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National Institute of Advanced Industrial 
Science and Technology (AIST) 

• Research institute under METI for 6 fields: 
Life Science, Informatics, Environment and 
Energy, Nanotechnology and Materials, 
Geological Survey, Standard 

 

• 2500 scientists, 700 administrative staff, 5200 
scientists from outside 

 

• Since 2001 
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Computational Biology 
Research Center 

Odaiba, Tokyo 

 

Developing Novel Methods and 
Tools for  

 Genome Informatics 

 Molecular Informatics 

 Cellular Informatics 

 

Diverse Collaboration with 
Companies and Universities 
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Koji Tsuda: Short Bio 

1998 PhD in Kyoto Univ, Join ETL 

2000 GMD FIRST (Berlin, Germany) 

2001 Join CBRC/AIST  

2003-2004, 2006-2008 Max Planck 
Institute for Biological Cybernetics, 
Tuebingen, Germany  

2009 Back to CBRC, Machine Learning 
Group Leader  
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About this lecture 

How to extract knowledge from 
structured data 

Itemset mining, tree mining, graph 
mining 

 “Reverse Search Principle” 

Learning from structured data 

Kernels for structured data 
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Chapter 1 (Data Mining) 

1. Structured Data in Biology 

2. Itemset Mining 

3. Closed Itemset Mining 

4. Ordered Tree Mining 

5. Unordered Tree Mining 

5. Graph Mining 

6. Dense Module Enumeration 
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Agenda 2 (Learning from 
Structured Data)  

1. Preliminaries 

2. Graph Clustering by EM 

3. Graph Boosting 

4. Regularization Paths in Graph Classification 

5. Itemset Boosting for predicting HIV drug resistance 
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Agenda 3 (Kernel)   

1. Kernel Method Revisited 

2. Marginalized Kernels (Fisher Kernels) 

3. Marginalized Graph Kernels  

4. Weisfeiler-Lehman kernels 

5. Reaction Graph kernels 

6. Concluding Remark 
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Part 1: Structural Data in Biology 
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Biological Sequences 

DNA sequences (A,C,G,T) 

 Gene Finding, Splice Sites 

RNA sequences (A,C,G,U) 

 MicroRNA discovery, etc. 

Amino acid sequences (20 symbols) 

 Remote homolog detection, Fold 
recognition etc. 
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Structures hidden in sequences (I) 

Exon/intron of DNA (Gene) 
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Structures hidden in sequences (II) 

  

 

 

 

 

It is crucial to infer hidden structures 
and exploit them for classification 

 

 

Biological Graphs  

Protein  
3D Structures 

RNA 
Secondary 
Structure 



Molecular graphs 

Structure: Thiamine (Vitamin B1) 

implicit 

hydrogens 
explicit 

hydrogens 

molecular graph 

Hydrogen 

Carbon 

Oxygen 

Nitrogen 

Sulfur 

single bond 

double bond 

graph = 

a set of dots 

& lines 

(or nodes & 

edges) 

abstraction 
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Gene Expression Data 

Measurement of many 
mRNAs in the cell 

Rough estimate of 
amount of proteins 

Time-series or not 

Snapshot of the 
underlying dynamic 
system  
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Biological Networks 

Protein-protein physical interaction 

Metabolic networks 

Gene regulatory networks 

Network induced from sequence 
similarity 

 

Thousands of nodes (genes/proteins) 

100000s of edges (interactions) 
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Physical Interaction Network 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

17 

Metabolic Network 
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Many possible prediction 
problems.. 
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Part 2: Itemset mining 
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Data Mining 

 A formal study of efficient 
methods for extracting 
interesting rules and patterns 
from massive data 

 

 Frequent itemset mining 
(Agrawal and Srikant 1994) 

Closed pattern mining 

 Structured data mining 
(Sequence, Trees, and 
Graphs) 

 

email 

people 

@age @id 

60

8 

name 

#text 

#text 

person 

name 
@id 

60

9 

tel 

#text 

#text 

person 

2

5 

john@abc.com 

Jo

hn 555-

4567 Mar

y 
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Frequent Itemset Mining  
[Agrawal, Srikant, VLDB'94] 

 
 Finding all "frequent" sets of elements 

(items) appearing σ times or more in a 
database 

1 2 3 4 5

t1 ○ ○

t2 ○ ○

t3 ○ ○ ○ ○

t4 ○ ○ ○

t5 ○ ○ ○

1 2 3 4 5

t1 ○ ○

t2 ○ ○

t3 ○ ○ ○ ○

t4 ○ ○ ○

t5 ○ ○ ○

database

Minsup σ= 2 

The itemset lattice (2Σ, ⊆) 

Frequent setsFrequent 

sets 

∅,  

1, 2, 3, 4,  

12, 13, 14, 

23, 24, 124  

X = {2, 4} appears  

three times, thus  

frequent 



  

Definitions: Database 

 A set Σ = { 1, ..., n } of items (elements) 

 Transaction database 

− A set T = { t1, ..., tm } of subsets of Σ 

− Each subset  t ⊆Σ is called a transaction 
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L = {1, 2, 3, 4} •Alphabet of items 

id transaction 

t1 1, 3 

t2 2, 4 

t3 1, 2, 3, 4 

t4 1, 2, 4 

•22 
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Definitions: Frequent sets 

 Itemset X appears in transaction t: X ⊆ t 

 Occurrence of X in database T:  

 Occ(X, T) = { t ∈ T :  X ⊆ t  } 

 Frequency of X:  Fr(X, T) = | Occ(X, T) | 

 Minimum support (minsup):  0≦ σ ≦|T| 

 X is frequent  in T if Fr(X, T) ≧ σ. 

•23 •23 

I = {1, 2, 3, 4} Alphabet of items Transaction database 

Occ(24, T) = {t2, t3, t4},  

Fr(24, T) = 3 

Occurrences and frequencies  

of itemsets  

Occ(3, T) = {t1, t3} 

Fr(3, T) = 2 

id transaction 

t1 1, 3 

t2 2, 4 

t3 1, 2, 3, 4 

t4 1, 2, 4 



  

Market Basket Data 

 Popular application of itemset mining 

 Business and Market data analysis  
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ID Chips Mustard Sausage Softdrink Beer

001 1 0 0 0 1

002 1 1 1 1 1

003 1 0 1 0 0

004 0 0 1 0 1

005 0 1 1 1 1

006 1 1 1 0 1

007 1 0 1 1 1

008 1 1 1 0 0

009 1 0 0 1 0

010 0 1 1 0 1

003 1 0 1 0 0

• Transaction Data 

of purchase 

 
• a transaction  

or a "basket" 

 
•Item 

•Meaning of the transaction 003 

    "Custmer 003 bought Chips and Sausage together in his basket" 



  

DAG of itemsets: 

Hasse diagram 

 Edge: Adding 

one item 
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empty

1 2 3 4

1,2 1,3 1,42,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4



  

Enumeration Tree by 

Lexicographical Order 

 Need a tree 

to avoid 

duplication 
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empty

1 2 3 4

1,2 1,3 1,42,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4



  

Backtracking Algorithm: 

FP Growth etc. 
 Monotonicity: Support only decreases 

 Depth First Traversal, Prune if support < σ  

•27 

Frequent sets



  

Association Rule Mining 

 Confidence: Supp(A ∪ B)/ Supp(A) 

 Probability of B, Given A 

What item is likely to be bought when A 

is bought 

 Search: large support, confidence large 

 Post-processing of itemset mining 
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Summary: Itemset mining 

 Itemset mining is the simplest of all 

mining algorithms 

 Need to maintain occurrence of each 

pattern in database 

 Tree by lexicographical order is 

(implicitly) used 
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Part 3: Closed Itemset mining 



Problem in Frequent Pattern Mining 

 Huge Number of frequent itemsets  

 Hard to analyze 

 Most of them are similar 
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1 2 3 4 5

t1 ○ ○

t2 ○ ○

t3 ○ ○ ○ ○

t4 ○ ○ ○

t5 ○ ○ ○

1 2 3 4 5

t1 ○ ○

t2 ○ ○

t3 ○ ○ ○ ○

t4 ○ ○ ○

t5 ○ ○ ○

database

minsup σ= 2 

Huge number of frequent itemsets 

discovered in T 

Frequent setsAn input transaction 

database 

mining 



Solution:  
Closed Pattern Mining 

 Find only closed patterns 

 

 Observation: Most frequent itemset X can 
be extended without changing occurrence by 
adding new elements 

 

 def ([Pasquier et al., ICDT'99]).  
An itemset X is a closed set if and only if 
there is no proper superset of X with the 
same frequency (thus the same occurrence 
set). 
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Closed Pattern Mining 
 

 A closed itemset is the maximal set among all 

itemsets with the same occurrences.  

 Equivalence class [X] = {Y| Occ(X)=Occ(Y) }. 
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id  records 

1   A B C E 

2   A C 

3   B E 

4   B C E 

Database  

A C B E 

AC AB AE BE BC CE 

ABC ABE ACE BCE 

ABCE 

Closed sets (maximal sets) 

Equivalence class w.r.t. 

occurrences 



Brute-force: Stupid Baseline  

 ALGORITHM Bruteforce 

 First, generate all frequent itemsets  

 Check them one by one via maximality test  

 Maximality test for each candidate frequent 

set X 

 Add some element e in Σ to X 

 If Freq(X U {e}) is properly less than Freq(X) 

then reject X. 
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[1,3,4] 

[1] 

[1,2] 

[1,4] 

[1,2,4] 

[1,2,3,4] 

Bruteforce 

 STEP1) first, generate all frequent sets 
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id  records 

1   A B C E 

2   A C 

3   B E 

4   B C E 

Database T All itemsets in T 

Closed sets (maximal sets) 

Equivalence class w.r.t.  

occurrences 

Occurrence (set of ids) [1,2] 

 

A C B E 

AC AB AE BE BC CE 

ABC ABE ACE BCE 

ABCE 



Bruteforce 

 STEP1) first, generate all frequent sets 

 STEP 2) make closedness test for each set 
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id  records 

1   A B C E 

2   A C 

3   B E 

4   B C E 

Database T 
 

A C B E 

AC AB AE BE BC CE 

ABC ABE ACE BCE 

ABCE 

All itemsets in T 

[1,3,4] 

[1] 

[1,2] 

[1,4] 

[1,2,4] 

[1,2,3,4] 

Closed sets (maximal sets) 

Equivalence class w.r.t.  

occurrences 

Occurrence (set of ids) [1,2] 



Bruteforce 

 STEP1) first, generate all frequent sets 

 STEP 2) make closedness test for each set 

 STEP3) finally, extract all closed sets 
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id  records 

1   A B C E 

2   A C 

3   B E 

4   B C E 

Database T 
 

A C B E 

AC AB AE BE BC CE 

ABC ABE ACE BCE 

ABCE 

All itemsets in T 

[1,3,4] 

[1] 

[1,2] 

[1,4] 

[1,2,4] 

[1,2,3,4] 

Closed sets (maximal sets) 

Equivalence class w.r.t.  

occurrences 

Occurrence (set of ids) [1,2] 

 

C 

AC BE 

BCE 

ABCE 

All closed sets are found! 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

Complexity of Enumeration 
Algorithms  

Number of patterns 
usually exponential to 
input size 

Delay: Time between 
two pattern outputs 

Brute-force is 

exponential delay 

w.r.t. pattern size 

38 

Output size  

Delay D 

Input 

Input size  

Total Time T 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   
To achieve linear delay, 

Must jump from 
closed set to 
closed set 

How to define 
the search tree? 

Reverse search! 
(Avis and Fukuda 1996) 
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φ 

{1,7,9} 

{2,7,9} 

{1,2,7,9} 

{7,9} 

{2,5} 

{2} 

{2,3,4,5} 

{1,2,7,8,9} {1,2,5,6,7,9} 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   
Reverse Search: It’s a must 

A general mathematical framework to 
design enumeration algorithms 

Can be used to prove the correctness of 
the algorithm 

Popular in computational geometry 

Data mining algorithms can be 
explained in remarkable simplicity 
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Often, search space comes as 
a DAG 

• Naive Backtracking 
= Duplication 

 

• Duplication check by 
Marking = 
Exponential Memory 

 

• How to visit all 
nodes without 
duplication?  
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φ 

{1,7,9} 

{2,7,9} 

{1,2,7,9} 

{7,9} 

{2,5} 

{2} 

{2,3,4,5} 

{1,2,7,8,9} {1,2,5,6,7,9} 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   
Reduction Map 

Mapping from a children to the parent 

Reduction map for closed itemset 

 Shrink the itemset until occurrence changes 

 Take “closure operation”  

 

42 42 

closure(X)  

  

Closed set X 
shrink closure 

Parent of X 



Closure Operation 

 closure(X) of a set X:  

 Closed set computed by  

closure(X) = ∩ { t in T :  X ⊆ t }. 

(taking the intersection of all 

transactions in T that X occurs as subset) 

•43 

closure(X)  

  

Equivalence class of itemsets 

with same occurrence 

non-closed set 

closed set 



Example of Closure Operation 

 Non-closed itemset: (B,C) 

 Occurrence: 1,4 

 Take Intersection of 1 and 4 

      (A,B,C,E) ∩ (B,C,E) = (B,C,E) 

 This is closed itemset 
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id  records 

1   A B C E 

2   A C 

3   B E 

4   B C E 

Database T 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

By applying the reduction map to all 
nodes, enumeration tree is defined. 
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φ 

{1,7,9} 

{2,7,9} 

{1,2,7,9} 

{7,9} 

{2,5} 

{2} 

{2,3,4,5} 

{1,2,7,8,9} {1,2,5,6,7,9} 

• But arrows are 
in reverse 
direction.. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   
Children generation 

In backtracking, one has 
to generate all children 
of the current node 

Inverse of reduction 
map 

 Generate all children 
candidates  

 Apply reduction map to 
them 

 Remove if not coming 
back 

46 

 

 

 

 

 

 

Children 
candidates 

Parent real 
child 

real 
child 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   
Reverse Search Theorem 

To prove the correctness, prove the following 

 Reduction map is uniquely defined on all nodes 

 

 By applying the reduction map repeatedly, one 
can reach the root node from any node 

 

 Children generation is inverse of reduction map 

Easy to check ! 
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LCM = Linear Time Closed  

Sets Miner (Uno et al., 2003) 

 Prefix 
Preserving 
Closure 
Extension 

= Children 
generation from 
the reduction map 

Linear Delay! 

48 

⊥

Jump!

⊥

Jump!



Closure Extension 

 Repeat: Add an item and taking closure 

•49 

non-closed sets 

closed sets 

closure(X)  

 Step 2:  

closed set  

 Z = closure(XU{i}) 

closure  Z  

Start:  

closed set X 

X 

Step 1:  

Y = X U {i} 

Y 

add item i 

i 



Naïve Closure Extension: 

Duplication!  

closure 

extension 

1,2,5,6,7,9 

2,3,4,5 

1,2,7,8,9 

1,7,9 

2,7,9 

2 

T   ＝  

φ 

{1,7,9} 

{2,7,9} 

{1,2,7,9} 

{7,9} 

{2,5} 

{2} 

{2,3,4,5} 

{1,2,7,8,9} {1,2,5,6,7,9} 

・ closure extension   

       DAG of closed itemsets 
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Prefix Preserving Closure Extension  

・ Ensure any closed set is generated from a unique 

parent 
 

Def.    Closure tail of a closed itemset P 

    ⇔ the minimum j s.t. closure (P ∩ {1,…,j}) ＝ P 
 

Def.    H ＝ closure(P∪{i}) is a PPC-extension of P 

  ⇔   i > closure tail  and   

          H ∩{1,…,i-1} ＝ P ∩{1,…,i-1} 
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Enumeration tree by PPC extension 

closure extension 

ppc extension 

1,2,5,6,7,9 

2,3,4,5 

1,2,7,8,9 

1,7,9 

2,7,9 

2 

T   ＝  

φ 

{1,7,9} 

{2,7,9} 

{1,2,7,9} 

{7,9} 

{2,5} 

{2} 

{2,3,4,5} 

{1,2,7,8,9} {1,2,5,6,7,9} 

・ closure extension   DAG 

・ ppc extension     tree 

•52 
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Linear Delay in Pattern Size 
(Uno, Uchida, Asai, Arimura, Discovery Science 2004) 

Theorem :  The algorithm LCM finds all frequent 
closed sets X appearing in a collection of a transaction 
database D in O(lmn) time per closed set in the total 
size of D without duplicates,  

where l is the maximum length of transactions in D, 
and n is the total size of D, m is the size of pattern X.  

Note: The output polynomial time complexity of Closed 

sets discovery is shown by [Makino et al. STACS2002] 



Summary: Closed Itemset Mining 

 Closure Extension: Jump from closed 

set to closed set 

 LCM: Linear Delay 

 Very fast in practice, too 

 Winner of FIMI’04 (Frequent Itemset 

Mining Implementation Workshop) 

 Relation to clique enumeration (Arimura, 

Uno, SDM2009) 
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Part 4: Ordered Tree Mining 
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Frequent Ordered Tree Mining 

 Natural extension of frequent itemset 

mining problem for trees 

 Finding all frequent substructure in  

a given collection of labeled trees 

 How to enumerate them without duplicates 

 Efficient DFS Algorithm  

 FREQT [Asai, Arimura, SIAM DM2002] 

 TreeMiner [Zaki, ACM KDD2002] 

 Rightmost expansion technique 
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Labeled Ordered Trees 

Rooted:  

Ordered:  

Siblings are ordered 

from left to right. 

Labeled 

Each node has a label. 

A model of 

HTML/XML 

Hierarchical records 

Dependency tree of 

natural language texts. 

email 

people 

@age @id 

608 

name 

#text 

#text 

person 

name 

@id 

609 

tel 

#text 

#text 

person 

25 

john@abc.com 

John 

555-

4567 Mary 
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Matching between trees 

Pattern tree T  matches 
a data tree D 
 (T occurs in D ) 

There is a matching  
function f from T into D. 

r 

C 

B A 

B 

A 

C B 

data tree D pattern tree T 
1 

2 

3 4 5 

6 

7 

8 

9 10 

11 

A 

C B 
A 

C B A 

C B 

A 

C B A 

C B 

matching  

function f 

 f  is 1-to-1. 

 f  preserves parent-child relation. 

 f  preserves (indirect) sibling 
relation. 

 f  preserves labels. 
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Frequency of a pattern tree 

Root occurrence list 

 OccD(T) = {2, 8} 

• A root occurrence of pattern T:  
• The node to which the root of T maps by a matching function 

• The frequency fr(T) = #root occurrences of T in D  

r 

C 

B A 

C B 

A 

A C B 

B 

P1 

P2 

A 

C B 

D 
T 

1 

2 

3 4 5 

6 

7 

8 

9 10 

11 
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Frequent Tree Mining Problem 

 Given:  a colection S of labeled ordered trees 
and a minimum frequency threshold σ 

 Task: Discover all frequent ordered trees in S 
(with frequency no less than σ) without 
duplicates 

 

•A minimum frequency 

threshold (min-sup)  

s = 50% 



 A naive algorithm 

 Starting from the smallest tree 

 Grow a pattern tree by  
adding a new node one by one  

 Drawbacks 

 Exponentially many different ways 
to generate the same pattern tree 

 Explicit duplication test needed 

 How to overcome this difficulty? 
•61 

Key: How to enumerate ordered trees 

without duplicates? 

A 

B B 

A 

C C 

A 

C C B 

A 
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An idea: DFS Code of Ordered Tree 

Depth-label sequence in the preorder traversal 
(depth first search) 

        S = ((d(v1), l(v1)) , … , (d(vk), l(vk)) 
 
 

 
A 

B B 

B A 

C 

C 

0 

1 

2 

3 

depth 

 id 1    2     3     4    5     6    7 

 seq 0A  1B  2A  3C  2B  1B  2C 

DFS code 



Rightmost expansion  

• Extending the DFS Code = Attaching a new 
node on the rightmost branch 

   (d1,l1),…,(dn,ln), (dn+1,ln+1) 
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C 

B A 

C B 

1 

2 4 

5 6 
C 3 D 

7 

C 

B A 

C B 

1 

2 4 

5 6 
C 3 

D 
7 C 

B A 

C B 

1 

2 4 

5 6 
C 3 

D 
7 

C 

B A 

C B 

1 

2 4 

5 6 
C 3 

pattern S 



Searching frequent ordered trees 

• Enumerate all frequent ordered trees by backtracking 

• Tree extended only by rightmost extension = No duplication 
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⊥ 

A 

B 

A 

A 

A 

B 

B 

A 

B 

B 

B 

B A 

B 

B B 

B 

B 

B 

B 

B 

A 

B 

A A 

B 

A B 

infrequent 

infrequent 

frequent 

frequent 



Summary: Ordered tree mining 

 Convert tree to a string (DFS Code) 

 Adding element to the code = 

Rightmost extension 

 It was relatively easy because nodes 

are ordered 

 How about unordered case? 
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Part 5: Unordered Tree Mining 

•66 



Frequent Unordered Tree Mining 

• Unordered trees: Non-trivial subclass of 
general graphs 

• Problem: Exponentially many isomorphic 
trees 

• Efficient DFS Algorithm  

– Unot [Asai, Arimura, DS'03] 

– NK [Nijssen, Kok, MGTS’03] 
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A

B B

BA

C

C

A

B B

BA

C

C

A

B B

B A

C

C

A

B B

B A

C

C
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 Canonical Ordered Representation  

 Given ordering among siblings, depth-first 

search (DFS) code is defined 

Code(T) = ((depth(v1), label(v1)) , … , (depth(vk), label(vk)) 

 

A 
T 

B B 

B A 

C 

C 

Code(T) = (0A,1B,2A,3C,2B,1B,2C) 
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Canonical representation 
 

Ordered tree T with lexicographically 
maximum code 

A T1 T3 T4 

B B 

B A 

C 

C 

A 

B B 

B A 

C 

C 

A 

B B 

B A 

C 

C 

A T2 

B B 

B A 

C 

C 

(0A,1B,2A,3C,2B,1B,2C) (0A,1B,2B,2A,3C,1B,2C) (0A,1B,2C,1B,2A,3C,2B) (0A,1B,2C,1B,2B,2A,3C) 

＞ 



Left Heavy Condition 

(Nakano and Uno, 2002) 

 T(v): subtree rooted on v 

 Ordered tree is canonical if and only if  

            Code(T(v1)) ≧Code(T(v2)) 

    for any pair of sibling nodes v1 (left) 

and v2 (right) 
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Reduction Map 

 How to define parent from child in the 

enumeration tree 

 Generate canonical tree of size k-1 

from canonical tree of size k 

 Remove the last element of DFS Code 
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Code(T) = (0A,1B,2A,3C,2B,1B,2C) 



Children Generation 

 Generate children 

candidates by 

rightmost extension 

 Check the maximality 

of candidate based 

on left heavy property 

 Discard if not 

maximal  
•72 

C 

B A 

C B 

1 

2 4 

5 6 
C 3 

pattern S 



Maximality Check by Left Heavy 

Property 

 Code of left subtree must be larger than that 

of right subtree 

 Check only rightmost sibling and second 

rightmost sibling  

•73 

 

  

  

 

 

 

 

 

 

 

 



Complexity of UNOT 

 Delay per pattern O(kb2 mn) 

 k: pattern size 

 b: branching factor of the data tree 

m: size of data tree 

 n: database size 
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Summary: Mining Unordered Tree  

 The following three elements are 

necessary for a mining algorithm 

 Canonical Representation 

 Reduction Map 

 Children Generation including  

Maximality Check 

 Backtracking on the resulting 

enumeration tree  
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Part 6: Graph Mining 

•76 
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Frequent Subgraph Mining 

• Enumerate all subgraphs occurring more 

than 3 times 

Graph  

Database 

Patterns 



Gspan (Yan and Han, 2002) 

• Most widely used graph 
mining algorithm 

• Can be interpreted with 
reverse search principle 

– Canonical representation? 

– Reduction map? 

– Children generation? 
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DFS Code for Graph 

• Depth first search and preorder node labeling 
• (src, dest, src_label, edge_label, dest_label) 
• Some edges not traversed 

–  backward edge (dest < src) 

• Elements sorted in the code 
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A 

A 

B A 

a 

a 

a 

b 

0 

1 
2 3 

{(0,1,A,a,A), (1,2,A,a,B),     

(2,0,B,a,A), (2,3,B,b,A)}  



Canonical Representation 

• Multiple DFS codes: different starting point 
and children ordering 

• Minimum DFS Code: Lexicographically 
Minimum 
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Reduction Map 

• Removing the tail of minimum DFS code 
preserves minimality  
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min DFS: 

 {e1, e2, e3, e4}  {e1, e2, e3} 



Children Generation  

• Create candidates by 
adding an element to 
DFS code 

• Check if each candidate 
is minimum 

• If not, remove it 
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Children 
candidates 

Parent real 
child 

real 
child 



Minimality Check 

• Reconstruct the graph from 
DFS Code 

• Derive the minimum DFS 
Code by trying all DFSs 
–  Speed up by traversing 

minimal label only 

• If the minimal code is not 
identical to the original, 
prune it  
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{(0,1,A,a,A), (1,2,A,a,B), 

(2,0,B,a,A), (2,3,B,b,A)} 

A 

A 

B A 

a 

a 

a 

b 

0 

1 
2 3 

 



Summary: Graph Mining 

• gSpan is a typical example of reverse search 

• Not explained: Closed tree mining, Closed 
Graph mining 

• Delay exponential to pattern size 
– It cannot be avoided due to NP-hardness of graph 

isomorphism 

– Yet it scales to millions for sparse molecular 
graphs  

• Applications covered in next chapter 
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Part7: Dense Module Enumeration  
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Biological Motivation 

 Most cellular processes performed by multi-component 

protein complexes 

 Increasing amount of experimental protein interaction 

data available 

 Our approach 

 Predict complexes (modules) from protein 

interaction network 

 Exploit additional information given by gene 

expression data, evolutionary conservation, 

phenotypic profiles etc. 
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Protein interaction networks 

 Node: Proteins 

 Edge: Physical interaction of two proteins  

 

 Challenge 1: False negative edges 

 Go beyond clique search! 

 Challenge 2: False positive edges 

 Assign confidence scores to edges 

 

 Find node sets with high density of high confidence 
edges 
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Module Discovery 

 Previous work 

 Clique percolation [Palla et al., 2005] 

 Partitioning 
 Hierarchical clustering [Girvan and Newman, 2001] 

 Flow Simulation [Krogan et al., 2006] 

 Spectral methods [Newman, 2006] 

 Heuristic Local Search [Bader and Hogue, 2003] 
 

 Our approach 

 Exhaustively enumerate all dense subgraphs 
efficiently 
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Motivation for Enumeration Approach 

 Detects overlapping modules 

 Allows to specify minimum density for outcoming 

modules 

 Outputs all modules satisfying the density threshold 
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Differential Expression Criterion 

 Incorporation of gene expression 

 Presence of proteins depends on cell type  

 Additional Criterion for modules 

    : Num of conditions where whole module expressed 

    : Num of conditions where whole module not expressed 

 Fix minimum values for both quantities 
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Problem Formalization 
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Typical Enumeration Algorithms 

 Itemset mining, graph mining etc. 

 Enumerate all entities whose frequency >= 10 

 Set up a search tree 

 Tree Pruning by anti-monotonicity 

 An entity’s frequency is always smaller than that of 

sub-entity 

Not generated 
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Network Example 
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Graph-shaped Search Space of Modules 
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Choosing a search tree 

 For efficient search, a 

search tree is needed 

 There are many possible 

search trees 

 Default: Lexicographical 

ordering 
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Density is not a monotonic criterion 

 Subset of dense set is not necessarily dense 

 Density does not decrease monotonically on a path 

 Pruning Impossible 

 

 

1 1,2 1,2,3 

Density 1.0 0.1 0.5 
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Question 

 Is it possible to make a search tree such that 

density decreases monotonically? 
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Question 

 Is it possible to make a search tree such that 

density decreases monotonically? 

 

 YES! 

 Use Reverse Search (Avis and Fukuda 1993) 
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Reverse search (Avis and Fukuda, 1993) 

 Specify a search tree in the graph-shaped search space 

 Reduction Mapping 

 Rule to generate a parent from a child 

 Remove the node with the smallest degree 

 Density always increase by the removal 

 

CHILD PARENT 
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Search Tree is uniquely specified by the 

reduction mapping  

 Condition: Every node should converge to the root node 

by applying the reduction mapping repeatedly 
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Enumeration algorithm by reverse search 

 A set of children is generated from a parent 

node 

 Try every possible children, and choose the 

ones satisfying the reduction mapping 

 Prune if no children exist 
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Constraint Integration 

 Differential expression constraint 

 

 Monotonicity: e_0 and e_1 decrease with extension of U 

 

 

 

 

 

 Can be used for extra pruning without difficulty 
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 k : The number of nodes in the module 

    : Density of the module 

          : The number of modules of size k with density at 

least 

 Probability of random selection making a denser 

module (p-value)   

 

Statistical Significance of a module 
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Benchmarking in yeast complex discovery  

 Combined interactions from CYGD-Mpact and DIP 

 Interactions among 3559 nodes 

 Confidence weights on edges due to (Jansen, 2003) 

 Methods in comparison 

 Clique detection (Clique) 

 Clique Parcolation Method (CPM) 

 Markov Clustering 

 Modules compared with MIPS complexes 
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Evolutionary Conserved Yeast Modules 

 Use ortholog profiles (10 species, InParanoid) 

 Density >= 50%, at least three orthologs 

 1917 modules in 30 minutes 

 Recovered evolutionary conserved complexes 

 20S proteasome 

 19S/22S regulator 

 COPI vesicle coat complex 

 DNA polymerase I and II subunits 

 Translation initiation factor eIF2B complex 

 They could not be recovered by simple DME due to low 

density 
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MIPS Complexes discovered by DME 

(Conserved in Evolution) 
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Phenotype-associated yeast modules 

 Use growth phenotypic profiles (21 conditions, Dudley 

et al, 2005) 

 Growth defect in at least one condition 

 Each of the 13 highest ranking modules covers the large 

subunit of mitochondrial ribosome 

 Found additional protein, Mhr1  

 Exactly recovered the nucleoplasmic THO complex 

(Hpr1, Mft1, Rlr1, Thp2) 

 Transcription elongation, hyperrecombination 

 Growth defect under ethanol 
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Phenotype Associated Modules 

Large subunit of mitochondrial ribosome  

Mhr1: involved in homologous recombination of the mitochondrial  
genome  
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Human Settings 

 Tissue-specific gene expression data (Su et al., 2004) 

 79 different tissues 

 Consistently expressed in 3 tissues, not in 10 tissues 

 7763 proteins, density >= 35%, 5 minutes 

 1021 maximal modules 

 MIPS human complex database (Ruepp et al., to 

appear) 
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Human-expression result 

 Around MCM complex, we found inter-complex relationships with 
ORC, CDC7, Toposome, PLK1 protein 

 Module Uqcrc1, Uqcrc2, Uqcrb, Cyc1 (lg p = -13) 

 No overlap with MIPS 

 Ubiquinol-cytochrome c reductase complex  

 SCF E3 ubiquitin ligase complex: Mark protein for degradation 

 5 different modules with different tissue specificity 

 Peripheral proteins: Substrate recognition particles 

 Target proteins are selected in a tissue specific manner! 

 Natural Killer cells have all particles 
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High ranking modules around the MCM 

complex 

Expressed in bone mallow cells 
Not expressed in brain, liver, kidney etc.  
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Tissue Specific organization of the SCF ligase 

complex 
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Summary: Dense Module Enumeration  

 Novel module enumeration algorithm based on reverse 

search 

 Combination with other information sources 

 Statistical significance of dense modules 

 Successfully applied to  

 yeast/human protein interaction networks 
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Agenda 2 (Learning from 
Structured Data)  

1. Preliminaries 

2. Graph Clustering by EM 

3. Graph Boosting 

4. Regularization Paths in Graph Classification 

5. Itemset Boosting for predicting HIV drug resistance 
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Part 1: Preliminaries 
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Clustering Graphs 
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Graph Regression 
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Substructure Representation 

0/1 vector of pattern indicators 

Huge dimensionality! 

Need Graph Mining for selecting features 

patterns 
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Graph Mining 

Frequent Substructure Mining 

 Enumerate all patterns occurred in at least 
m graphs 

  

 

 

                :Indicator of pattern k in graph i 

 

 

 

Support(k): # of occurrence of pattern k 
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Enumeration on Tree-shaped 
Search Space 

Each node has a pattern 

Generate nodes from the root: 

 Add an edge at each step  
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Tree Pruning 

Anti-monotonicity: 

 

 

If support(g) < m, stop exploring! 

  

 

 

 

 

 

  

 

 

 

 

 

 

   
  
  

  

 

 
   

 
  

  

 

 

 
 

 
 

 
 

 
 

 

 

  

  

  

 

 

 

 

 

 
 

 

 

Not generated 

Support(g): # of occurrence of pattern g 
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Gspan (Yan and Han, 2002) 

Efficient Frequent Substructure Mining 
Method 

DFS Code  

 Efficient detection of isomorphic patterns 
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Depth First Search (DFS) Code 

A 

B A 

C 

  

 
 

b 

a b 

c 

 A labeled graph G 

0 

2 1 

3 
DFS Code Tree on G 

 
 

[0,1,A,a,B] 

[1,2,B,c,A] 

[2,0,A,b,A] 

[0,3,A,b,C] 

[0,3,A,b,C] 

 

 

 

 

[0,2,A,b,A] 

 

[0,3,A,b,C]  [0,3,A,b,C] 

  

 
[2,0,A,b,A] 

[0,1,A,a,B] 

 

 

 

Non-minimum DFS 

code. Prune it. 

Isomorphic 

G1 G0 
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Discriminative patterns 

w_i > 0: positive class 

w_i < 0: negative class 

Weighted Substructure Mining 

 

 

Patterns with large frequency difference 

Not Anti-Monotonic: Use a bound    
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Multiclass version 

Multiple weight vectors 

                   (graph   belongs to class   ) 

                   (otherwise) 

 

Search patterns overrepresented in a 
class  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   
Basic Bound 

•    : Occurrence of pattern j 

• If k is supergraph of pattern j, 
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xij



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   
Pruning Condition 

Summarizing the bound for all classes, 

 

 

If it is negative, the search tree can be 
pruned safely 
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Summary: Preliminaries 

Various graph learning problems 
 Supervised/Unsupervised 

 

Discovery of salient features by graph 
mining  

Actual speed depends on the data 
 Faster for.. 

 Sparse graphs 

Diverse kinds of labels 
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Part 2: EM-based clustering of 
graphs 
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EM-based graph clustering 

Motivation 

 Learning a mixture model in the feature 
space of patterns 

 Basis for more complex probabilistic 
inference 

L1 regularization & Graph Mining 

E-step -> Mining -> M-step 
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Probabilistic Model 

Binomial Mixture  

 

 

Each Component 

:Mixing weight for cluster  

:Feature vector of a graph (0 or 1)  

:Parameter vector for cluster  
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Ordinary EM algorithm 

Maximizing the log likelihood 

 

 

 

E-step: Get posterior  

M-step: Estimate     using posterior probs. 

Both are computationally prohibitive (!) 
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Regularization 

L1-Regularized log likelihood 

 

 

 

Baseline constant  
 ML parameter estimate using single binomial 

distribution 

 

In solution, most parameters exactly equal to 
constants 
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E-step 

Active pattern 

 

 

E-step computed only with active 
patterns   (computable!) 
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M-step 
Putative cluster assignment  

Each parameter is solved separately 

 

 

Naïve way:  

 solve it for all params and identify active patterns 

 

Use graph mining to find active patterns 
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Solution 

Occurrence probability in a cluster 

 

 

Overall occurrence probability 
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Solution 
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Important Observation 

For active pattern k, the occurrence probability in a graph 
cluster is significantly different from the average 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

27 

Mining for Active Patterns 

Active pattern 

 

Equivalently written as 

 

 

F can be found by graph mining! 
(multiclass) 
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Experiments: RNA graphs 

Stem as a node 

Secondary structure by RNAfold 

0/1 Vertex label (self loop or not) 
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Clustering RNA graphs 

Three Rfam families 

 Intron GP I (Int, 30 graphs) 

 SSU rRNA 5 (SSU, 50 graphs) 

 RNase bact a (RNase, 50 graphs) 

Three bipartition problems 

 Results evaluated by ROC scores (Area 
under the ROC curve) 
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Examples of RNA Graphs 
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ROC Scores 
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No of Patterns & Time 
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Found Patterns 
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Summary (graph EM) 
Substructure representation is better 
than paths 

Probabilistic inference helped by graph 
mining 

 Extension to Dirichlet mixture model 

 Reported in Tsuda et al., SDM 2008  

Possible extension 

 Graph PCA, LFD, CCA  

 Semi-supervised learning 
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Part 3: Graph Boosting 
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Graph classification problem in 
chemoinformatics 

Known as SAR problem in chemical 
informatics 

 (Quantitative) Structure-Activity Analysis 

 

Given a graph, predict a class-label (+1 or -1) 

 Typically, features (descriptors) are given 

 e.g., Dragon Descriptors, JOELIB2 
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SAR with conventional descriptors  

#atoms #bonds #rings … Activity 

22 25 +1 

20 21 +1 

23 24 +1 

11 11 -1 

21 22 -1 
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Motivation of Graph Boosting 

Descriptors are not always available 

New features by obtaining informative 
patterns (i.e., subgraphs)   

Greedy pattern discovery by Boosting + 
gSpan 

Linear Programming (LP) Boosting  
 Reduce the number of graph mining calls 

 Faster than AdaBoost  

Accurate prediction & interpretable results 
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Molecule as a labeled graph  

 C 

 C 

 C 
 C 

 C 
 C 

 O 

 C 
 C  C 

 C 

 

  

 

  

  
 

 

 

 



40 

SAR with patterns 
… Activity 

1 1 1 +1 

-1 1 -1 +1 

-1 1 -1 +1 

-1 1 -1 -1 

1 1 -1 -1 

 C 
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 C 
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Sparse classification in a very 
high dimensional space 

G: all possible patterns (intractably large) 

|G|-dimensional feature vector x for a 
molecule  

Linear Classifier 
 

 

Use L1 regularizer to have sparse α 

Select a tractable number of patterns 

 





d
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Problem formulation 

Sum of hinge loss and L1 regularizer 

                 : Training examples   

ξ: slack variables  
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Dual LP 

Primal: Huge number of weight variables  

Dual: Huge number of constraints 

Dual problem 
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Column Generation Algorithm 
for LP Boost (Demiriz et al., 2002) 

Start from the dual with no constraints 

Add the most violated constraint each time 

Guaranteed to converge  

  

Constraint Matrix 

         
Used 
Part 
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Finding the most violated 
constraint 

Constraint for a pattern (shown again) 

 

 

Finding the most violated one 

 

 

Searched by weighted substructure mining 
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Algorithm Overview 

Iteration 

 Find a new pattern by graph mining with weight u 

 If all constraints are satisfied, break 

 Add a new constraint 

 Update u by solving the dual problem 

Return 

 Convert dual solution to obtain primal solution α 
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Experimental Settings 

Classification and Regression Datasets 
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Classification Results  
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Regression Results 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

50 

Extracted patterns from CPDB 
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Memory Usage 
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Runtime 
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Comparison with AdaBoost 
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Summary (Graph Boosting) 

Graph Boosting simultaneously generate 
patterns and learn their weights 

Finite convergence by column generation 

Interpretable by chemists. 

Flexible constraints and speed-up by LP. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

Part 4: Entire Regularization     
Path 

55 
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Overview 

Entire regularization paths 
 LARS-LASSO (Efron et al., 2004), L1SVM 

 Forward selection of features 

 Trace the solution trajectory of L1-regularized 
learning  

Path following algorithm for graph data 
 Feature search -> pattern search 

 Branch-and-bound algorithm  

 DFS code tree, New Bound 
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Path Following Algorithms 

LASSO regression 

 

 

Follow the complete trajectory of 

     : Infinity to Zero 

 

Active feature set 

 Features corresponding to nonzero weights 
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Piecewise Linear Path 

At a turning point,  

 A new feature included into the active set, 
or 

 An existing feature excluded from the 
active set 
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Practical Merit of Path Following 

Cross validation by grid search 

 Has to solve QP many times 

 Especially time-consuming for graph data 

 

Path following does not include QP 

Determine the CV-optimal regularization 
parameter in the finest precision 
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Pseudo code of path following 

 
Main 
Search 
Problem 
 

Set initial point    and direction 

Do 
 d1 = Step size if next event is inclusion 

 d2 = Step size if next event is exclusion 

 d = min(d1,d2)  

   

 Update the active feature set 

 Set the next direction 

Until all features are included 
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Feature space of patterns 

Graph training data 

Set of all subgraphs (patterns) 

Each graph is represented as 
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Main Search problem 

Step size if pattern t is included next 

 

 

 

 

Find pattern          that minimizes  

: constants computed  
  from active set 
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Tree-shaped Search Space 

Each node has a pattern 

Generate nodes from the root: 

 Add an edge at each step  
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Tree Pruning 

If it is guaranteed that the optimal pattern is 
not in the downstream, the search tree can be 
pruned  

  
 

 
 
 

 
  

 
 
 
 

 
 

   
  
  

  
 

 
   

   
  

 

 

  

 
 

  
  

 
 

  

  
  

 
 

 
 

 

 
 

 
 

Not generated 
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Theorem (Pruning condition) 

 Traversed up to pattern t    

      :Minimum value so far   

 No better pattern in the downstream, if  

where 
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Initial Experiments 

EDKB Estrogen receptor database 

 131 training graphs (chemical compounds) 

 

Computation Time: 4 sec/search 

 Pattern size limitation: 10 edges 
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Solution Path 
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Events 
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Summary: Regularization Path 
Path following implemented for graph 
data 

Pattern search by graph mining 

Classification: To do 

Combination with item set mining 

 



Part 5: . Itemset Boosting for 

predicting HIV drug resistance  

•70 
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Life cycle of an HIV Virus 

 

Drug Target 
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Approved HIV Drugs 

• 8 Protease inhibitors (PI) 

• 8 Nucleoside/nucleotide reverse transcriptase 

inhibitors (NRTI) 

• 3 Non-nucleoside reverse transcriptase 

inhibitors (NNRTI) 

• 1 Fusion inhibitor 
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Drug resistance of HIV 

• Exposure to a drug causes mutations in HIV’s 

genes 

• As a result, HIV gains resistance against the drug 

 

• Cost of identifying the genotypes of HIV in a 

patient is relatively cheap 

• Predict the drug resistance from HIV’s genotypes ! 

– Effective Pharmacotherapy for individuals  
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Drug resistance prediction 

problem as regression 

• Input: Set of mutations in a target protein 

– 41L: Amino acid at position 41 changed to L 

• Output: Resistance against a drug (fold 

change) 

(40F,41L,43E,210W,211K,215Y) 
(43Q,75M,122E,210W,211K) 
(75I, 77L, 116Y,151M,184V) 

 0.8 

 12.8 

 ? 
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Simple vs Complex Genotypic 

Features 

• Simple genotypic features 

 

 

 

• Complex genotypic features 

(0, 1, 0, 1, 0, 0, 0, 1,…) 

41L 

(0, 1, 0, 1, 0, 0, 0, 1,…) 

77L,116Y 103N,210W,215Y 

 

  

  
62V F116Y 
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Linear Regression on Simple 

Genotypic Features  

(Rhee et al., PNAS 2006) 

• Mutation associations not discovered 
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Complex Genotypic Features 

0/1 vector of pattern indicators 

Huge dimensionality! 

Need itemset mining for selecting features 

Selection of salient features 

patterns 

(0, 1, 0, 1, 0, 0, 0, 1,…) 

77L,116Y 103N,210W,215Y 
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Other methods 

• Nonlinear SVM  

– Not interpretable 

– High accuracy 

• Decision trees 

– Interpretable 

– Low accuracy 
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Motivation of Itemset Boosting 

Impossible to maintain all complex features  

Greedy feature discovery by Boosting + 
itemset mining 

Quadratic Programming (QP) Boosting  

 Reduce the number of itemset mining calls 

 Faster than AdaBoost  

Accurate prediction & interpretable results 
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Sparse classification in a very 
high dimensional space 

G: all possible patterns (intractably large) 

|G|-dimensional feature vector x  

Linear Classifier 
 

 

Use L1 regularizer to have sparse α 
(LASSO) 

Select a tractable number of patterns 
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Problem formulation: 
Quadratic Programming  

Sum of squared loss and L1 regularizer 

                 : Training examples   

ξ: slack variables  
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Dual QP 

Primal: Huge number of weight variables  

Dual: Huge number of constraints 
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Column Generation Algorithm 
for QP Boost (Demiriz et al., 2002) 

Start from the dual with no constraints 

Add the most violated constraint each time 

Guaranteed to converge  

  

Constraint Matrix 

         
Used 
Part 
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Finding the most violated 
constraint 

Constraint for a pattern (shown again) 

 

 

Finding the most violated one 

 

 

Searched by weighted itemset mining 
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Algorithm Overview 

Iteration 

 Find a new pattern by graph mining with weight u 

 If all constraints are satisfied, break 

 Add a new constraint 

 Update u by solving the dual problem 

Return 

 Convert dual solution to obtain primal solution α 
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Experimental settings 

• Three classes of drugs 
– NRTI (Nucleotide Reverse Transcriptase 

Inhibitors) 

– PI (Protease Inhibitors) 

– NNRTI (Nonnucleotide Reverse Transcriptase 
Inhibitors) 

 

• 5fold cross validation 
– Linear SVM, Ridge regression, Lars 

– Nonlinear SVM, iBoost 
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Regression results 

Accuracy: 
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Accuracy Summary 

• NRTIs: iBoost performed best 

• PIs:  

– Nonlinear methods were better than linear  

– SVMs were slightly better (non-significant) 

• NNRTIs 

– Linear methods were better 

– Combination is not necessary 
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NRTI Drugs 
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Known mutation associations in 

RT 

Red: Thymidine-

associated Mutations 

(TAM) 

– 41L, 67N, 70R, 210W, 

215Y/F, 219Q, 69i 

Blue: Q151M Complex 

– 75I, 77L, 116Y, 151M, 

65R, 74V, 184I/V 

 

 

 

RT of HIV-1 
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PI Drugs 
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NNRTI Drugs 
(almost no combination found) 
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Computation Time of iBoost 

• Training time for 3TC 

• 507 isolates with 371 

mutations on average 

• QP time longer than 

mining time 
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Summary (HIV) 
• Itemset Boosting for finding mutation 

associations 

• Good accuracy for NRTIs 

• Our complex features re-discover known 
mutation clusters  

• Broad applications 
– Multiple SNP analysis, RNAi efficacy prediction 

– Motif combination, Flu mutation analysis 

– P53 mutation analysis 
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Part 1: Kernel Method Revisited 
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Kernels and Learning 

In Kernel-based learning algorithms, 
problem solving is now decoupled into: 

 A general purpose learning algorithm (e.g. 
SVM, PCA, …) – Often linear algorithm  

 A problem specific kernel 

Complex Learning 

Task 

Simple (linear) 

learning algorithm 

Specific Kernel function 
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Current Synthesis 

Modularity and re-usability 

 Same kernel ,different learning algorithms 

 Different kernels, same learning algorithms 

 

 

Kernel 1 
Data 1 

(Sequence)  
Gram Matrix 

(not necessarily stored) 

Learning 

Algo 1     

Kernel 2 
Data 2 

(Network)  
Gram Matrix 

Learning 

Algo 2     

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

6 

Kernel Methods : intuitive idea 

Find a mapping f such that, in the new 
space, problem solving is linear 

Kernel represents the similarity between 
two objects, defined as the dot-product in 
this new vector space 

But the mapping is left implicit 

Easy generalization of a lot of dot-
product-based learning algorithms 
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Kernel Methods : the mapping 

Original Space Feature (Vector) Space 

 

 

 

 

  

  

 
 

 
 

 
 

 
 

 

 

 

 

  

 

 

f 

f 
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Kernel : more formal definition 

A kernel k(x,y)  
 is a similarity measure  

 defined by an implicit mapping f,  

 such that: k(x,y)=f(x)•f(y) 

This similarity measure implies: 
 Invariance or other a priori knowledge 

 The class of functions the solution is taken from 

 Possibly infinite dimension (hypothesis space for 
learning) 

 … but still computational efficiency when 
computing k(x,y) 
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Kernel Trick 

Generalizes (nonlinearly) algorithms in 
clustering, classification, density estimation .. 

 When these algorithms are dot-product based, by 
replacing the dot product (x•y) by k(x,y)=f(x)•f(y) 

 When these algorithms are distance-based, by 
replacing d(x,y) by k(x,x)+k(y,y)-2k(x,y) 

 

Freedom of choosing f implies a large variety 
of learning algorithms 
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Valid Kernels 

Theorem: k(x,y) is a valid kernel if k is 
positive definite and symmetric (Mercer 
Kernel) 

 A function is P.D. if  

 In other words, the Gram matrix K (whose 
elements are k(xi,xj)) must be positive definite for 
all xi, xj of the input space 

 One possible choice of f(x): k(•,x) (maps a point x 
to a function k(•,x)  feature space with infinite 

dimension!) 

  20)()(),( LfddffK yxyxyx
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How to build new kernels 

Kernel combinations, preserving validity: 

 

)()(

)(
)(

)(

))()(()(

)().()(

)().()(

0)(.)(

10)()1()()(

11

1

3

21

1

21

yyxx

yx
yx

yxyx

yφxφyx

yx

yxyxyx

yxyx

yxyxyx

,K,K

,K
,K

positivedefinitesymmetricPP,K

,K,K

functionvaluedrealisfyfxf,K

,K,K,K

a,Ka,K

,K,K,K













 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

12 

Strategies of Design 

Convolution Kernels: text is a 
recursively-defined data structure. How 
to build “global” kernels form local 

(atomic level) kernels? 

Generative model-based kernels: the 
“topology” of the problem will be 

translated into a kernel function 



IBM Research – Tokyo Research Laboratory © 2005 IBM Corporation  

Family of kernels  

 Kernels for biological sequences 

– Spectrum kernel  

– Marginalized kernel  

– Profile kernel 

– Local alignment kernel 

 

 Tree Kernels 

– Kernel for phylogenetic profiles  

– Kernel for natural language   

– Kernel for RNA sequences  

 

Kernel Methods in Computational  

Biology,  MIT Press 



IBM Research – Tokyo Research Laboratory © 2005 IBM Corporation  

Family of kernels  

 Kernels for nodes in a network 

– Diffusion kernel  

– Locally constrained diffusion kernel  

 

 Graph Kernels 

– Marginalized Graph Kernels  

– MGK without tottering   

– Acyclic Pattern Kernels  

– Shortest Path Kernel 

– Weisfeiler-Lehman Kernel 
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Weak points of kernel methods 

Not Interpretable 

 Not sure which features are used 

 -> Graph Mining, Boosting 

 

Dense kernel matrices: Slow 

 Take O(n^3) time for manipulation 

 -> Semi-supervised learning 
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Part 2. Marginalized kernels 
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Biological Sequences: 
Classification Tasks 

DNA sequences (A,C,G,T) 
 Gene Finding, Splice Sites 

RNA sequences (A,C,G,U) 
 MicroRNA discovery, Classification into 

Rfam families 

Amino Acid Sequences (20 symbols) 
 Remote Homolog Detection, Fold 

recognition 
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Kernels for Sequences 

Similarity between sequences of different 
lengths 

 

 

 

 

 

Later combined with SVMs and other kernel 
methods 

ACGGTTCAA 

ATATCGCGGGAA 
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Count Kernel 

Inner product between symbol counts 

 

 

 

Extension: Spectrum kernels (Leslie et al., 2002) 

 Counts the number of k-mers (k-grams) efficiently 

 

Not good for sequences with frequent context change 

 E.g., coding/non-coding regions in DNA   
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Hidden Markov Models for 
Estimating Context 

Visible Variable                           : Symbol Sequence 

 

Hidden Variable                           : Context 

 

HMM can estimate the posterior probability of hidden 
variables           from data 
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Marginalized kernels 

Design a joint kernel              for combined 

 Hidden variable is not usually available 

 

 Take expectation with respect to the hidden 
variable 

 

The marginalized kernel for visible variables 
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Designing a joint kernel for 
sequences 

Symbols are counted separately in each context 

 

 

 

         :count of a combined symbol (k,l) 

 

Joint kernel: count kernel with context information 
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Marginalization of the joint kernel 

Joint kernel 

 

 

 

Marginalized count kernel 
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Computing Marginalized Counts 
from HMM 

Marginalized count is described as 

 

 

 

Posterior probability of i-th hidden variable is 
efficiently computed as 
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2nd order marginalized count 
kernel 

If adjacent relations between symbols have essential 
meanings, the count kernel is obviously not sufficient 

 

2nd order marginalized count kernel 

 4 neighboring symbols (i.e. 2 visible and 2 hidden) 
are combined and counted 
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Fisher Kernel 
Probabilistic mode 

 

 

Fisher Kernel 

 Mapping to a feature vector (Fisher score vector) 

 

 

  Inner product of Fisher scores 

Z: Fisher information matrix 
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Fisher Kernel from HMM 

Derive FK from HMM (Jaakkola et al. 2000) 

 Derivative for emission probabilities only 

 No Fisher information matrix 

FK from HMM is a special case of marginalized kernels 

 Counts are centralized and weighted  
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Difference between FK and 
Marginalized Kernels 

FK: Probabilistic model determines the 
joint kernel and the posterior 
probabilities 

 

MK: You can determine them separately 

 More flexible design! 
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Protein clustering experiment 

84 proteins containing five classes 

 gyrB proteins from five bacteria species 

Clustering methods 

 HMM + {FK,MCK1,MCK2}+K-Means 

Evaluation 

 Adjusted Rand Index (ARI) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

30 

Kernel Matrices 
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Clustering Evaluation 
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Applications since then.. 

Marginalized Graph Kernels (Kashima et al., ICML 
2003) 

Sensor networks (Nyugen et al., ICML 2004) 

Labeling of structured data (Kashima et al., ICML 
2004) 

Robotics (Shimosaka et al., ICRA 2005) 

Kernels for Promoter Regions (Vert et al., NIPS 2005) 

Web data (Zhao et al., WWW 2006) 
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Summary (Marginalized Kernels) 

General Framework for using generative 
model for defining kernels 

Fisher kernel as a special case 

Broad applications 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

34 

 
Part 3 Marginalized Graph 
Kernels 
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Existing methods assume ” tables” 

 

 

Structured data beyond this framework 

→ New methods for analysis 

 

Motivations for graph analysis 

… Osaka Female 31 ×× 0002 

… Tokyo Male 40 ○○ 0001 

… Address Sex Age Name Serial Num 
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Graphs.. 
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DNA Sequence 

 

 

RNA 

 

 

 

 

Texts in literature 

Graph Structures in Biology 

C 

C O C 

C 

C 

C 

H 

A C G C 

Amitriptyline inhibits adenosine uptake 

H 

H 

H 

H 

H 

Compounds 

CG 

CG 

U U U U 

UA 
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Marginalized Graph Kernels 
 

Going to define the kernel function  

Both vertex and edges are labeled 

(Kashima, Tsuda, Inokuchi, ICML 2003) 
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Label path 

Sequence of vertex and edge labels 

 

Generated by random walking 

Uniform initial, transition, terminal 
probabilities 
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Path-probability vector 
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Kernel definition 

Kernels for paths  

 

 

Take expectation over all possible paths! 

Marginalized kernels for graphs 

A  c  D  b  E 

B  c  D  a  A 
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Computation  

 

 

 
v’ 

 

 

 

  

v 

 

 

A(v) 

A(v’) 

           : Set of paths ending at v    

 KV : Kernel computed from the paths ending at (v, v’)  

 

 

 KV  is written recursively 

 

 

 Kernel computed by solving  

   linear equations 

（polynomial time） 

Transition probability :  

Initial and terminal      : omitted 
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Graph Kernel Applications 

Chemical Compounds (Mahe et al., 2005) 

Protein 3D structures (Borgwardt et al, 2005) 

RNA graphs (Karklin et al., 2005) 

Pedestrian detection 

Signal Processing  
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Predicting Mutagenicity 

MUTAG benchmark dataset 

 Mutation of Salmonella typhimurium 

 125 positive data (effective for mutations) 

 63 negative data (not effective for mutations)  

Mahe et al. J. Chem. Inf. Model., 2005 
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Classification of Protein 3D 
structures 

Graphs for protein 3D structures 

 Node: Secondary structure elements 

 Edge: Distance of two elements 

Calculate the similarity by graph kernels 

Borgwardt et al. “Protein function prediction via graph kernels”, ISMB2005 
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Classification of proteins: 
Accuracy 

Borgwardt et al. “Protein function prediction via graph kernels”, ISMB2005 
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Pedestrian detection in images 
(F. Suard et al., 2005) 
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Classifying RNA graphs (Y. 

Karklin et al.,, 2005) 
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Strong points of MGK 

Polynomial time computation O(n^3) 

Positive definite kernel 

 Support Vector Machines 

 Kernel PCA 

 Kernel CCA 

 And so on… 
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Drawbacks of graph kernels 

Global similarity measure 

 Fails to capture subtle differences 

 Long paths suppressed 

Results not interpretable 

 

Structural features ignored (e.g. loops)  

 No labels -> kernel always 1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   

Part 4. Weisfeiler Lehman 
kernel 

51 



Convert a graph into a set of words 

i) Make a label set of adjacent  

  vertices   ex) {E,A,D} 

ii) Sort       ex) A,D,E 

iii) Add the vertex label as a prefix         

                 ex) B,A,D,E 

iv) Map the label sequence to a 

unique value 

                  ex) B,A,D,E→R 

v) Assign the value as the new  

   vertex label 

A 

D 

E B 

Bag-of-words 

{A,B,D,E,…,R,…} 

A 

D 

R E 
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Part 5. Reaction Graph Kernels 

55 



KEGG lysine degradation pathway 



Missing enzymes in metabolic networks 

• Many enzymatic reactions 

whose substrate and product 

are known, but the enzyme 

involved is unknown. 

 

• Need to assign Enzymatic 

Classification numbers. 

 

? 

 

? 

  



EC number  

• EC (Enzymatic Classification) 

number is a hierarchical 

categorization of 

– Enzymes 

– Enzymatic reactions 

EC 1.3.3.- 
 

class 

 

subclass 

 
subsubclass 



Task 

 

EC: 3.5.2 

Query 

Result of 

Retrieval 

? 

Given a pair of substrate and product as a query, find 

similar  reactions in the database 

Similarity measure of reactions is necessary 



Reaction Graph   

• Represent enzymatic reaction as reaction graph 

• Node: Molecules  

• Edge: chemical relation of molecules (main, leave, 

co-factor, transferase, ligase) 

• Reaction graph kernel: Similarity measure of 

reaction graphs 

• Molecule = Graph of atoms 

• Reaction graph has ‘graph of graphs’ structure 

• Extension of existing walk-based graph kernel 
(Kashima et al., 2003) 

 

 



 
 

 

  

main 

main 

leave 

 
＋ ＋ 

Main Substrate 2 Main Products 



Reaction graph kernels (RGK) 

• Two-layered kernels on graphs of graphs  

– Node kernel = walk-based graph kernel of molecules  

– Edge kernel = delta kernel of labels  

• “main”, “leave”, “cofactor”, “transferase”, “ligase” 

)',( RRKr

R 

R' 

 

 
 

 
 

 
  



• Query might not come in the complete form 

• Remove some edges in the database entries 

RPAIR 

main-only 

  

 

 

 

Use only reactant edges 

(main, leave) 

Use “main” only 

Simplified Settings 



Automatic classification of 

enzymatic reactions in KEGG 

• KEGG/REACTION database 

• 4610 reactions with known EC number 

• 6 classes, 50 subclasses, 124 subsubclasses  

 

• Construct nearest neighbor classifier based on the 
reaction graph kernel 

• Three different levels:  class, subclass,subsubclass 

• Three kernel versions: full, RPAIR, main-only 

• Measure leave-one-out classification error 

 

 



Prediction Accuracy 

• As expected, classification is easier for upper 

categories, but difficult for lower categories 

such as subsubclass. 

• The order of accuracy (full-edge > RPAIR > 

main-pair) suggests that detailed edge 

information contributes to further accuracy. 



Predicting unannotated reactions in  

plant secondary metabolism 

• KEGG pathway “Biosynthesis of Secondary 
Metabolites” 

• Out of unannotated 56 reactions, we have manually 
assigned ECs of 36 reactions under chemists’ guidance 

• Comparison with an existing rule-based method: e-
zyme (Kotera et al., J. Am. Chem. Soc, 2004). 

• RGK’s accuracy was better than e-zyme. (50% 
improvement for the top candidate) 

 



Case 1: EC 3.1.1 

 
＋ 

query 

Manual 

annotation 

Structures of C02046 and C01479 are almost same except structural 

isomerism. A hydrolysis occur at a carboxylic-esther bond. 

method rank1 rank2 rank3 

RGK 3.1.1 1.14.11 1.14.11 

e-zyme 6.1.1 3.1.1 NA 

3.1.1 



Case 2: EC 2.1.1+1.1.1 

Manual 

annotation 

query 
 

After removing a methyl group of C06175 (2.1.1), C01735 will be produced 

by oxidation of CH-OH group (1.1.1). In the second reactions, enzymes 

usually use NAD+/NADP+ as an acceptor. 

method rank1 rank2 rank3 

RGK 1.1.1 1.1.1 1.1.1 

e-zyme 2.1.1 1.13.12 1.14.14 



Case 3: EC1.14+2.4.1+5.2.1+3.2.1 

Query 
 

This reaction is thought to be a set of 5 reactions by analogy with the 

pathway from C00423 => C01772 => C05158 => C05839 => C05838, and 

to C05851. The last reaction is spontaneous and not enzymatic. 

method rank1 rank2 rank3 

RGK 1.14.13 1.2.3 1.2.1 

e-zyme NA NA- NA- 

Manual 

Annotation 



A difficult case 

No 

annotation  

A very similar reaction (below) is found by manual inspection 

     

Multi-step reaction is difficult to analyze. We don’t know how 

many steps are hidden between given substrate and product.  
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Concluding Remarks: New Frontier 

Developing Algorithms for Learning from Graphs 

Taming Combinatorial Explosion 

 Recursive Fixed Point Iteration: Graph Kernels 

 Statistical Pruning in Search Tree: Graph Boosting 

 Hashing to a set of words: WL Kernel 

New ideas are necessary to get beyond the current 
level of speed and prediction accuracy 

Deeper integration of learning and mining 

 

THANK YOU VERY MUCH!! 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

   
Reference 

[1] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between 
labeled graphs,” ICML, pp. 321–328, 2003. 

[2] H. Saigo, M. Hattori, H. Kashima, and K. Tsuda, “Reaction graph kernels 
predict EC numbers of unknown enzymatic reactions in plant secondary 
metabolism.,” BMC bioinformatics, vol. 11 Suppl 1, no. Suppl 1, p. S31, Jan. 
2010. 

[3] N. Shervashidze, P. Schweitzer, V. Leeuwen, E. Jan, K. Mehlhorn, and K. 
Borgwardt, “Weisfeiler-Lehman graph kernels,” Journal of Machine Learning 
Research, vol. 12, pp. 2539–2561, 2011. 

[4] K. Tsuda, T. Kin, and K. Asai, “Marginalized kernels for biological 
sequences,” Bioinformatics, vol. 18, no. Suppl 1, pp. S268–S275, Jul. 2002. 

72 


