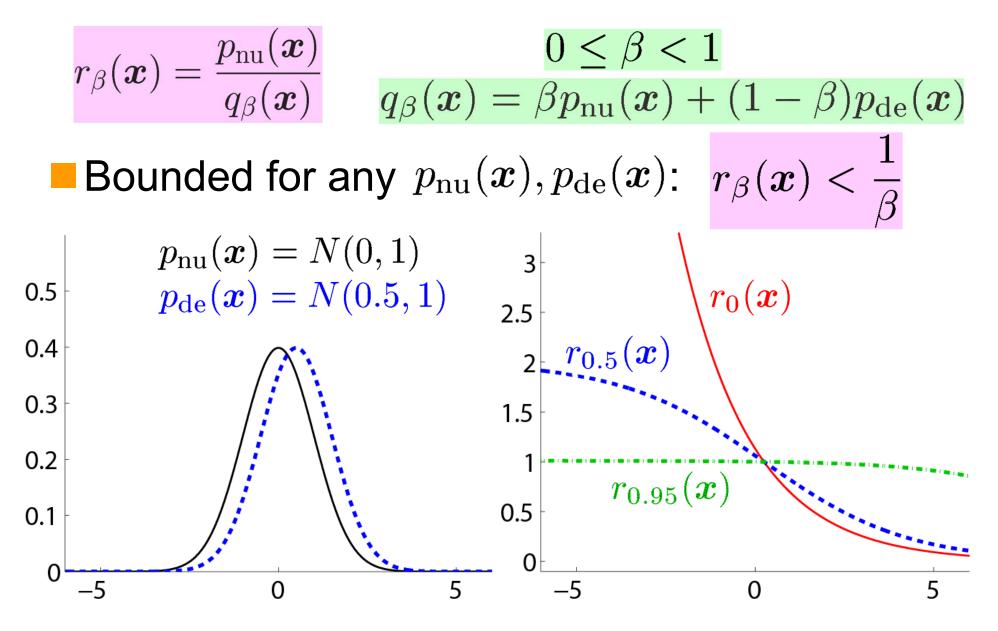
Density ratio can diverge to infinity:



Estimation becomes unreliable!

Relative Density Ratios⁸⁵

Yamada, Suzuki, Kanamori, Hachiya & MS (NIPS2011)



Estimation of Relative Ratios⁸⁶

Linear model: $\widehat{r}(x) = \sum_{\ell=1}^{\infty} \alpha_{\ell} \phi_{\ell}(x) = \alpha^{\top} \phi(x)$

Relative unconstrained least-squares importance fitting (RuLSIF):

$$\begin{split} \min_{\widehat{r}} \int \left(\widehat{r}(\boldsymbol{x}) - r_{\beta}(\boldsymbol{x}) \right)^{2} q_{\beta}(\boldsymbol{x}) d\boldsymbol{x} \quad r_{\beta}(\boldsymbol{x}) = \frac{p_{\mathrm{nu}}(\boldsymbol{x})}{q_{\beta}(\boldsymbol{x})} \\ q_{\beta}(\boldsymbol{x}) &= \beta p_{\mathrm{nu}}(\boldsymbol{x}) + (1 - \beta) p_{\mathrm{de}}(\boldsymbol{x}) \\ \text{The solution can be computed analytically:} \\ \arg_{\alpha} \left[\frac{1}{2} \boldsymbol{\alpha}^{\top} \widehat{\boldsymbol{H}} \boldsymbol{\alpha} - \widehat{\boldsymbol{h}}^{\top} \boldsymbol{\alpha} + \frac{\lambda}{2} \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} \right] &= (\widehat{\boldsymbol{H}} + \lambda \boldsymbol{I})^{-1} \widehat{\boldsymbol{h}} \\ = \frac{\beta}{n_{\mathrm{de}}} \sum_{i=1}^{n_{\mathrm{de}}} \phi(\boldsymbol{x}_{j}^{\mathrm{de}}) \phi(\boldsymbol{x}_{j}^{\mathrm{de}})^{\top} + \frac{1 - \beta}{n_{\mathrm{nu}}} \sum_{i=1}^{n_{\mathrm{nu}}} \phi(\boldsymbol{x}_{i}^{\mathrm{nu}}) \phi(\boldsymbol{x}_{i}^{\mathrm{nu}})^{\top} \ \widehat{\boldsymbol{h}} = \frac{1}{n_{\mathrm{nu}}} \sum_{i=1}^{n_{\mathrm{nu}}} \phi(\boldsymbol{x}_{i}^{\mathrm{nu}}) \\ \end{split}$$

Relative Pearson Divergence⁸⁷

$$PE_{\beta}[p_{nu}(\boldsymbol{x}), p_{de}(\boldsymbol{x})] = \frac{1}{2} \int (r_{\beta}(\boldsymbol{x}) - 1)^2 q_{\beta}(\boldsymbol{x}) d\boldsymbol{x}$$

$$r_{\beta}(\boldsymbol{x}) = \frac{p_{nu}(\boldsymbol{x})}{q_{\beta}(\boldsymbol{x})} \quad q_{\beta}(\boldsymbol{x}) = \beta p_{nu}(\boldsymbol{x}) + (1 - \beta) p_{de}(\boldsymbol{x})$$

Relative Pearson divergence can be more
reliably approximated: $\widehat{PE}_{\beta} - PE_{\beta} = \mathcal{O}_p(n^{-1/2}c||r_{\beta}||_{\infty} + \lambda_n \max(1, R(r_{\beta})^2))$ $n = \min(n_{nu}, n_{de})$ $\lambda_n \to o(1)$ and $\lambda_n^{-1} = o(n^{2/(2+\gamma)}), 0 < \gamma < 2$

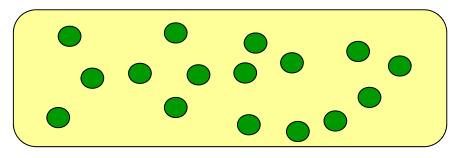
$$\|\boldsymbol{r}_{\boldsymbol{\beta}}\|_{\infty} = \max_{\boldsymbol{x}} r_{\boldsymbol{\beta}}(\boldsymbol{x}) = \left\| \left(\boldsymbol{\beta} + (1-\boldsymbol{\beta})/r(\boldsymbol{x}) \right)^{-1} \right\|_{\infty} < \frac{1}{\boldsymbol{\beta}} \quad r(\boldsymbol{x}) = \frac{p_{\mathrm{nu}}(\boldsymbol{x})}{p_{\mathrm{de}}(\boldsymbol{x})}$$

- 1. Introduction
- 2. Methods of Density Ratio Estimation
- 3. Usage of Density Ratios
- 4. More on Density Ratio Estimation
- 5. Conclusions

Task-Independent vs. Task-Specific

Task-independent approach to ML:

- Solving an ML task via the estimation of data generating distributions.
- Applicable to solving any ML tasks.
- No need to develop algorithms for each task.
- However, distribution estimation is performed without regards to the task-specific goal.
- Small error in distribution estimation can cause a big error in the target task.



Task-Independent vs. Task-Specific

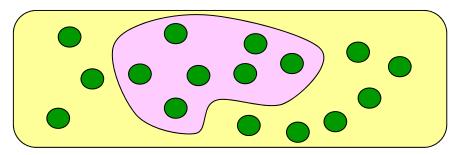
Task-specific approach to ML:

- Solve a target ML task directly without the estimation of data generating distributions.
- Task-specific algorithms can be accurate.
- However, it is cumbersome/difficult to develop tailored algorithms for every ML task.

ML for a Group of Tasks ⁹¹

Density ratio estimation:

- Develop tailored algorithms not for each task, but for a group of tasks sharing similar properties.
- Small effort to improving the accuracy and computational efficiency contributes to enhancing the performance of many ML tasks!



- Sibling: Density difference estimation
 - Differences are more stable than ratios.

MS, Suzuki, Kanamori, Du Plessis, Liu & Takeuchi (NIPS2012)

The World of Density Ratios 92

Real-world applications:

Brain-computer interface, robot control, image understanding, speech recognition, natural language processing, bioinformatics

Machine learning algorithms:

- Importance sampling (covariate shift adaptation, multi-task learning)
- Distribution comparison (outlier detection, change detection in time series, two-sample test)
- Mutual information estimation (independence test, feature selection, feature extraction, clustering, independent component analysis, object matching, causal inference)
- Conditional probability estimation (conditional density estimation, probabilistic classification)

Density ratio estimation:

Fundamental algorithms (LogReg, KMM, KLIEP, uLSIF) large-scale, high-dimensionality, stabilization, robustification, unification

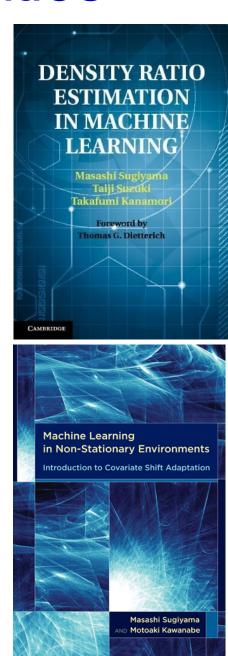
Theoretical analysis:

Consistency, convergence rate, information criteria, numerical stability

Books on Density Ratios

 Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning, Cambridge University Press, 2012

Sugiyama & Kawanabe Machine Learning in Non-Stationary Environments, MIT Press, 2012



93

Acknowledgements

- Colleagues: Hirotaka Hachiya, Shohei Hido, Yasuyuki Ihara, Hisashi Kashima, Motoaki Kawanabe, Manabu Kimura, Masakazu Matsugu, Shinichi Nakajima, Klaus-Robert Müller, Jun Sese, Jaak Simm, Ichiro Takeuchi, Masafumi Takimoto, Yuta Tsuboi, Kazuya Ueki, Paul von Bünau, Gordon Wichern, Makoto Yamada.
- Funding Agencies: Ministry of Education, Culture, Sports, Science and Technology, Alexander von Humboldt Foundation, Okawa Foundation, Microsoft Institute for Japanese Academic Research Collaboration Collaborative Research Project, IBM Faculty Award, Mathematisches Forschungsinstitut Oberwolfach Research-in-Pairs Program, Asian Office of Aerospace Research and Development, Support Center for Advanced Telecommunications Technology Research Foundation, Japan Science and Technology Agency

Papers and software of density ratio estimation are available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/