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About this lecture

N

#How to extract knowledge from
structured data

#[temset mining, tree mining, graph

mining
= 'Reverse Search Principle”
#Learning from structured data

#®Kernels for structured data




Chapter 1 (Data Mining)
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* 1.
*® 2.
* 3.
® 4.
@ 5.
@ 5.
# 6.

Structured Data in Biology
Itemset Mining

Closed Itemset Mining
Ordered Tree Mining
Unordered Tree Mining
Graph Mining

Dense Module Enumeration
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Agenda 2 (Learning from
Structured Data)

# 1. Preliminaries

# 2. Graph Clustering by EM

# 3. Graph Boosting

# 4, Reqgularization Paths in Graph Classification

# 5. Itemset Boosting for predicting HIV drug resistance




Agenda 3 (Kernel)

N

# 1. Kernel Method Revisited

# 2. Marginalized Kernels (Fisher Kernels)
# 3. Marginalized Graph Kernels

# 4. Weisfeiler-Lehman kernels

# 5. Reaction Graph kernels
# 6. Concluding Remark




Part 1: Structural Data in Biology




Biological Sequences

N

#DNA sequences (A,C,G,T)
= Gene Finding, Splice Sites

#RNA sequences (A,C,G,U)
= MicroRNA discovery, etc.

# Amino acid sequences (20 symbols)

= Remote homolog detection, Fold
recognition etc.
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Structures hidden in sequences (I)
# Exon/intron of DNA (Gene)

E'XDﬂr intron -

N

r exon —l- mtron - exXxongp intron -
C

Exonr intron -|— eN0T1

DNA
ATG GT AG GT AG GT AG GT AG TTG.TAA
transcription TGA
UUG,UAA

¥ AUG GU AG GU AG GU AG GU AG UGA
pre-mRNA  cap [ I I I I Py A

splicing
¥ ﬂ -, , /ﬁ'
mRNA cap e — Pl A
AUG
translation UUG,UAA
¥ UGA
protein N I
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Structures hidden in sequences (II)

N

RNA
Secondary
Structure

Protein
3D Structures

#1It is crucial to infer hidden structures
and exploit them for classification

—) Biological Graphs
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Structure: Thiamine (Vitamin B1)

Implicit
hydrogens

Molecular graphs

explicit
hydrogens

abstraction

=)

graph =
a set of dots
& lines

molecular graph&/(or nodes &

edges)

Hydrogen
Carbon
Oxygen
Nitrogen

Sulfur

single bond
double bond



Gene Expression Data

N

#Measurement of many
MRNASs in the cell

#Rough estimate of
amount of proteins

#®Time-series or not

#Snapshot of the
underlying dynamic
system
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Biological Networks

N

# Protein-protein physical interaction
# Metabolic networks

# Gene regulatory networks

# Network induced from sequence
similarity

#Thousands of nodes (genes/proteins)
#100000s of edges (interactions)
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Physical Interaction Network

N
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Metabolic Network
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Many possible prediction
_problems..

Given Data Predicted Property
sequence structure (3D coordinates of the atoms)
structure function (e.g., according to GO or MIPS)
expression interactions (with other proteins, DNA or metabolites)
phylogeny localization (e.g., compartment)

18



Part 2: Itemset mining
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Data Mining

B A formal study of efficient
methods for extracting
Interesting rules and patterns
from massive data

B Frequent itemset mining
(Agrawal and Srikant 1994)

Closed pattern mining

Structured data mining
(Sequence, Trees, and
Graphs)

20
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Frequent ltemset Mining
[Agrawal, Srikant, VLDB'94]

® Finding all "frequent” sets of elements
(Items) appearing o times or more In a

database
Minsup o= 2 fFrequent \ Frequent sets/@\
sets

» 1/} —— N
1 O O 1, 2, 3, 4, < —_
2 (o (o 12,13, 14, : él\“/\“?a
s 0(0) 0(9 (23,24,124 w/‘QZ
t4 O O o o 5
5 o@ @ X = {2, 4} appears

three times, thus 1754

frequent The itemset lattice (2%, S



Definitions: Database

® Aset={1, ..., n}ofitems (elements)

® Transaction database

- AsetT={t,, .., t,}of subsets of Z
— Each subset t €% iIs called a transaction

L={1, 2, 3, 4} ‘Alphabet of items

tl 1,3

t2 2,4

t3 1,2,3,4
t4 1,2,4

9
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Definitions: Frequent sets

ltemset X appears in transaction t: X €t
Occurrence of X in database T
OccX, ) ={teT: XSt}
Frequency of X: Fr(X, T) =| Occ(X, T) |
Minimum support (minsup): 0= o =|T|
X is frequent in Tif Fr(X, T) = o.

| ={1, 2, 3, 4} Alphabet of items Transaction database

Occurrences and frequencies id transaction

of itemsets t1 1,3
Occ(3, T) = {1, t3} t2 2, 4
Fr(3, T) =2 t3 1’ 2’ 3’ 4
Occ(24, T) = {t2, t3, t4}, t4 1,2,4

Fr(24, T) = 3

23
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!

Market Basket Data

Popular application of itemset mining

Business and Market data analysis

Transaction Data
of purchase 001

002

m— [ 003

. atransaction |294

or a "basket" |20

006

007

L I = =

008

olr|o|lr|rR|lO|O|IrR|O
olrRr|lkRr|IkR|IR|IFR|IFRIRL|O

009 1
*Meaning of the transaction 003

RP|IO|IRP|O|R,P|O|O |~ |O

ololr|lkr|IR|IFR|IOIR|F

eltem

""Custmer 003 bought Chips and Sausage together in his basket"
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DAG of itemsets:
Hasse diagram

Edge: Adding

one item //”“"t\\

*25



Enumeration Tree by
Lexicographical Order

empty

Need a tree / / \\
to avoid | : : 4
duplication / l N N

12 13

123 124 134 234

1,2,3,4




Backtracking Algorithm:
FP Growth etc.

Monotonicity: Support only decreases

Depth First Traversal, Prune if support < o

Frequent sets

1234

27



Assoclation Rule Mining

Confidence: Supp(A U B)/ Supp(A)
® Probabillity of B, Given A

What item is likely to be bought when A
IS bought

Search: large support, confidence large

Post-processing of itemset mining

28



Summary: ltemset mining

ltemset mining Is the simplest of all
mining algorithms

Need to maintain occurrence of each
pattern in database

Tree by lexicographical order Is
(implicitly) used

29



Part 3: Closed Itemset mining
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Problem in Frequent Pattern Mining

Huge Number of frequent itemsets
Hard to analyze
Most of them are similar

An input transaction

Huge number of frequent itemsets
discovered in T

Frequent sets

database

tl

_ N
t2 O - 24
3 08 oso;
t4 O O O mining 4 ’1 2

ninsup o= 2 m

1234
database




Solution:
Closed Pattern Mining

Find only closed patterns

Observation: Most frequent itemset X can
be extended without changing occurrence by
adding new elements

def ([Pasquier et al., ICDT'99]).

An itemset X Is a closed set if and only if
there is no proper superset of X with the
same frequency (thus the same occurrence

set).




Closed Pattern Mining

A closed itemset is the maximal set among all
itemsets with the same occurrences.

Equivalence class [X] = {Y| Occ(X)=0cc(Y) }.

Database

I0 records
A B E "I[ABCE
2| AC
AB| [AE BC] [CE 3|BE
A|BCE

ABC ABE ACE E Closed sets (maximal sets)

/ O Equivalence class w.r.t.
occurrences




Brute-force: Stupid Baseline

ALGORITHM Bruteforce

® First, generate all frequent itemsets
® Check them one by one via maximality test

Maximality test for each candidate frequent
set X
® Add some elementein 2 to X

® If Freq(X U {e}) is properly less than Freq(X)
then reject X.




Bruteforce

® STEPI) first, generate all frequent sets

Database T All itemsetsin T 1,2,3,4]

Id| records 1,3,4]
1 ABCE ’

1,2
2 |AC [1.2] A [1,4]
3|BE
4 |BCE AC AB AE BE BC CE

[1,2] occurrence (set of ids) ABC ABE ACE BCE

Equivalence class w.r.t.

occurrences :
_ ABCE 1]
[ Closed sets (maximal sets)




Bruteforce

® STEP1) first, generate all frequent sets
® STEP 2) make closedness test for each set

Database T All itemsetsiIn T

Id | records
1 ABCE
2 AC
3 |BE
4 | BCE

[1,2] Occurrence (set of ids)

Equivalence class w.r.t.
occurrences

[ Closed sets (maximal sets)




Bruteforce

® STEP1) first, generate all frequent sets
® STEP 2) make closedness test for each set
® STEP3) finally, extract all closed sets

Database T All itemsetsin T 1,2,3,4]
: 12
Id| records 1,3,4]
1 ABCE ’
1,2
> A c (1.2 A C B £V
3 |BE
4 |BCE AC AB AE BE BC CE
[1,2] Occurrence (set of ids) ABC ABE ACE BCE
Equivalence class w.r.t.
occurrences F B CE 1]

[ Closed sets (maximal sets)

All closed sets are found! .




Complexity of Enumeration

Algorithms

N

# Number of patterns
usually exponential to
input size

# Delay: Time between

two pattern outputs

@ Brute-force is

exponential delay
w.r.t. pattern size

-

A

[ )

AN

Input Si)

Output size

()
4

+O

>

Delay D

~

OO—O00O—

<
\\ Total Time T

J
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To achieve /inear delay,

N

#Must jump from

=

closed set to
closed set

#How to define
the search tree?

# Reverse search!
(Avis and Fukuda 1996)

{1,7,9}

/.

”

X \

12}

17.9}

\

2.5}

{2,7,9}

{1,2,7,9} | {2,3,4,5}

~

\

{1,2,7,8,9}

{1,2,5,6,7,9}




Reverse Search: It's a must

N

# A general mathematical framework to
design enumeration algorithms

#Can be used to prove the correctness of
the algorithm

#Popular in computational geometry

# Data mining algorithms can be
explained in remarkable simplicity

40




Often, search space comes as

a DAG

N
\J

* Naive Backtracking
= Duplication

* Duplication check by
Marking =
Exponential Memory

 How to visit all
nodes without
duplication?

”

\

N\

12}

{1,7,9}

/.

{1279}

{2,3,4,5}

\

{1,2,7,8

9}

7.9} \

253 (27,9

{1,2,5,6,7,9}




Reduction Map

N

# Mapping from a children to the parent

# Reduction map for closed itemset
= Shrink the itemset until occurrence changes

= Take “closure operation”

Closed set X

42




Closure Operation

closure(X) of a set X:

® Closed set computed by
closure(X)=N{tinT: X&t}.
(taking the intersection of all
transactions in T that X occurs as subset)

Equivalence class of itemsets
with same occurrence




Example of Closure Operation

Database T

Id| records
1 ABCE
AC
BE
BCE

Non-closed itemset: (B,C)

Occurrence: 1,4

Take Intersection of 1 and 4
(A,B,C,E) " (B,C,E) =(B,C,E)

This Is closed itemset

B~ WP




By applying the reduction map to all
nodes, enumeration tree is defined.

N

L/

 But arrows are
IN reverse
direction..

{1,2,7,9} [{2,3,4,5}

\

{1,2,7,8,9}

{1,2,5,6,7,9}




Children generation

s Children
candidates
# In backtracking, one has N
to generate all children \Q
of the current node
# Inverse of reduction ate ~ ) ::i?lld
map
= Generate all children /Q
candidates el
= Apply reduction map to \‘ child
them _

= Remove if not coming
back

46




Reverse Search Theorem

N

# To prove the correctness, prove the following
= Reduction map is uniquely defined on all nodes

= By applying the reduction map repeatedly, one
can reach the root node from any node

= Children generation is inverse of reduction map
# Easy to check !

47




LCM = Linear Time Closed
Sets Miner (Uno et al., 2003)

N

# Prefix
Preserving \ ¢
Closure @ .\ e
Extension

— Chlldren ..............
generation from
the reduction map

#Linear Delay!

48



Closure Extension

Repeat: Add an item and taking closure

O Step 2.

—

Step 1: closed set

Start: Y = X U {i} Z = closure(XU{i})
closed set X

O

i closure

O add item | O

O

O O (O non-closed set

. closed sets

O

.49



Naive Closure Extension:
Duplication!

= closure extension

=2 DAG of closed itemsets /

1,2,5,6,7,9
2,3,4,5

r = 12,789
1,7,9
2,79
2

«— closure
extension

{1,7,9}«

\/

{1,2,7,8,9}

2.5} [(2.7.93

{1,2,5,6,7,9}

50



= Ensure any closed set Is generated from a unique
parent

Def. Closure tail of a closed itemset P
< the minimum j s.t. closure (P N {1,...,]}) = P

Def. H = closure(PU{i}) is a PPC-extension of P
< 1> closure tail and
H N{1,...,1-1} = P N{1,...,1-1}

51



Enumeration tree by PPC extension

= closure extension = DAG
* ppc extension =» tree

1,2,5,6,7,9 1,7,9}
23,45
r = 12789
1,7,9
27,9
2 £1,2,7.9Y |2,3,4,5}

closure extension _R

ppc extension
{1,2,7,8,9} {1,2,5,6,7,9}

Ul

2




Linear Delay in Pattern Size

(Uno, Uchida, Asai, Arimura, Discovery Science 2004)

Theorem : The algorithm LCM finds all frequent
closed sets X appearing in a collection of a transaction
database D in O(Imn) time per closed set in the total
size of D without duplicates,

where | is the maximum length of transactions in D,
and n is the total size of D, m is the size of pattern X.

Note: The output polynomial time complexity of Closed
sets discovery is shown by [Makino et al. STACS2002]




Summary: Closed ltemset Mining

Closure Extension: Jump from closed
set to closed set

LCM: Linear Delay

Very fast in practice, too

® Winner of FIMI'04 (Frequent ltemset
Mining Implementation Workshop)

Relation to cligue enumeration (arimura,

Uno, SDM2009)
54




Part 4: Ordered Tree Mining




Frequent Ordered Tree Mining

Natural extension of frequent itemset
mining problem for trees

® Finding all frequent substructure In
a given collection of labeled trees

® How to enumerate them without duplicates

Efficient DFS Algorithm
® FREQT [Asal, Arimura, SIAM DM2002]
® TreeMiner [Zaki, ACM KDD2002]
® Rightmost expansion technique




e et o s E|
23 rapper Tnduction §

Labeled Ordered Tr e 2

Rese: ¢ gH Google-~ _»H -
Related Nich! =
Wrapper Induction for Information
Absizact: | Resed Extraction csuodiefstaffn sickijoaid7 ps gz

it ati hinglon edwpub_erickiicei?7 ps 2
t n ~telephon | 7 (1997) (Correct) (116 citations) s
ted - : Image Up.
R O O e d fm_“ﬂ:j‘l““ Lol Hichalas Kushmerick, Daniel 5. YWeld, Robert (i el 01 e Update
n ypicly Doorenbos From: cemcdie/stafnickisecearchi..

teodure 1
’;,a;p:'fz, Abstract: | From: washington.edwhomes/weld/pubs
Stract ResearchIndex Home Bookmark Context Home: N Kushmerick DWeld [2]

sample of | telephon R Doorenbos
chowrthat | romestodi| Relabed Track Related Siiz Documents Hiehlisht e [y

Intemst e typically on Homepage
inicoduce |
Comtextof | wrapper cl
L sample o | ADstract: Many lntemel resousces present telabional dale- | 0oy et o this anicle
—telephone directorics, product catalogs, ete. Because these sites are
Shopbot | showthat | ¢ i f le, mechasicall the is diffcult 5 ing such
figot 10 the| Tntumer sc| formatted for people, mechanicaly extracting theis contentis difficult. Systems using such resousces
L] i alede typicalty use hand-coded wrappers, procedures to extract cata from resources We
Comientof | BtCe BraDges induction, & method for wrappers, and identify i, a
|Gl Comexto wrapper class that is efficiently leamable, yet expressive snough to handle 43% of a recently surveyed

&l Shophor | S2mPle FIntemst 1esousees. We use PAC andlysis o bouad the problem's sample complety, and
—| = ”tP ; show that the system degrades gracefully with imperfect labeling knowledge. | Introduction The
ngorto L) 1pieinet containe many sowrces of relational data. For example, when... (Comrect Abstract)

® Siblings are ordered ]

.

| . Shopbot was entirely heutistic, it was successful work added
tigor to the eld. Kushmerick et al. [71] de ned the prohlem ofwrapper induction, identi ed a class of
information sources forwhich wrappers could be auiomatically...

from left to right .. — T

people

abeled
® Each node has a label.

model of
® HTML/XML
® Hierarchical records John
® Dependency tree of john@abe.com | [Mary

NI

natural language texts 57



Matching between trees

Pattern tree T matches There is a matching
a data tree D €&mm) function ¢ from Tinto D.

(7occursin D)

matching

pattern tree function ¢
B) (C

= ¢ IS 1-to-1.
= ¢ preserves parent-child relation. |

= ¢ preserves (indirect) sibling
relation.

= ¢ preserves labels. *58




Frequency of a pattern tree

« Aroot occurrence of pattern T:
* The node to which the root of T maps by a matching function

« The frequency fr(T) = #root occurrences of T in D

T & 0N

B) (C
2 o 7
Root list &) () LS 8 L
oot occurrence lis

Occy(T) =42, 8} P, 9 1.5

&




Frequent Tree Mining Problem

Given: a colection S of labeled ordered trees
and a minimum frequency threshold o

Task: Discover all frequent ordered trees in S
(with frequency no less than o) without
duplicates

Frequent Patterns
*A minimum frequency with s = 50 %
threshold (min-sup)

s =50%




Key: How to enumerate ordered trees

ithout duplicates?
without dupli S

A naive algorithm B
® Starting from the smallest tree ‘}
®

® Grow a pattern tree by
adding a new node one by one

Drawbacks

® Exponentially many different ways
to generate the same pattern tree

® Explicit duplication test needed
How to overcome this difficulty?




An 1dea: DFS Code of Ordered Tree

Depth-label sequence in the preorder traversal

(depth first search)

S = ((d(vy), I(vy)) , ..

depth

0 PN

AN

‘

W
(Q)

., (dvy), 1(vy)

@ DFS code

d|1 2 3 4 5 6 7

seq | OA 1B 2A 3C 2B 1B 2C

*62



Rightmost expansion

* Extending the DFS Code = Attaching a new
node on the rightmost branch

(d1,|1),...,(dn,|n), (dn+1,|n+1)

pattern S




Searching frequent ordered trees

 Enumerate all frequent ordered trees by backtracking
* Tree extended only by rightmost extension = No duplication

1 frequent /
\ TR — < e

& /
@
6 infrequent ‘= :
infrequent @/ \Q

\
—
‘ s @

64



Summary: Ordered tree mining

Convert tree to a string (DFS Code)

Adding element to the code =
Rightmost extension

It was relatively easy because nodes
are ordered

® How about unordered case?




Part 5: Unordered Tree Mining



Frequent Unordered Tree Mining

e Unordered trees: Non-trivial subclass of
general graphs

* Problem: Exponentially many isomorphic

trees ® ®
JRNP . ®® ® ®
Efficient DFS Algorithm
— Unot [Asai, Arimura, DS'03] © ©
® ®
y ¢
OBH® ©O®
© ©

— NK [Nijssen, Kok, MGTS 03]



Canonical Ordered Representation

Given ordering among siblings, depth-first
search (DFS) code is defined

Code(T) = ((depth(v,), label(v,)) , ..., (depth(v,), label(v,))

T Code(T) = (0A,1B,2A,3C,2B,1B,2C)




Canonical representation

N

L/

Ordered tree 7 with Iexicographically

maximum code

T

B

(A)(B)
©

T, ™
(B)

B

© ® @A

(0A,1B,2A,3C,2B,1B,2C) (0A,1B,2B,2A,3C,1B,2C) (0A,1B,2C,1B,2A,3C,2B) (0A,1B,2C,1B,2B,2A,3C)

69




Left Heavy Condition
(Nakano and Uno, 2002)

T(V): subtree rooted on v
Ordered tree Is canonical if and only If
Code(T(v1l)) Code(T(v2))

for any pair of sibling nodes v1 (left)
and v2 (right)




Reduction Map

How to define parent from child in the
enumeration tree

Generate canonical tree of size k-1
from canonical tree of size k

Remove the last element of DFS Code

Code(T) = (0A,1B,2A,3C,2B,1B,2C)




Children Generation pattern S

Generate children
candidates by

rightmost extension

Check the maximality
of candidate based
on left heavy property

Discard If not
maximal




Maximality Check by Left Heavy
Property
Code of left subtree must be larger than that
of right subtree

Check only rightmost sibling and second
rightmost sibling




Complexity of UNOT

Delay per pattern O(kb? mn)

K. pattern size

0. branching factor of the data tree
m: size of data tree

Nn: database size




Summary: Mining Unordered Tree

The following three elements are
necessary for a mining algorithm
® Canonical Representation
® Reduction Map

® Children Generation including
Maximality Check

Backtracking on the resulting
enumeration tree




Part 6: Graph Mining



Frequent Subgraph Mining

4TI doe o

Database

« Enumerate all subgraphs occurring more
than 3 times

o 0 0-e OO0

o—0—C &f Patterns
77



Gspan (Yan and Han, 2002)

root

 Most widely used graph
mining algorithm o\}/\%

* Can be interpreted with ﬂ\ “

reverse search principle Q.
%o
% %E ) X L

— Canonical representation?

— Reduction map? A ‘
— Children generation? .%3 C&F CE\Z @7

*78



DFS Code for Graph

Depth first search and preorder node labeling
(src, dest, src_label, edge_label, dest_label)

Some edges not traversed
— backward edge (dest < src)

Elements sorted in the code

O ®)a b
peb

{(0,1,A,a,A), (1,2,A,a,B),
(2,0,B,a,A), (2,3,B,b,A)}

*79



Canonical Representation

 Multiple DFS codes: different starting point
and children ordering

* Minimum DFS Code: Lexicographically

Minimum
(b) 0

(A (A
d a
0 ]
o a2 o az

1

((0,1),Aa,A),((02),AaA) ((01)AaA),((12)AaA)

80



Reduction Map

 Removing the tail of minimum DFS code
preserves minimality

min DFS:
{el, e2, e3, e4} {el, e2, e3}

81



Children Generation

* Create candidates by
adding an element to
DFS code

e Check if each candidate
IS Minimum

* If not, remove it

Parent

XX 4l

Children
candidates

real
child

real
child

82



Minimality Check

* Reconstruct the graph from
DFS Code {(0,1,A,a,A), (1,2,A,a,B),
* Derive the minimum DFS ~ #782A (238543

Code by trying all DFSs '

— Speed up by traversing
minimal label only

0
* |f the minimal code is not A)a b
identical to the original, {‘2 CA)g
prune it 1

*83



Summary: Graph Mining

e gSpan is a typical example of reverse search

* Not explained: Closed tree mining, Closed
Graph mining

* Delay exponential to pattern size

— It cannot be avoided due to NP-hardness of graph
isomorphism

— Yet it scales to millions for sparse molecular
graphs

* Applications covered in next chapter

e84



Part7: Dense Module Enumeration
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Biological Motivation

= Most cellular processes performed by multi-component
protein complexes

= |ncreasing amount of experimental protein interaction
data available

= Qur approach

= Predict complexes (modules) from protein
interaction network

= Exploit additional information given by gene
expression data, evolutionary conservation,
phenotypic profiles etc.

#29/08/2012
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Protein interaction networks

Node: Proteins
Edge: Physical interaction of two proteins

Challenge 1: False negative edges

= Go beyond clique search!
Challenge 2: False positive edges

= Assign confidence scores to edges

Find node sets with high density of high confidence
edges

#29/08/2012
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Module Discovery

= Previous work
= Clique percolation [Palla et al., 2005]
= Partitioning
= Hierarchical clustering [Girvan and Newman, 2001]

= Flow Simulation [Krogan et al., 2006]
= Spectral methods [Newman, 2006]

= Heuristic Local Search [Bader and Hogue, 2003]
= Qur approach

= Exhaustively enumerate all dense subgraphs
efficiently

#29/08/2012
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Motivation for Enumeration Approach

= Detects overlapping modules

= Allows to specify minimum density for outcoming
modules

= Qutputs all modules satisfying the density threshold

Partitioning Enumeration

*90



Differential Expression Criterion

= |ncorporation of gene expression
= Presence of proteins depends on cell type
= Additional Criterion for modules
= €1 : Num of conditions where whole module expressed
= €0 : Num of conditions where whole module not expressed
= Fix minimum values for both quantities

| A
PPINetwork — —~ = K(O— L [ expressed
NSTACCITEAVASH
“-B -4-’ AT I non-expressed
D :k._f’_cn._/' E O ‘:_/._‘\._:I P
Tissues l l l l

mooQw>

Y 1 e
D E D E D E D E
K L K L K L K L
M N M N | M N | M N
O P o) P O P ) P

Brain Kidney Muscle Skin

K
L
M
N
O
P



Problem Formalization

e Interaction network: G = (V, E(V))
e Edge weights: 0 < w({u,v}) <1
e Density of U C V:

S w({u,v})
__ {uw}eEU)
W)= 0qu= D)2

e Find all U C V with d(U) > 0, e1(U) > nq,
and eg(U) > ng



Typical Enumeration Algorithms

= |[temset mining, graph mining etc.

= Enumerate all entities whose frequency >= 10
= Set up a search tree

= Tree Pruning by anti-monotonicity

= An entity’s frequency is always smaller than that of
sub-entity

Not generated




Network Example

Density of Modules

0.9

3 4 1,23|05
0.5% /93, 1,34 09
é 23405

0.1 1,24 |03
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Graph-shaped Search Space of Modules

empty

AN

1 3 4

N S e v

1,2,3 1,2,4 1,3,4

S0

1,2,3,4



Choosing a search tree

= For efficient search, a
search tree is needed

= There are many possible
search trees

= Default: Lexicographical «i»

ordering

3.4



Density is not a monotonic criterion

= Subset of dense set is not necessarily dense
= Density does not decrease monotonically on a path
= Pruning Impossible

Density

® — @D —= G2



Question

= |s it possible to make a search tree such that
density decreases monotonically?



Question

= |s it possible to make a search tree such that
density decreases monotonically?

= YES!
= Use Reverse Search (Avis and Fukuda 1993)

#29/08/2012
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Reverse search (Avis and Fukuda, 1993)

= Specify a search tree in the graph-shaped search space
= Reduction Mapping

= Rule to generate a parent from a child

= Remove the node with the smallest degree

= Density always increase by the removal

s e

CHILD PARENT



Search Tree is uniquely specified by the
reduction mapping

= Condition: Every node should converge to the root node
by applying the reduction mapping repeatedly

empty

//\\




Enumeration algorithm by reverse search

= A set of children is generated from a parent
node

= Try every possible children, and choose the
ones satisfying the reduction mapping

= Prune if no children exist




Constraint Integration

= Differential expression constraint
e1(U) > nq, eg(U) > ng
= Monotonicity: e 0 and e 1 decrease with extension of U

v vy v

55

. BN

= Can be used for extra pruning without difficulty

Module e €

ABCDE 2 2
ABCDEF | 1 2

m mMmOOm>X



Statistical Significance of a module

= k : The number of nodes in the module
= P : Density of the module

= my(p): The number of modules of size k with density at
least O

= Probability of random selection making a denser
module (p-value)

p=mp(p)/| |



Benchmarking in yeast complex discovery

= Combined interactions from CYGD-Mpact and DIP
Interactions among 3559 nodes
= Confidence weights on edges due to (Jansen, 2003)
Methods in comparison

= Clique detection (Clique)

= Clique Parcolation Method (CPM)

= Markov Clustering
Modules compared with MIPS complexes



Precision

—DME

0.8l —Clique
—CPM
—MCL

0.61

0.41

0-% 0.1 0.2 0.3

Recall

0.4



Evolutionary Conserved Yeast Modules

= Use ortholog profiles (10 species, InParanoid)
= Density >= 50%, at least three orthologs
= 1917 modules in 30 minutes
= Recovered evolutionary conserved complexes
= 20S proteasome
= 195/22S regulator
= COPI vesicle coat complex
= DNA polymerase | and Il subunits
= Translation initiation factor elF2B complex

= They could not be recovered by simple DME due to low
density

#29/08/2012 *107



MIPS Complexes discovered by DME
(Conserved in Evolution)

2- lutarate deh
oxoglu e ydrogenase AP-3 complex

|
Arp2p Arp3p cumqlex

/ "'-..H 19-225 regulator

NEF1 complex AP-1 complex

S
“Ana ase promoting complex (APC)
NSP1 complex
/ _-l'.......'
SAGA complex
_

Ndc80 protein complex

m/ MSH2-MSH3 complex
> (Transport Protein Particle) complex

COFl

DNA polymerase alpha (i)

wmse epsilon (M)
‘Iass C Vps protein complex Post-replication complex

Complex Density

Number of Modules

O >50
O 10

O =1
o =1




Phenotype-associated yeast modules

= Use growth phenotypic profiles (21 conditions, Dudley
et al, 2005)

= Growth defect in at least one condition

= Each of the 13 highest ranking modules covers the large
subunit of mitochondrial ribosome
= Found additional protein, Mhr1

= Exactly recovered the nucleoplasmic THO complex
(Hpr1, Mft1, Rlr1, Thp2)

= Transcription elongation, hyperrecombination
= Growth defect under ethanol



Phenotype Associated Modules
Large subunit of mitochondrial ribosome

Mipl24
Mipl17
Mipll

Mipl33
Mipl16
Mipl10
Mipl6

Mipl20
Mipl51
Mipl22
Mipl7

Mrpl8
Mirp20
Mipl27
Mipld
Mhrl
Mipl9

. !!] .MrpFSE
0]

YPGly Yplac
[0
[T
| .Mrpl11 138
W iy Jirpia? P QJnp1
II & Mrpi39
i s dirpia0 Ymi6

rpl3s  Mrpi28

rpl15 - Jmg2
wot @ @

‘wpn“mﬂ ‘rpla .
Mrpl22

MrpIE Mhr1
Mrpl4 rpi7

Mrpl1

rpl16
rpl rpl2l] ‘
"ITPIET ‘rpHE
i .MrpI51
| 5
¢ Mrp7 Mrpi25
@

Mrpi32

Mhrl: involved in homologous recombination of the mitochondrial

genome
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Human Settings

= Tissue-specific gene expression data (Su et al., 2004)
= 79 different tissues

= Consistently expressed in 3 tissues, not in 10 tissues

= 7763 proteins, density >= 35%, 5 minutes

= 1021 maximal modules

= MIPS human complex database (Ruepp et al., to
appear)

#29/08/2012 e111



Human-expression result

=  Around MCM complex, we found inter-complex relationships with
ORC, CDC7, Toposome, PLK1 protein

= Module Uqcrct, Uqgcrc2, Uqgcrb, Cyct (lg p = -13)
= No overlap with MIPS
= Ubiquinol-cytochrome c reductase complex
= SCF E3 ubiquitin ligase complex: Mark protein for degradation
= 5 different modules with different tissue specificity
= Peripheral proteins: Substrate recognition particles
= Target proteins are selected in a tissue specific manner!
= Natural Killer cells have all particles

#29/08/2012 °112



High ranking modules around the MCM

complex
Rank 1 (Ig p = —29.4) Rank 2 (Ig p = —29.1)
= - QoUBDS5 o e S03t
ey — (_ DC7
Q089457 > / ORC Sososs — x}(g |
T ¢ ——pazget MICM jéﬂggj T e o9t MCM 35993
“[]“"BUE g S OVSNG ﬂpﬂ'ﬁﬂlﬂf‘ L 9VNG
ckic & 4566— 5% ;]14555-‘—-‘-""'_' ORC

Rank 10 (lg p = —25.0)

P25205 ;’49?35
T P53350

———

&5 < PLKI1
Tﬂ]]ﬂ?ﬂﬂ;lf‘idaggﬁ[( I\ | F33903
.F'EBQQE 53 ARBR

Rank 28 (Ig p = —20.4)

CDC2
3\25 205 49736 95067
. P06433

< L\ S
;33991}1{? i\ | ifgi;g\é

LI9Y5MNE
®

¢ % . ORC

Expressed in bone mallow cells
Not expressed in brain, liver, kidney etc.
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Tissue Specific organization of the SCF ligase
complex

cd56 nk-cells

cd71 early erythroid
cd8 t-cells

brain amygdala
fetal brain

placenta
prefrontal cortex
whole brain

bdcad dendritic cells
bdcad dendritic cells brain amygdala
brain amygdala cd33 myeloid
cd19 b-cells cd4 tcells
cd33 myeloid SCF Ubiquitin Ligase | cdsénkecells
cd4 t-cells = cd71 early erythroid
cd56 nk-cells cd8 tcells
cd71 early erythroid QaUKTE C9RIHD
cd8 t-cells fetal brain
fetal brain
hypothalamus :EEE occipital lobe
placenta prefrontal cortex
prefrontal cortex
PE2877 013616 i
Fﬂ,{ e > 09s9Us | whaole brain
cd19 bcells
cd56 nk-cells kdcad dendritic cells
testis brain armygdala
86VP6E cd 19 b-cells
cd33 myeloid
co4d t-cells
bdcad dendriticcells  hypothalamus cd 56 nk-cells
cd4 t-cells occipital lobe cil & t-cells

hypothalamus

testis
whole brain




Summary: Dense Module Enumeration

= Novel module enumeration algorithm based on reverse
search

= Combination with other information sources
= Statistical significance of dense modules
= Successfully applied to

= yeast/human protein interaction networks
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Part 1: Preliminaries




Clustering Graphs
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Graph Regression

Training Test
(&£5,°0.2) (oo, ?)
(144, 0.7)

(772,-0.5)




Substructure Representation

N

#0/1 vector of pattern indicators
#Huge dimensionality!
#Need Graph Mining for selecting features

(25
(o,...,0,1,0,...,0,1,0,...)
(& t

\

GO |
/
o,

patterns




Graph Mining

N
\J

#® Frequent Substructure Mining
= Enumerate all patterns occurred in at least

m graphs

Spreq = 1k | Zﬂfzk > m}.

z;1 € {0, 1} :Indicator of pattern k in graph i

Support(k): # of occurrence of pattern k




Enumeration on Tree-shaped
Search Space

N

J #Each node has a pattern

# Generate nodes from the root:
= Add an edge at each step

Databaze Tree of Substructures




Support(g):
Tree Pruning

N

# Anti-monotonicity:

# of occurrence of pattern g

g C g =) support(g) > support(g’)

# If support(g) < m, sto

S

RN
o oo

D exploring!

./I\ Not generated
2‘) |




Gspan (Yan and Han, 2002)

N

# Efficient Frequent Substructure Mining
Method

# DFS Code
s Efficient detection of isomorphic patterns

1V




Depth First Search (DFS) Code

N

A labeled graph G

DFS Code Tree on G
1

| T~

[0,1,A,a,B] [2,0,A,b,A]

T T
[1,2BcA]  [02ADbA] [03AbC] [01AaB]

1 | Go - e G:
[2,0,A,b,A] [0,3,A,b,C] [0,3,A,b,C] D UL N

Isomorphic

0,3AD.C]

Non-minimum DFS
code. Prune it.
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Discriminative patterns

N

®wW_i > 0: positive class
#W_i < 0: negative class

#®\Weighted Substructure Mining

Sw:{k|

1=1

> 7‘},

# Patterns with large frequency difference
#Not Anti-Monotonic: Use a bound

12




Multiclass version

N

# Multiple weight vectors
s Wy; > 0 (graph i belongs to class ¢)
= Wy; < 0 (otherwise)

# Search patterns overrepresented in a
class

=1,..., C |

Sw = {k | ,max ngi(Q:cik —1)| — 1 > 0}.
1=1

13




Basic Bound

N

*Z;; : Occurrence of pattern j
* If k is supergraph of pattern j,

Z ’(UQZ(QQ?@]C — 1)

=1

< v ve = max(v;, vy )

14




N

Pruning Condition

#Summarizing the bound for all classes,

mgxx Z’wg?;(Qxik —1)| -7 < m?X(’Yg — 7¢)

1=1

#If it is negative, the search tree can be
pruned safely

15




Summary: Preliminaries

N

#\Various graph learning problems
= Supervised/Unsupervised

# Discovery of salient features by graph
mining
# Actual speed depends on the data

= Faster for..
» Sparse graphs
+ Diverse kinds of labels

16




Part 2: EM-based clustering of
graphs

17




EM-based graph clustering

N

# Motivation

= Learning a mixture model in the feature
space of patterns

= Basis for more complex probabilistic
inference

#L1 regularization & Graph Mining
#® E-step -> Mining -> M-step

18




Probabilistic Model

N
\J

# Binomial Mixture

p(®|©) = >y cepe([6r)

#Each Component

- exp(ferzr)
pe(x|0¢) = kl;[1 T+ oxp(00r)

& :Feature vector of a graph (0 or 1)
Qyp :Mixing weight for cluster ¢
0, :Parameter vector for cluster ¢

19




Ordinary EM algorithm

N

# Maximizing the log likelihood
argrinax Z log Z OyPDy (.’B@ |9g) .

© =1 =1

# E-step: Get posterior ¢ = p(y = £|x;)

# M-step: Estimate 6, using posterior probs.

# Both are computationally prohibitive (1)

20




Reqgularization

N

# L1-Regularized log likelihood

n c c d
1 log » aype(x;|0) — X S: ;: 001, — o]
n
(=1

i=1 /=1 k=1

# Baseline constant O

= ML parameter estimate using single binomial
distribution

1
Oor = log nox — log(1 — Oox) Nok = - szk

# In solution, most parameters exactlyzequal to
constants

21




E-step

N

# Active pattern

F = {k | there exists ¢ such that 0y # o1 }.

#® E-step computed only with active
patterns (computable!)

p(y =L|x) = | [pep Per(r|Ok)
>0 o ] e r Por(@n|O0k)

22




M-step

N

# Putative cluster assignment 7¢;

# Each parameter is solved separately

, 1
min —— Z i log p(Tik|Oek) + MOok — ok

O¢ik n “—
1

# Naive way:
= solve it for all params and identify active patterns

# Use graph mining to find active patterns

23




)\E _ AT

Solution FRLE
log 1—?7(%;3\6) (Mer > Mok + Ae).
Oo, = < Ook (Mox — e < Mok < Mok + Ae)

log 1—77(%2—:-?3@) (e < 7ok — Ae)-

# QOccurrence probability in a cluster
Mok = Y TaTik/ Y Tes
i j
# Qverall occurrence probability

Mok = % Z%k

24




Solution

N

)
log =655 (Mek = 1ok + Ae).

O, = < Ook (Mox — Ae < Mok < Mok + Ae)

A
log 1_77(%:+§£) (Mere < Mok — Ae).

0 0.2 0.4 0.6 0.8 1




Important Observation

N

For active pattern k, the occurrence probability in a graph
cluster is significantly different from the average

Ovic # Oor < ek — Nok| = A

0 0.2 0.4 0.6 0.8 1




Mining for Active Patterns

N

# Active pattern
F = {k | there exists £ such that 0y # 0o }.

#Equivalently written as

F={k| max ngi(ink — 1) —2X; > 0}.
i=1

#F can be found by graph mining!
(multiclass)

27




Experiments: RNA graphs

N

#Stem as a node
# Secondary structure by RNAfold
#0/1 Vertex label (self loop or not)

28




Clustering RNA graphs

N

#Three Rfam families
= Intron GP I (Int, 30 graphs)

= SSU rRNA 5 (SSU, 50 graphs)
= RNase bact a (RNase, 50 graphs)

# Three bipartition problems

m Results evaluated by ROC scores (Area
under the ROC curve)

29




Examples of RNA Graphs
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N

ROC Scores

Int-SSU

Int-RNase

SSU-RNase

MGK | 0.748 0.531 0.878
Spec | 0.550 0.573 0.848
A=0.011[ 0.824 0.921 0.863
A=0.02] 03821 0.920 (.862
A=0.03] 0.825 0.948 0.343
A=0.04] 0.832 0.947 0.825
A=0.061] 03831 0.941 0.782
A=0.08 | 0.845 0.941 0.787
A=0.10 | 0.815 0.927 0.736
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No of Patterns & Time

Int-SSU Int-RNase SSU-RNase

A= 0.01 | 12505 (71s) 14366 (77s) 17934 (102s)
A= 0.02 | 12596 (75s) 10988 (65s) 11025 (76s)

A=0.03 | 9799 (66s) 7632 (525) 8875 (73s)
A=0.04 | 6904 (57s) 5924 (455) 6925 (67s)
A=0.06| 5093 (47s) 4305 (37s) 5230 (58s)
A=0.08 | 4065 (425) 3001 (325) 3896 (50s)
A=0.10 | 3245 (37s) 2074 (26s) 2923 (44s)
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Found Patterns

1.150 1.125 1.117
1.117 1.100 1.100
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Summary (graph EM)

N

" @Substructure representation is better
than paths

# Probabilistic inference helped by graph

mining
# Extension to Dirichlet mixture model
= Reported in Tsuda et al., SDM 2008

# Possible extension
= Graph PCA, LFD, CCA
= Semi-supervised learning

34




Part 3: Graph Boosting
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Graph classification problem in
chemoinformatics

N

# Known as SAR problem in chemical
informatics

= (Quantitative) Structure-Activity Analysis

# Given a graph, predict a class-label (+1 or -1)
= Typically, features (descriptors) are given
= e.g., Dragon Descriptors, JOELIB2

36




SAR with conventional descriptors

#atoms |#bonds |#rings Activity
|22 25 +1
20 21 +1
,@:; 23 24 +1
gg 11 11 -1
21 22 -1

37




Motivation of Graph Boosting

N

L/

# Descriptors are not always available

# New features by obtaining informative
patterns (i.e., subgraphs)

# Greedy pattern discovery by Boosting +
gSpan

# Linear Programming (LP) Boosting

= Reduce the number of graph mining calls
= Faster than AdaBoost

# Accurate prediction & interpretable results

38




Molecule as a labeled graph

o &
s




SAR with patterns

© . Activity
o gi/g m
% 5|1 1 1 +1
o1 1 -1 +1
S |-l 1 -1 +1
<1 1 -1 -1
o1 1 -1 -1
3




Sparse classification in a very
high dimensional space

N

# @: all possible patterns (intractably large)

# |G|-dimensional feature vector x for a
molecule

# Linear Classifier d
f(x)=Zocjxj
J=1

# Use L1 reqgularizer to have sparse a
# Select a tractable number of patterns

41



Problem formulation

N

/
min ol +C D &
’ n=1

s.t. ynaTxn >1—-&,, &, >0,
Sum of hinge loss and L1 regularizer
{z,,yn}o—1 : Training examples

¢: slack variables

42




Dual LP

#Primal: Huge number of weight variables
#Dual: Huge number of constraints

N

Dual problem
¢
max E U;
u
n=1

¢
s.t. Zunynazmgl, v=1,...,d

n=1

0<u,<C,n=1,...,¢

43




Column Generation Algorithm
for LP Boost (Demiriz et al., 2002)

N

#:Start from the dual with no constraints
# Add the most violated constraint each time
# Guaranteed to converge

Constraint Matrix
A [ 11171 ~

Used
Part

44




Finding the most violated
constraint

N

# Constraint for a pattern (shown again)

14
anl UnYnLni < 1

# Finding the most violated one
¢
argmax; » . _1 UnYnLni

# Searched by weighted substructure mining

45




Algorithm Overview

N

! # Jteration

Find a new pattern by graph mining with weight u

If a
Add

| constraints are satisfied, break
a hew constraint

Update u by solving the dual problem

# Return
Convert dual solution to obtain primal solution a

46




Experimental Settings

N

# Classification and Regression Datasets

| # data # positives # negatives avg. atoms avg. bonds

CPDB 684 341 343 14.1 14.6
CAS ‘ 4337 2401 1936 29.9 30.9
4 data avg. atoms avg. bonds
AR 146 19.5 21.1
ER 131 19.2 20.7
ES 59 18.2 19.7
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mCIassification Results

N
Table 2 Classification performance obtained by 10-fold cross validation in two
datasets measured by the accuracy (ACC) and the area under the ROC curve
(AUC). We obtained the results of MGK and gBoost from our implementations,
but the other results are quoted from literature. The best results are highlighted
in bold fonts.

Measure | MOLFEA[13] Gaston[19] CPM[2] MGK][18] gBoost

CPDB ACC - T8 75.96 76.5 78.8
AUC - - - 0.756 0.854

CAS ACC 79 - 80.14 7.1 82.5
AUC - - - 0.763 0.889
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‘Regression Results

Table 3 Regression performance obtained by leave-one-out cross validation in
three assays from the EDKB evaluated by mean absolute error (MAE), root mean
squared error (RMSE), and Q*. Note that for MAE and RMSE, lower values
indicate better prediction, which is vice versa for %. We obtained the results
of MGK and gBoost from our implementations, but the other results are quoted
from literature. The best results are highlighted in bold fonts.

Measure | CoMFA[14,37] MGK]J18] gBoost
AR | MAE B 0.229 0.176
RMSE . 0.335 0.232
Q* 0.571 0.346 0.682
ER [ MAE B 0.320 0.307
RMSE - 0.427 0.393
Q* 0.660 0.267 0.378
ES MAE B 0.322 0.249
RMSE - 0.413 0.362
Q- - 0.522 0.632
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Extracted patterns from CPDB

N—N
0.0448

o "'\-\.:\.,,

0.0411
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Memory Usage

tree size
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Runtime
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Comparison with AdaBoost

N

250 I I I | I I |
LPBoost
*M".* AdaBoost
0 200 | /“ T
= | e
T 150 | oo -
/
m !F.l"
>
5 100 | / _
4N {
© (.
2 s/ _
0 u'a[ | | | | | | | |
0 100 200 300 400 500 600 700 800 900
iteration
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Summary (Graph Boosting)

A
N

# Graph Boosting simultaneously generate
patterns and learn their weights

# Finite convergence by column generation
#Interpretable by chemists.
# Flexible constraints and speed-up by LP.
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Part 4: Entire Regularization
Path

55




Overview

N

# Entire reqgularization paths
s LARS-LASSO (Efron et al., 2004), LISVM
s Forward selection of features

= [race the solution trajectory of L1-regularized
learning

#Path following algorithm for graph data
s Feature search -> pattern search
= Branch-and-bound algorithm
s DFS code tree, New Bound

56




Path Following Algorithms

N

# LASSO regression

B(A) = argéninL(y,Xﬁ) + AllB]-

# Follow the complete trajectory of B())
= )\ : Infinity to Zero

# Active feature set 4
» Features corresponding to nonzero weights

57




Piecewise Linear Path

N

# At a turning point,

= A new feature included into the active set,
or

= An existing feature excluded from the
active set

A= A=MA3

Y e

A=ho 58




Practical Merit of Path Following

N

# Cross validation by grid search
= Has to solve QP many times
» Especially time-consuming for graph data

# Path following does not include QP

#® Determine the CV-optimal regularization
parameter in the finest precision

59




Pseudo code of path following

N

# Set initial point 8 and direction Y

® Do

= d1 = Step size if next event is inclusion |~ Search
» d2 = Step size if next event is exclusion ~ Problem
= d = min(dl,d2)

= B=0+dy

= Update the active feature set

= Set the next direction 7y

# Until all features are included
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N

Feature space of patterns

#Graph training data G = {G.}}-,
#Set of all subgraphs (patterns) 7
#Each graph is represented as

x; = (Tit)ter , x50 = I(t C G;)

(o,...,o,%,o,...,o,l,o,...)
(@) "
o6

N/ 61




N

Main Search problem

# Step size if pattern t is included next
{Po — D Wiy Pot+ Y, Wiy } |

?
Mo — i ViTit Mo + D _; ViTit

d; = min
_|_

w;, Vi, Po, 7o : constants computed
from active set

®Find pattern t € T that minimizes d;
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Tree-shaped Search Space

N

J #Each node has a pattern
# Generate nodes from the root:

= Add an edge at each step

Databaze Tree of Substructures
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N

Tree Pruning

# If it is guaranteed that the optimal pattern is
not in the downstream, the search tree can be
pruned

N

RIS
% -
o« e
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N

Theorem (Pruning condition)

# Traversed up to pattern t
# di :Minimum value so far

# No better pattern in the downstream, if

bw + di by < |po| — di|nol.

where

by = max{ Z w; |, Z |w7;|a:it} .

w; <0 w; >0
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N

Initial Experiments

#EDKB Estrogen receptor database
= 131 training graphs (chemical compounds)

#Computation Time: 4 sec/search
= Pattern size limitation: 10 edges
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Solution Path

< 0.15;
0.1¢

0.057

0

-0.05 ¢

-0.1 7

Iteration
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Events

68




N

Summary: Regularization Path

#Path following implemented for graph
data

# Pattern search by graph mining
# Classification: To do

#Combination with item set mining
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Part 5: . Itemset Boosting for
predicting HIV drug resistance
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single-stranded RNA
retrovirus

Life cycle of an HIV Virus

now progeny virus particles
each containing reverse

transcriptase

VIRAL BUDDING

—

reverse
tronscriptase
.’? Ql plasma membrane —t 3399 l’?@il :
of host cell CYTOSOL
ENTRY INTO ASSEMBLY \
CELL AND LOSS
OF ENVELOPE
@ "' (.7
H v o .
2 Drug Target ‘ “\ / ! .
VIRAL CAPSID envelope protein coapasid protein  reverse transcriptase
s J J
TRANSLATION ——— TRANSLATION
TRANSCRIPTION BY HOST
CELL RNA POLYMERASE
MAKES MANY RNA COPIES
INTEGRATION OF DNA integrated DNA
SYNTHESIS OF A \ COPY INTO HOST of virus
DNARNA AND THEN A DNA  CHROMOSOME
DNA/'DNA DOUBLE HELIX BY _— ))
REVERSE TRANSCRIPTASE DNA
portion of
host cell

chromosome



Approved HIV Drugs

8 Protease inhibitors (Pl)

8 Nucleoside/nucleotide reverse transcriptase
iInhibitors (NRTI)

3 Non-nucleoside reverse transcriptase
iInhibitors (NNRTI)

1 Fusion inhibitor
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Drug resistance of HIV

Exposure to a drug causes mutations in HIV’s
genes

As a result, HIV gains resistance against the drug

Cost of identifying the genotypes of HIV in a
patient is relatively cheap

Predict the drug resistance from HIV’s genotypes !
— Effective Pharmacotherapy for individuals
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Drug resistance prediction
problem as regression

* |nput: Set of mutations in a target protein
— 41L: Amino acid at position 41 changed to L

» Output: Resistance against a drug (fold
change)

(40F41L,43E,210W,211K,215Y) == 0.8
(43Q,75M,122E,210W,211K) == 12.8
(751, 77L, 116Y,151M,184V) =) ?
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Simple vs Complex Genotypic
Features

« Simple genotypic features

(0,1,0,1,0,0,0,1,...)
o W g
41L 62V F116Y

« Complex genotypic features
(0,1,0,1,0,0,0,1,...)
BB BB

/7L,116Y 103N,210W,215Y
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Linear Regression on Simple
Genotypic Features
(Rhee et al., PNAS 2006)

« Mutation associations not discovered

1.51

E 1.0

o

S 05 ﬁ ﬂ ﬁ

T o0 /8 ﬁ_ﬁ!ﬁﬁﬁﬂl—l = EEFEI - =

U_u5:| .

1.0
L = 3 £ B 3 Z @ 4L BB g 2 242 4 23 20w eEaod > < W - > o B = =
S -~ a g agoe 23 5Lh2F 3 83 8 s eREIZEEEYEESR S
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Complex Genotypic Features

N

/ﬁO/ 1 vector of pattern indicators
#Huge dimensionality!
#Need itemset mining for selecting features
# Selection of salient features

(0,1,0,1,0,0,0,1,...)
1r 17

/7L,116Y 103N,210W,215Y

patterns
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Other methods

* Nonlinear SVM Ll
A _ﬁ.--";l-.._'_ r
— Not interpretable  (x, 2| ;
. - ﬁ‘mx o -.-r::__.-:{j-.__ﬁ____.. 3
— High accuracy REP N §7

 Decision trees

— Interpretable
r1 AT = Y1, T1 N g = Y2, X1 A IT7 = Yy
— Low accuracy o . .
) ATy AT = Yz, T NDTT AT = UY4.
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Motivation of Itemset Boosting

N

# Impossible to maintain all complex features

# Greedy feature discovery by Boosting +
itemset mining

# Quadratic Programming (QP) Boosting
= Reduce the number of itemset mining calls
= Faster than AdaBoost

# Accurate prediction & interpretable results

79




Sparse classification in a very
high dimensional space

N

# @: all possible patterns (intractably large)
# |G|-dimensional feature vector x
# Linear Classifier

d
f()=> a;X
-1

# Use L1 reqgularizer to have sparse a
(LASSO)

# Select a tractable number of patterns

80



Problem formulation:
Quadratic Programming

N

O
. - 2
min -l + 5 E_lén,

s.t. ]yn—aTXn|§fn, £,>0, n=1,....¢

Sum of squared loss and L1 regularizer
{z,,y.}5—1 : Training examples

¢: slack variables
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Dual QP

#Primal: Huge number of weight variables
#Dual: Huge number of constraints

min QL Z ui — Z YnUn,

u

N

s.t. —1<Zunxm§1,i:1,...,d
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N

Column Generation Algorithm
for QP Boost (Demiriz et al., 2002)

#:Start from the dual with no constraints
# Add the most violated constraint each time
# Guaranteed to converge

Constraint Matrix
A [ 11171 ~

Used
Part
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N

Finding the most violated
constraint

# Constraint for a pattern (shown again)

> Untn] < 1

#Finding the most violated one
argmax, | Zi:l Un T

# Searched by weighted itemset mining
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Algorithm Overview

N

! # Jteration

Find a new pattern by graph mining with weight u

If a
Add

| constraints are satisfied, break
a hew constraint

Update u by solving the dual problem

# Return
Convert dual solution to obtain primal solution a
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Experimental settings

* Three classes of drugs

— NRTI (Nucleotide Reverse Transcriptase
Inhibitors)

— PI (Protease Inhibitors)

— NNRTI (Nonnucleotide Reverse Transcriptase
Inhibitors)

e 5fold cross validation
— Linear SVM, Ridge regression, Lars
— Nonlinear SVM, iBoost
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Regression results

Drug # 1solates Linear Methods Nonlinear Methods

SVR linear Ridge LARS | SVRp2 SVRp3 SVRrl SVRrl0 SVRrl00 i1Boost

NRTI
Lamivudine (3TC) 633 0.913 0.753  0.93 0.927 0.876 0.306 0.934 0.608 0.940
Abacavir (ABC) 628 0.731 0.585 0.79 0.772 0.720 0.256 0.745 0.614 0.801
Zidovudine (AZT) 630 0.751 0.72 0.65 0.797 0.760 0.240 0.754 0.515 0.797
Stavudine (D4T) 630 0.729 0.662 0.76 0.729 0.676 0.184 0.732 0.534 0.789
Didanosine (DDI) 632 0.695 0.591 0.72 0.690 0.653 0.170 0.705 0.372 0.737
Tenofovir (TDF) 353 0.603 0.568 040 0.554 0.465 0.107 0.612 0.366 0.552
Average 0.737 0.647 0.708 0.744 0.692 0.211 0.747 0.502 0.769

NNRTI
Delavirdine (DLV) 732 0.799 0.794  0.79 0.729 0.684 0.189 0.802 0.323 0.771
Efavirenz (EFV) 734 0.793 0.772  0.85 0.730 0.640 0.170 0.797 0.205 0.771
Nevirapine (NVP) 746 0.757 0.719  0.79 0.704 0.592 0.166 0.765 0.181 0.781
Average 0.783 0.762 0.810 0.721 0.639 0.175 0.788 0.236 0.774

PI
Amprenavir (APV) 768 0.819 0.749  0.81 0.756 0.697 0.483 0.82 0.576 0.802
Atazanavir (ATV) 329 0.724 0.594 0.76 0.731 0.654 0.297 0.739 0.450 0.701
Indinavir (IDV) 827 0.830 0.710  0.81 0.819 0.775 0.574 0.844 0.710 0.816
Lopinavir (LPV) 517 0.845 0.715  0.85 0.821 0.757 0.496 0.857 0.697 0.827
Nelfinavir (NFV) 844 0.845 0.697 0.54 0.800 0.728 0.615 0.858 0.638 0.838
Ritonavir (RTV) 795 0.893 0.794  0.89 0.875 0.820 0.598 0.903 0.788 0.892
Saquinavir (SQV) 826 0.814 0.738  0.81 0.782 0.733 0.468 0.829 0.559 0.791
Average 0.824 0.712 0.824 0.798 0.738 0.504 0.836 0.631 0.810
" yi — f(x:) ’
Accuracy: " =1- o SO 87
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Accuracy Summary

 NRTIs: IBoost performed best

e Pls:

— Nonlinear methods were better than linear
— SVMs were slightly better (non-significant)

* NNRTIs

— Linear methods were better
— Combination is not necessary
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ABC (81.5%)

3TC (96.7%)

NRTI Drugs



Known mutation associations In
RT

Red: Thymidine-
associlated Mutations
(TAM)

—  41L, 67N, 70R, 210W,
215Y/F, 219Q, 69i

Blue: Q151M Complex

— /51, 77L, 116Y, 151M,
65R, 74V, 184I/V

RTof HIV-1



ATV (59.0%)

APV (53.2%)

0.5

IDV (42.7%)

RTV (54.6%)

0.5
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EFV (60.7%)

DLV (60.1%)

ion found)

t

(almost no combina

NNRTI Drugs




Computation Time of iIBoost

* Training time for 3TC 250

I mining tims '
QP time
* 507 isolates with 371 200]
mutations on average =
* QP time longer than %
mining time =
| Y [ [T IO [

i 2 3 4 g & Mo Limit
maximum item set size
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Summary (HIV)

ltemset Boosting for finding mutation
associations

Good accuracy for NRTIs

Our complex features re-discover known
mutation clusters

Broad applications

— Multiple SNP analysis, RNAI efficacy prediction
— Motif combination, Flu mutation analysis

— P53 mutation analysis
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Agenda 3 (Kernel)

N

# 1. Kernel Method Revisited

# 2. Marginalized Kernels (Fisher Kernels)
# 3. Marginalized Graph Kernels

# 4. Weisfeiler-Lehman kernels

# 5. Reaction Graph kernels
# 6. Concluding Remark




Part 1: Kernel Method Revisited




Kernels and Learning

N

‘#1In Kernel-based learning algorithms,
problem solving is now decoupled into:

= A general purpose learning algorithm (e.g.
SVM, PCA, ...) — Often linear algorithm

= A problem specific kernel

Simple (linear)
learning algorithm

gigfouas e

Complex Learning




N

Current Synthesis

#Modularity and re-usability
= Same kernel ,different learning algorithms
= Different kernels, same learning algorithms

Data 1

(Sequence) | Kernell -O _
Gram Matri
(not necessarily stor
Data 2
(Network) | Kernel 2 S

Gram Matrix




Kernel Methods : intuitive idea

N

#Find a mapping ¢ such that, in the new
space, problem solving is linear

#Kernel represents the similarity between

two objects, defined as the dot-product in
this new vector space

# But the mapping is left implicit

# Easy generalization of a lot of dot-
product-based learning algorithms




Kernel Methods : the mappmg

F\

Original Space b Feature (Vector) Space




Kernel : more formal definition

N

" @A kernel k(x,y)

= S a similarity measure
s defined by an implicit mapping ¢,

s such that: 4(x,y)=o(x)d(y)
# This similarity measure implies:
= Invariance or other a priori knowledge
= The class of functions the solution is taken from

= Possibly infinite dimension (hypothesis space for
learning)

= ... but still computational efficiency when
computing A(X,y)




Kernel Trick

N

# Generalizes (nonlinearly) algorithms in
clustering, classification, density estimation ..

= When these algorithms are dot-product based, by
replacing the dot product (x-y) by A(X,y)=d(X)*d(Y)

= When these algorithms are distance-based, by
repIaCing O(XIY) by k(XIX)-I-k(YIY)-Zk(XIY)

# Freedom of choosing ¢ implies a large variety
of learning algorithms




Valid Kernels

N

#® Theorem: A(x,y) is a valid kernel if kis
positive definite and symmetric (Mercer
Kernel)
= Afunction is P.D. if [K(xy)f(x)f(y)dxdy>0 vf el

= In other words, the Gram matrix K (whose
elements are k(x;,X;)) must be positive definite for
all x;, x; of the input space

= One possible choice of ¢(x): A(e,x) (maps a point x
to a function 4(+,x) = feature space with infinite
dimension!)

10




How to build new kernels

#Kernel combinations, preserving validity.
K(XY) =K, (Xy)+1-A)K,(xy) 0<1<1
K(xy)=aK;(xy) a>0

K(XY) = K (Xy).K; (Xy)
K(XY)= f(x).f(y) fis real—-valued function

K(XY) = K;(0(x),0(y))
K(X,y) =x'"Py P symmetric definite positive

L Kl (X’y)
AN P e N PR (A

11



N

Strategies of Design

# Convolution Kernels: text is a
recursively-defined data structure. How
to build “global” kernels form local

(atomic level) kernels?

# Generative model-based kernels: the
“topology” of the problem will be
translated into a kernel function

12




Family of kernels

Kernel Methods

= Kernels for biological sequences SRt Bty
— Spectrum kernel
— Marginalized kernel
— Profile kernel

— Local alignment kernel

Kernel Methods in Computational

Biology, MIT Press
= Tree Kernels

— Kernel for phylogenetic profiles
— Kernel for natural language
— Kernel for RNA sequences



Kernels for nodes in a network

Diffusion kernel
Locally constrained diffusion kernel

Graph Kernels
Marginalized Graph Kernels
MGK without tottering
Acyclic Pattern Kernels
Shortest Path Kernel
Weisfeiler-Lehman Kernel



Weak points of kernel methods

N

#Not Interpretable
s Not sure which features are used

= -> Graph Mining, Boosting

#Dense kernel matrices: Slow
= Take O(n”3) time for manipulation
= -> Semi-supervised learning

15




Part 2. Marginalized kernels

16




Biological Sequences:
Classification Tasks

N

#DNA sequences (A,C,G,T)
= Gene Finding, Splice Sites
#RNA sequences (A,C,G,U)

= MicroRNA discovery, Classification into
Rfam families

# Amino Acid Sequences (20 symbols)

= Remote Homolog Detection, Fold
recognition

17




Kernels for Sequences

# Similarity between sequences of different
lengths

ACGGTTCAA

il

ATATCGCGGGAA

# Later combined with SVMs and other kernel
methods

18




Count Kernel

N

# Inner product between symbol counts

A C G T
ACGGTTCAA 3 2 2 2
ATATCGCGGGAA 4 2 4 2
# Extension: Spectrum kernels (Leslie et al., 2002)
= Counts the number of k-mers (k-grams) efficiently

# Not good for sequences with frequent context change
= E.g., coding/non-coding regions in DNA

19




Hidden Markov Models for
Estimating Context

N

# Visible Variable x = (x4, ..., z,,;) : Symbol Sequence

# Hidden Variable h = (hq, ..., h;,): Context

# HMM can estimate the posterior probability of hidden
variables p(h|x) from data

h: 122122122
x: ACGGTTCAA

20




Marginalized kernels

N
\J

# Design a joint kernel K (z,2’) for combined 2z = (z, h)
= Hidden variable is not usually available

= Take expectation with respect to the hidden
variable

# The marginalized kernel for visible variables

> > p(h|z)p(h'|2 K, (z, 2")

hcH h'eH

21




Designing a joint kernel for
seguences

N
\J

# Symbols are counted separately in each context

h: 122122122 AD=1-(CDE1(GD=1
xx ACGGTTCAA A2)=2 (C2)=1 G2)=1

#cke(2) :count of a combined symbol (k,|)

# Joint kernel: count kernel with context information

Ny MNhp

ZZ)—> >jckg Ckg )

k=1 ¢=1

(T,1)=0
(T,2) =2
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N

Marginalization of the joint kernel

# Joint kernel

# Marginalized count kernel
K(z,x') = Y > p(hlz)ph|z')K.(2,2)
h R

Ny MNp

= > > (@) ()

k=1 (=1
Vg1 is a marginalized count vg(x) = ), p(h|x)cke(2)
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Computing Marginalized Counts
from HMM

N
\J

# Marginalized count is described as

m np

’Ykl Z Z p h |£E f)

zlhl

# Posterior probability of i-th hidden variable is
efficiently computed as

p(h; = klx) = fi(i)br(2)/p(x)

fr(i): forward variable, b (i): backward variable
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2"d order marginalized count
kernel

N
\J

# If adjacent relations between symbols have essential
meanings, the count kernel is obviously not sufficient

@ 2" order marginalized count kernel

= 4 neighboring symbols (i.e. 2 visible and 2 hidden)
are combined and counted

______________

|
_________

h: 122122122
X: ACGGTTCAA

25




Fisher Kernel

N

# Probabilistic mode p(z|9), € X

0 c R is a parameter vector obtained from training samples

# Fisher Kernel
= Mapping to a feature vector (Fisher score vector)
Ologp(x|6)  dlogp(x|6)
004 o 00, )
= Inner product of Fisher scores
Ki(z,2') = s(x,0)" Z71(0)s(x', )

s(x,0) = (

Z: Fisher information matrix
26




Fisher Kernel from HMM

N
\J

# Derive FK from HMM (Jaakkola et al. 2000)

= Derivative for emission probabilities only
= No Fisher information matrix

# FK from HMM is a special case of marginalized kernels
= Counts are centralized and weighted

Kf(wvw,) — ZZp(hlaS)p(hllw’)Kfz(z,z’)
h h'

Ny Np

Z Z (cre(2) — Eke(z))(cke(z’) — EkE(Z’))

k1e1€k

K. (z,2")

27




Difference between FK and
Marginalized Kernels

N

#FK: Probabilistic model determines the
joint kernel and the posterior
probabilities

#MK: You can determine them separately
= More flexible design!

28




Protein clustering experiment

N

# 84 proteins containing five classes
= gyrB proteins from five bacteria species

# Clustering methods
= HMM + {FK,MCK1,MCK2 }+K-Means

# Evaluation
= Adjusted Rand Index (ARI)

29




Kernel Matrices

N

L/

|deal

o

0.04

0.02

-0.02

0.04

0.02

-0.02

0.04

0.02

-0.02
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N

1

Clustering Evaluation

0.9r

MCK2

3 5
Number of HMM States
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Applications since then..

N

# Marginalized Graph Kernels (Kashima et al., ICML
2003)

# Sensor networks (Nyugen et al., ICML 2004)
# Labeling of structured data (Kashima et al., ICML

2004)
# Robotics (Shimosaka et al., ICRA 2005)
# Kernels for Promoter Regions (Vert et al., NIPS 2005)
# Web data (Zhao et al., WWW 2006)

32




Summary (Marginalized Kernels)

N

# General Framework for using generative
model for defining kernels

#Fisher kernel as a special case
# Broad applications

33




Part 3 Marginalized Graph
Kernels

34




Motivations for graph analysis

N

J@Existing methods assume ” tables”

Serial Num Name Age Sex Address
0001 OO 40 Male Tokyo
0002 X X 31 Female Osaka

# Structured data beyond this framework

—

AQFERTL __ IVNEYS ¥ I VYLEGCT P. knowlesi
AQFERTL [L|IVNEYS ¥ I VYLEGCT P. simiovale
AQFERTL [L|IVNEYS ¥ I VYLEGCT P.wu/chesson
AQFERTL |L| IVNEYS [H] I VYLEGCT P. simium
AQFERTL |L| IVNEYS |H| I VYLEGCT F.w/Africa
AQFERTL |L | IVNEYS |H| I VYLEGCT P.w/Thai-1090
AQFERTL |L| IVNEYS |H| I VYLEGCT P.w/Thai-115
AQFERTL |L| IVNEYS |H| I VYLEGCT P.w/N.Korea
AQFERTL |L| IVNEYS |H| I VYLEGCT P.w/Vietnam
AQFERTL [L| IVNEYS |H| |V| VYLEGCT P.w/Salvador-1
AQFERTL |L | IVNEYS |H| |V| VYLEGCT FP.w/Salvador-2
AQFERTL |L| IVNEYS |H| |V| VYLEGCT P.w/Brazil-1
AQFERTL |L| IVNEYS |H| |V| VYLEGCT P.w/Brazil-2
AQFERTL |L| IVNEYS |H| |V] VYLEGCT P.w /Honduras=-1
AQFERTL |L| IVNEYS |H| |V| VYLEGCT F.w/Honduras-2
AQFERTL |L| IVNEYS |H| |V]| VYLEGCT P.w/Panama
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Graph Structures in Biology

#DNA Sequence @Compounds @OH
, 3 86806

®RNA -43/8\@ B0

R g

@ Texts in literature
Amitriptylineginhibits g adenosine g uptake JiEY

J-L

:c)
QCOO0 a
L1

2Q>QQ0 =



Marginalized Graph Kernels
(Kashima, Tsuda, Inokuchi, ICML 2003)

N

L/

#Going to define the kernel function K(G,G")
# Both vertex and edges are labeled

38



Label path

N

J # Sequence of vertex and edge labels
h=(A,e,A,d, D,a,B,c,D)

# Generated by random walking

#Uniform initial, transition, terminal

probabilities b @\
- D
a
d TN d
A
O

39




Path-probability vector

Label path h | Probability p(h|G)
AaA 0.001

ACDDE 0.000003

AeAdDaBcD | 0.00000007

40



E

N

Kernel definition A ¢ D l?
/ BcDaA
#Kernels for paths

N (Jh| = |R'))
K(h,h') = { ko(hy, W) ke(ho, By) -+ ko(he, 1) (R| = [R/])

#Take expectation over all possible paths!
#Marginalized kernels for graphs

K(G,G") =} > p(h|G)p(K|G)K(h,})
h b

41




Transition probability : A

COm pUtation Initial and terminal  : omitted

N

s Sy(x) : Set of paths ending at v
s K,: Kernel computed from the paths ending at (v, V)
Ky (v,v) = > > )\‘S|)\|S’|KS(S, s")
sc€Sy(z) s'eS 1 (2')

» K| is written recursively

Ky(v,o) =NIo=u)(1+ Y > XKy, 6’))
eA(v) Ve A(v)

= Kernel computed by solving
linear equations
(polynomial time)




N

Graph Kernel Applications

# Chemical Compounds (Mahe et al., 2005)
#Protein 3D structures (Borgwardt et al, 2005)

#®RNA graphs (Karklin et al., 2005)
# Pedestrian detection
# Signal Processing

43




Predicting Mutagenicity

®MUTAG benchmark dataset

= Mutation of Salmonella typhimurium
m 125 positive data (effective for mutations)

= 63 negative data (not effective for mutations)

Table 5: Accuracy Results Obtained for the Leave-One-Out
Classification of the “Unfriendly Part™ of the Mutag Data Set?

graph
Lin.Reg Lin.Reg+ DT NN  Progoll Progol2 Kkemels

66.7% 71.8%  83.3% 69.0% 85.7% 83.3%  88.1%

N

@ Lin.Reg (Linear Regression), DT (Decision Tree), NN (Neural
Network), and Progoll/2 (Inductive Logic Programming): ref 19.

Mahe et al. J. Chem. Inf. Model., 2005 44




Classification of Protein 3D
sftructures

# Graphs for protein 3D structures
= Node: Secondary structure elements
= Edge: Distance of two elements

# Calculate the similarity by graph kernels

protein secondary sequence structure
data structure elements

Borgwardt et al. “Protein function prediction via graph kernels”, ISMB2005°




Classification of proteins:
Accuracy
i

Kernel type Accuracy | St. dev.
Vector kernel 76.86 1.23
Optimized vector kernel 80.17 1.24
Graph kernel 77.30 1.20
Graph kernel without structure 72.33 5.32
Graph kemnel with global info 84.04 3.33
DALI classifier 75.07 4.58

Table 1. Accuracy of prediction of functional class of enzymes and non-
enzymes in 10-fold cross-validation with C-SVM. The first two results are
the results obtained by Dobson and Doig (2003). "Graph kernel™ is our protein
kernel defined as in Section 2.3, "Graph kernel without structure™ is the same
kernel but on protein models without structural edges, "Graph kernel with
global info™ i1s our protein graph kernel plus additional global node labels.
"DALI classifier” is a Nearest Neighbor Classifier on DALI Z-scores.

Borgwardt et al. “Protein function prediction via graph kernels”, ISMB2005°




Pedestrian detection in images
(F. Suard et al., 2005)

47




Classifying RNA graphs (v.

Karklin et al.,, 2005)

(E14)
Oy

N,
» "‘-|¢|.33
RV

1)
=) L““;JE'.} ~J1.2)

|
(L1
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Strong points of MGK

N

# Polynomial time computation O(n”3)
# Positive definite kernel

= Support Vector Machines
a Kernel PCA

= Kernel CCA

= And so on...

49




Drawbacks of graph kernels

N

# Global similarity measure
= Fails to capture subtle differences
= Long paths suppressed

# Results not interpretable

# Structural features ignored (e.g. loops)
= No labels -> kernel always 1

50




Part 4. Weisfeiler Lehman
kernel

51




Convert a graph into a set of words

Make a label set of adjacent
vertices ex) {E,A,D}
Sort ex) A,D,E
Add the vertex label as a prefix
ex) B,A,D,E

Map the label sequence to a
unique value

ex) B,A,D,E—R
Assign the value as the new

Bag-of-words
{AB,D,E,...R,..} Vertexlabel



1st iteration

Given labeled graphs G and G Result of steps 1 and 2: multiset-label determination and sorting
4
Q> c QB .
a b
1st iteration 1st iteration
Result of step 3: label compression Result of step 4: relabeling
14 —— 6 3245 —— \ ,
23 ——— 7 41135 — 11 11
235 — 8 41235 — 12
245 —— 9 5234 —— 13 ©® & e @ .,
G G
C d

Courtesy K. Borgwardt
¢29/08/2012 *53



la
N

Dataset || MUTAG NCI1 NCI109 D&D
Maximum # nodes 28 111 111 5748
Average # nodes 17.93 29.87 29.68 284.32
# labels I 37 >4 89
Number of graphs 188 100 4110 100 4127 100 1178
Weisfeiler-Lehman 6" S 17207 57 7217 S8” 1
Ramon & Giértner 4006™ 2597 | 29 days* 267407 31 days* —- —
Graphlet count 37 2" 17277 27 1°27” 27407 30°217
Random walk 127 587307 | 68 days™ || 2h 97417 | 153 days”® —- —
Shortest path 2" 3" 438" 3" 4°39” S8°45” | 23h 17727

—-: did not finish in 2 days, * = extrapolated.

Table 2: CPU runtime for kernel computation on graph classification benchmark datasets
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Part 5. Reaction Graph Kernels
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KEGG lysine degradation pathway

LYZINE DEGRADATION
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Missing enzymes in metabolic networks

« Many enzymatic reactions
whose substrate and produc
are known, but the enzyme
Involved is unknown.

* Need to assign Enzymatic
Classification numbers.
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E C n u m be r EC1, UxToreductases

Acred + B.ox <=> A.ox + B.red

« EC (Enzymatic Classification)
number iIs a hierarchical

ECZ2, Transferases

- : 1
categorization of EE+CT:-===-;+B%
— Enzymes EC3, Hydrolases
— Enzymatic reactions e g <=> 1., Son
class l subsubclass =04 Lyases
l ié “=> i + B
E C 1 3 3 - EC5, Isomerases
T A <=> A
ECSB, Ligases
subclass -

4’ *tl"l"
A+ B + ATP <=> AB + AMP + PP
t1 + 1




Task

Given a pair of substrate and product as a query, find
similar reactions in the database

4 o )
ENj > HEN/\/\)J\DH
Query coeist con4s1
?
\ /
Result of NHz  conons NH
Retrieval

EC:3.5.2

\_
Similarity measure of reactions IS necessary




Reaction Graph

» Represent enzymatic reaction as reaction graph
* Node: Molecules

« Edge: chemical relation of molecules (main, leave,
co-factor, transferase, ligase)

 Reaction graph kernel: Similarity measure of
reaction graphs

* Molecule = Graph of atoms
* Reaction graph has ‘graph of graphs’ structure

 Extension of existing walk-based graph kernel
(Kashima et al., 2003)



Main Substrate 2 Main Products

OH OH

H3C,
p o H. H i 0
hl %é_@+“ﬁ*” X\ 4
H 0 . coo001 .

CO1479 ZoaYz9

C01456

co1479




Reaction graph kernels (RGK)

« Two-layered kernels on graphs of graphs
— Node kernel = walk-based graph kernel of molecules
— Edge kernel = delta kernel of labels

29  ¢¢ 29  ¢¢

transferase”, “ligase”

cofactor”,

* “main”, “leave”,




Simplified Settings

* Query might not come in the complete form
* Remove some edges in the database entries

RPAIR

Use only reactant edges
(main, leave)

main-only

Use “main” only




Automatic classification of
enzymatic reactions in KEGG

« KEGG/REACTION database
e 4610 reactions with known EC number
e 6 classes, 50 subclasses, 124 subsubclasses

 Construct nearest neighbor classifier based on the
reaction graph kernel

« Three different levels: class, subclass,subsubclass
* Three kernel versions: full, RPAIR, main-only
 Measure leave-one-out classification error



Prediction Accuracy

EC class EC subclass EC subsubclass
full-edge 94.8% 86.0% 82.5% A
RPAIR 92.3% 81.4% 78.1%
main-pair | 77.8% 69.8% 66.2%
—_ |

 As expected, classification is easier for upper

categories, but difficult for lower categories
such as subsubclass.

* The order of accuracy (full-edge > RPAIR >
main-pair) suggests that detailed edge
Information contributes to further accuracy.



Predicting unannotated reactions In
plant secondary metabolism

KEGG pathway “Biosynthesis of Secondary
Metabolites”™

Out of unannotated 56 reactions, we have manually
assigned ECs of 36 reactions under chemists’ guidance

Comparison with an existing rule-based method: e-
ZYME (Kotera et al., J. Am. Chem. Soc, 2004).

RGK’s accuracy was better than e-zyme. (50%
Improvement for the top candidate)



Case 1: EC 3.1.1

H3C, -
N H OH i
query A s
H 0 OH
O C00729
CO2046
H1C
Manual N v
§_:~ OH noon 311 “ﬂ
. + O {E—————;} +
annotation b Dm coooo1 ¥
o)

CooZe
01479

OH OH

=0

C01456

OH OH
=0

01454

Structures of C02046 and C01479 are almost same except structural

Isomerism. A hydrolysis occur at a carboxylic-esther bond.

method rank1 rank2 rank3
RGK 3.1.1 1.14.11 1.14.11
e-zyme |6.1.1 3.1.1 NA




Case2: EC2.1.1+1.1.1

o] p o) ’
%, ‘ N"CH3 ll'r"- ‘ ~CH,
query ne — por

HO Ho. O
Q 0
NCH = CH.
HO Io;
ssssssssssss
N, NH H,N H
Manual o 2 b
SARRERA NS L/
im0 "'"“_O_I?_O_I?_Oﬂ 0 0 N
I S—z OH - oH N, O w—o-F—0—P—0 o
annotation i’ o A . >—0—F
O=IL—OH OH O i
Ly Ho  ©H KO c|>
UUUUUU O:T—OH
aH

DDDDDD

After removing a methyl group of C06175 (2.1.1), C01735 will be produced
by oxidation of CH-OH group (1.1.1). In the second reactions, enzymes
usually use NAD+/NADP+ as an acceptor.

method rankl rank?2 rank3
RGK 1.1.1 1.1.1 1.1.1
e-zyme |2.1.1 1.13.12 | 1.14.14




Case 3: EC1.14+2.4.1+5.2.1+3.2.1

CHq
0 CH3 [.5
o 9] -
Query S, — L,
OH ﬁﬁﬁﬁﬁﬁ
o ot 0 CCI)H
HOJ\/\@O HOJ\/\@
oH OH
444444 [ V.

2 ! NH.‘, S~
NH, o Tl conen conou 0 N <
NF i | \> DDDDDD
T Q l > 7™ o o k\N N
Lo
Manual TN Sy
M, O w0 F—0—P-0-a O oo
T 7 | | HO  OH HO' ’r:l)
;4; OH  OH oo
OH

Annotation N w o

0=p-oH
OH

DDDDDD

DDDDDD

This reaction is thought to be a set of 5 reactions by analogy with the
pathway from C00423 => C01772 => C05158 => C05839 => C05838, and
to C05851. The last reaction is spontaneous and not enzymatic.

method rank1 rank2 rank3
RGK 1.14.13 |1.2.3 1.2.1
e-zyme | NA NA- NA-




A difficult case

0 CH3 CHa

NO Ho/u\_f-"A@:O = O
annotation OH omw

C01494 CO017562

A very similar reaction (below) is found by manual inspection

OH
Ho, L oH

) ] HO
,, G L,
HO - <« HO +“—> HOL‘A© «—> O +«—> HO T —>
on 05551

CO0423 C01772 costee cosa3s chsEas

Multi-step reaction is difficult to analyze. We don’t know how
many steps are hidden between given substrate and product.



Concluding Remarks: New Frontier

N

# Developing Algorithms for Learning from Graphs
# Taming Combinatorial Explosion
= Recursive Fixed Point Iteration: Graph Kernels
» Statistical Pruning in Search Tree: Graph Boosting

= Hashing to a set of words: WL Kernel

# New ideas are necessary to get beyond the current
level of speed and prediction accuracy

# Deeper integration of learning and mining

4 THANK YOU VERY MUCH!!

/1
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