

1

Machine Learning Summer School Kyoto 2012

Graph Mining
Chapter 1: Data Mining

National Institute of Advanced Industrial
Science and Technology

 Koji Tsuda

National Institute of Advanced Industrial
Science and Technology (AIST)

• Research institute under METI for 6 fields:
Life Science, Informatics, Environment and
Energy, Nanotechnology and Materials,
Geological Survey, Standard

• 2500 scientists, 700 administrative staff, 5200
scientists from outside

• Since 2001

2

Computational Biology
Research Center

Odaiba, Tokyo

Developing Novel Methods and
Tools for

 Genome Informatics

 Molecular Informatics

 Cellular Informatics

Diverse Collaboration with
Companies and Universities

3

Koji Tsuda: Short Bio

1998 PhD in Kyoto Univ, Join ETL

2000 GMD FIRST (Berlin, Germany)

2001 Join CBRC/AIST

2003-2004, 2006-2008 Max Planck
Institute for Biological Cybernetics,
Tuebingen, Germany

2009 Back to CBRC, Machine Learning
Group Leader

 4

5

About this lecture

How to extract knowledge from
structured data

Itemset mining, tree mining, graph
mining

 “Reverse Search Principle”

Learning from structured data

Kernels for structured data

6

Chapter 1 (Data Mining)

1. Structured Data in Biology

2. Itemset Mining

3. Closed Itemset Mining

4. Ordered Tree Mining

5. Unordered Tree Mining

5. Graph Mining

6. Dense Module Enumeration

7

Agenda 2 (Learning from
Structured Data)

1. Preliminaries

2. Graph Clustering by EM

3. Graph Boosting

4. Regularization Paths in Graph Classification

5. Itemset Boosting for predicting HIV drug resistance

8

Agenda 3 (Kernel)

1. Kernel Method Revisited

2. Marginalized Kernels (Fisher Kernels)

3. Marginalized Graph Kernels

4. Weisfeiler-Lehman kernels

5. Reaction Graph kernels

6. Concluding Remark

9

Part 1: Structural Data in Biology

10

Biological Sequences

DNA sequences (A,C,G,T)

 Gene Finding, Splice Sites

RNA sequences (A,C,G,U)

 MicroRNA discovery, etc.

Amino acid sequences (20 symbols)

 Remote homolog detection, Fold
recognition etc.

11

Structures hidden in sequences (I)

Exon/intron of DNA (Gene)

12

Structures hidden in sequences (II)

It is crucial to infer hidden structures
and exploit them for classification

Biological Graphs

Protein
3D Structures

RNA
Secondary
Structure

Molecular graphs

Structure: Thiamine (Vitamin B1)

implicit

hydrogens
explicit

hydrogens

molecular graph

Hydrogen

Carbon

Oxygen

Nitrogen

Sulfur

single bond

double bond

graph =

a set of dots

& lines

(or nodes &

edges)

abstraction

14

Gene Expression Data

Measurement of many
mRNAs in the cell

Rough estimate of
amount of proteins

Time-series or not

Snapshot of the
underlying dynamic
system

15

Biological Networks

Protein-protein physical interaction

Metabolic networks

Gene regulatory networks

Network induced from sequence
similarity

Thousands of nodes (genes/proteins)

100000s of edges (interactions)

16

Physical Interaction Network

17

Metabolic Network

18

Many possible prediction
problems..

19

Part 2: Itemset mining

•20

Data Mining

 A formal study of efficient
methods for extracting
interesting rules and patterns
from massive data

 Frequent itemset mining
(Agrawal and Srikant 1994)

Closed pattern mining

 Structured data mining
(Sequence, Trees, and
Graphs)

email

people

@age @id

60

8

name

#text

#text

person

name
@id

60

9

tel

#text

#text

person

2

5

john@abc.com

Jo

hn 555-

4567 Mar

y

•21

Frequent Itemset Mining
[Agrawal, Srikant, VLDB'94]

 Finding all "frequent" sets of elements

(items) appearing σ times or more in a
database

1 2 3 4 5

t1 ○ ○

t2 ○ ○

t3 ○ ○ ○ ○

t4 ○ ○ ○

t5 ○ ○ ○

1 2 3 4 5

t1 ○ ○

t2 ○ ○

t3 ○ ○ ○ ○

t4 ○ ○ ○

t5 ○ ○ ○

database

Minsup σ= 2

The itemset lattice (2Σ, ⊆)

Frequent setsFrequent

sets

∅,

1, 2, 3, 4,

12, 13, 14,

23, 24, 124

X = {2, 4} appears

three times, thus

frequent

Definitions: Database

 A set Σ = { 1, ..., n } of items (elements)

 Transaction database

− A set T = { t1, ..., tm } of subsets of Σ

− Each subset t ⊆Σ is called a transaction

•22 •22

L = {1, 2, 3, 4} •Alphabet of items

id transaction

t1 1, 3

t2 2, 4

t3 1, 2, 3, 4

t4 1, 2, 4

•22

•23

Definitions: Frequent sets

 Itemset X appears in transaction t: X ⊆ t

 Occurrence of X in database T:

 Occ(X, T) = { t ∈ T : X ⊆ t }

 Frequency of X: Fr(X, T) = | Occ(X, T) |

 Minimum support (minsup): 0≦ σ ≦|T|

 X is frequent in T if Fr(X, T) ≧ σ.

•23 •23

I = {1, 2, 3, 4} Alphabet of items Transaction database

Occ(24, T) = {t2, t3, t4},

Fr(24, T) = 3

Occurrences and frequencies

of itemsets

Occ(3, T) = {t1, t3}

Fr(3, T) = 2

id transaction

t1 1, 3

t2 2, 4

t3 1, 2, 3, 4

t4 1, 2, 4

Market Basket Data

 Popular application of itemset mining

 Business and Market data analysis

•24

ID Chips Mustard Sausage Softdrink Beer

001 1 0 0 0 1

002 1 1 1 1 1

003 1 0 1 0 0

004 0 0 1 0 1

005 0 1 1 1 1

006 1 1 1 0 1

007 1 0 1 1 1

008 1 1 1 0 0

009 1 0 0 1 0

010 0 1 1 0 1

003 1 0 1 0 0

• Transaction Data

of purchase

• a transaction

or a "basket"

•Item

•Meaning of the transaction 003

 "Custmer 003 bought Chips and Sausage together in his basket"

DAG of itemsets:

Hasse diagram

 Edge: Adding

one item

•25

empty

1 2 3 4

1,2 1,3 1,42,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

Enumeration Tree by

Lexicographical Order

 Need a tree

to avoid

duplication

•26

empty

1 2 3 4

1,2 1,3 1,42,3 2,4 3,4

1,2,3 1,2,4 1,3,4 2,3,4

1,2,3,4

Backtracking Algorithm:

FP Growth etc.
 Monotonicity: Support only decreases

 Depth First Traversal, Prune if support < σ

•27

Frequent sets

Association Rule Mining

 Confidence: Supp(A ∪ B)/ Supp(A)

 Probability of B, Given A

What item is likely to be bought when A

is bought

 Search: large support, confidence large

 Post-processing of itemset mining

•28

Summary: Itemset mining

 Itemset mining is the simplest of all

mining algorithms

 Need to maintain occurrence of each

pattern in database

 Tree by lexicographical order is

(implicitly) used

•29

•30

Part 3: Closed Itemset mining

Problem in Frequent Pattern Mining

 Huge Number of frequent itemsets

 Hard to analyze

 Most of them are similar

•31

1 2 3 4 5

t1 ○ ○

t2 ○ ○

t3 ○ ○ ○ ○

t4 ○ ○ ○

t5 ○ ○ ○

1 2 3 4 5

t1 ○ ○

t2 ○ ○

t3 ○ ○ ○ ○

t4 ○ ○ ○

t5 ○ ○ ○

database

minsup σ= 2

Huge number of frequent itemsets

discovered in T

Frequent setsAn input transaction

database

mining

Solution:
Closed Pattern Mining

 Find only closed patterns

 Observation: Most frequent itemset X can
be extended without changing occurrence by
adding new elements

 def ([Pasquier et al., ICDT'99]).
An itemset X is a closed set if and only if
there is no proper superset of X with the
same frequency (thus the same occurrence
set).

•32

Closed Pattern Mining

 A closed itemset is the maximal set among all

itemsets with the same occurrences.

 Equivalence class [X] = {Y| Occ(X)=Occ(Y) }.

•33

id records

1 A B C E

2 A C

3 B E

4 B C E

Database

A C B E

AC AB AE BE BC CE

ABC ABE ACE BCE

ABCE

Closed sets (maximal sets)

Equivalence class w.r.t.

occurrences

Brute-force: Stupid Baseline

 ALGORITHM Bruteforce

 First, generate all frequent itemsets

 Check them one by one via maximality test

 Maximality test for each candidate frequent

set X

 Add some element e in Σ to X

 If Freq(X U {e}) is properly less than Freq(X)

then reject X.

•34

[1,3,4]

[1]

[1,2]

[1,4]

[1,2,4]

[1,2,3,4]

Bruteforce

 STEP1) first, generate all frequent sets

•35

id records

1 A B C E

2 A C

3 B E

4 B C E

Database T All itemsets in T

Closed sets (maximal sets)

Equivalence class w.r.t.

occurrences

Occurrence (set of ids) [1,2]

A C B E

AC AB AE BE BC CE

ABC ABE ACE BCE

ABCE

Bruteforce

 STEP1) first, generate all frequent sets

 STEP 2) make closedness test for each set

•36

id records

1 A B C E

2 A C

3 B E

4 B C E

Database T

A C B E

AC AB AE BE BC CE

ABC ABE ACE BCE

ABCE

All itemsets in T

[1,3,4]

[1]

[1,2]

[1,4]

[1,2,4]

[1,2,3,4]

Closed sets (maximal sets)

Equivalence class w.r.t.

occurrences

Occurrence (set of ids) [1,2]

Bruteforce

 STEP1) first, generate all frequent sets

 STEP 2) make closedness test for each set

 STEP3) finally, extract all closed sets

•37

id records

1 A B C E

2 A C

3 B E

4 B C E

Database T

A C B E

AC AB AE BE BC CE

ABC ABE ACE BCE

ABCE

All itemsets in T

[1,3,4]

[1]

[1,2]

[1,4]

[1,2,4]

[1,2,3,4]

Closed sets (maximal sets)

Equivalence class w.r.t.

occurrences

Occurrence (set of ids) [1,2]

C

AC BE

BCE

ABCE

All closed sets are found!

Complexity of Enumeration
Algorithms

Number of patterns
usually exponential to
input size

Delay: Time between
two pattern outputs

Brute-force is

exponential delay

w.r.t. pattern size

38

Output size

Delay D

Input

Input size

Total Time T

To achieve linear delay,

Must jump from
closed set to
closed set

How to define
the search tree?

Reverse search!
(Avis and Fukuda 1996)

39

φ

{1,7,9}

{2,7,9}

{1,2,7,9}

{7,9}

{2,5}

{2}

{2,3,4,5}

{1,2,7,8,9} {1,2,5,6,7,9}

Reverse Search: It’s a must

A general mathematical framework to
design enumeration algorithms

Can be used to prove the correctness of
the algorithm

Popular in computational geometry

Data mining algorithms can be
explained in remarkable simplicity

40

Often, search space comes as
a DAG

• Naive Backtracking
= Duplication

• Duplication check by
Marking =
Exponential Memory

• How to visit all
nodes without
duplication?

41 41

φ

{1,7,9}

{2,7,9}

{1,2,7,9}

{7,9}

{2,5}

{2}

{2,3,4,5}

{1,2,7,8,9} {1,2,5,6,7,9}

Reduction Map

Mapping from a children to the parent

Reduction map for closed itemset

 Shrink the itemset until occurrence changes

 Take “closure operation”

42 42

closure(X)

Closed set X
shrink closure

Parent of X

Closure Operation

 closure(X) of a set X:

 Closed set computed by

closure(X) = ∩ { t in T : X ⊆ t }.

(taking the intersection of all

transactions in T that X occurs as subset)

•43

closure(X)

Equivalence class of itemsets

with same occurrence

non-closed set

closed set

Example of Closure Operation

 Non-closed itemset: (B,C)

 Occurrence: 1,4

 Take Intersection of 1 and 4

 (A,B,C,E) ∩ (B,C,E) = (B,C,E)

 This is closed itemset

•44

id records

1 A B C E

2 A C

3 B E

4 B C E

Database T

By applying the reduction map to all
nodes, enumeration tree is defined.

45 45

φ

{1,7,9}

{2,7,9}

{1,2,7,9}

{7,9}

{2,5}

{2}

{2,3,4,5}

{1,2,7,8,9} {1,2,5,6,7,9}

• But arrows are
in reverse
direction..

Children generation

In backtracking, one has
to generate all children
of the current node

Inverse of reduction
map

 Generate all children
candidates

 Apply reduction map to
them

 Remove if not coming
back

46

Children
candidates

Parent real
child

real
child

Reverse Search Theorem

To prove the correctness, prove the following

 Reduction map is uniquely defined on all nodes

 By applying the reduction map repeatedly, one
can reach the root node from any node

 Children generation is inverse of reduction map

Easy to check !

 47

LCM = Linear Time Closed

Sets Miner (Uno et al., 2003)

 Prefix
Preserving
Closure
Extension

= Children
generation from
the reduction map

Linear Delay!

48

⊥

Jump!

⊥

Jump!

Closure Extension

 Repeat: Add an item and taking closure

•49

non-closed sets

closed sets

closure(X)

 Step 2:

closed set

 Z = closure(XU{i})

closure Z

Start:

closed set X

X

Step 1:

Y = X U {i}

Y

add item i

i

Naïve Closure Extension:

Duplication!

closure

extension

1,2,5,6,7,9

2,3,4,5

1,2,7,8,9

1,7,9

2,7,9

2

T ＝

φ

{1,7,9}

{2,7,9}

{1,2,7,9}

{7,9}

{2,5}

{2}

{2,3,4,5}

{1,2,7,8,9} {1,2,5,6,7,9}

・ closure extension

 DAG of closed itemsets

•50

Prefix Preserving Closure Extension

・ Ensure any closed set is generated from a unique

parent

Def. Closure tail of a closed itemset P

 ⇔ the minimum j s.t. closure (P ∩ {1,…,j}) ＝ P

Def. H ＝ closure(P∪{i}) is a PPC-extension of P

 ⇔ i > closure tail and

 H ∩{1,…,i-1} ＝ P ∩{1,…,i-1}

•51

Enumeration tree by PPC extension

closure extension

ppc extension

1,2,5,6,7,9

2,3,4,5

1,2,7,8,9

1,7,9

2,7,9

2

T ＝

φ

{1,7,9}

{2,7,9}

{1,2,7,9}

{7,9}

{2,5}

{2}

{2,3,4,5}

{1,2,7,8,9} {1,2,5,6,7,9}

・ closure extension DAG

・ ppc extension tree

•52

•53

Linear Delay in Pattern Size
(Uno, Uchida, Asai, Arimura, Discovery Science 2004)

Theorem : The algorithm LCM finds all frequent
closed sets X appearing in a collection of a transaction
database D in O(lmn) time per closed set in the total
size of D without duplicates,

where l is the maximum length of transactions in D,
and n is the total size of D, m is the size of pattern X.

Note: The output polynomial time complexity of Closed

sets discovery is shown by [Makino et al. STACS2002]

Summary: Closed Itemset Mining

 Closure Extension: Jump from closed

set to closed set

 LCM: Linear Delay

 Very fast in practice, too

 Winner of FIMI’04 (Frequent Itemset

Mining Implementation Workshop)

 Relation to clique enumeration (Arimura,

Uno, SDM2009)

•54

•55

Part 4: Ordered Tree Mining

•56

Frequent Ordered Tree Mining

 Natural extension of frequent itemset

mining problem for trees

 Finding all frequent substructure in

a given collection of labeled trees

 How to enumerate them without duplicates

 Efficient DFS Algorithm

 FREQT [Asai, Arimura, SIAM DM2002]

 TreeMiner [Zaki, ACM KDD2002]

 Rightmost expansion technique

•57

Labeled Ordered Trees

Rooted:

Ordered:

Siblings are ordered

from left to right.

Labeled

Each node has a label.

A model of

HTML/XML

Hierarchical records

Dependency tree of

natural language texts.

email

people

@age @id

608

name

#text

#text

person

name

@id

609

tel

#text

#text

person

25

john@abc.com

John

555-

4567 Mary

•58

Matching between trees

Pattern tree T matches
a data tree D
 (T occurs in D)

There is a matching
function f from T into D.

r

C

B A

B

A

C B

data tree D pattern tree T
1

2

3 4 5

6

7

8

9 10

11

A

C B
A

C B A

C B

A

C B A

C B

matching

function f

 f is 1-to-1.

 f preserves parent-child relation.

 f preserves (indirect) sibling
relation.

 f preserves labels.

•59

Frequency of a pattern tree

Root occurrence list

 OccD(T) = {2, 8}

• A root occurrence of pattern T:
• The node to which the root of T maps by a matching function

• The frequency fr(T) = #root occurrences of T in D

r

C

B A

C B

A

A C B

B

P1

P2

A

C B

D
T

1

2

3 4 5

6

7

8

9 10

11

•60

Frequent Tree Mining Problem

 Given: a colection S of labeled ordered trees
and a minimum frequency threshold σ

 Task: Discover all frequent ordered trees in S
(with frequency no less than σ) without
duplicates

•A minimum frequency

threshold (min-sup)

s = 50%

 A naive algorithm

 Starting from the smallest tree

 Grow a pattern tree by
adding a new node one by one

 Drawbacks

 Exponentially many different ways
to generate the same pattern tree

 Explicit duplication test needed

 How to overcome this difficulty?
•61

Key: How to enumerate ordered trees

without duplicates?

A

B B

A

C C

A

C C B

A

•62

An idea: DFS Code of Ordered Tree

Depth-label sequence in the preorder traversal
(depth first search)

 S = ((d(v1), l(v1)) , … , (d(vk), l(vk))

A

B B

B A

C

C

0

1

2

3

depth

 id 1 2 3 4 5 6 7

 seq 0A 1B 2A 3C 2B 1B 2C

DFS code

Rightmost expansion

• Extending the DFS Code = Attaching a new
node on the rightmost branch

 (d1,l1),…,(dn,ln), (dn+1,ln+1)

•63

C

B A

C B

1

2 4

5 6
C 3 D

7

C

B A

C B

1

2 4

5 6
C 3

D
7 C

B A

C B

1

2 4

5 6
C 3

D
7

C

B A

C B

1

2 4

5 6
C 3

pattern S

Searching frequent ordered trees

• Enumerate all frequent ordered trees by backtracking

• Tree extended only by rightmost extension = No duplication

•64

⊥

A

B

A

A

A

B

B

A

B

B

B

B A

B

B B

B

B

B

B

B

A

B

A A

B

A B

infrequent

infrequent

frequent

frequent

Summary: Ordered tree mining

 Convert tree to a string (DFS Code)

 Adding element to the code =

Rightmost extension

 It was relatively easy because nodes

are ordered

 How about unordered case?

•65

Part 5: Unordered Tree Mining

•66

Frequent Unordered Tree Mining

• Unordered trees: Non-trivial subclass of
general graphs

• Problem: Exponentially many isomorphic
trees

• Efficient DFS Algorithm

– Unot [Asai, Arimura, DS'03]

– NK [Nijssen, Kok, MGTS’03]

•67

A

B B

BA

C

C

A

B B

BA

C

C

A

B B

B A

C

C

A

B B

B A

C

C

•68

 Canonical Ordered Representation

 Given ordering among siblings, depth-first

search (DFS) code is defined

Code(T) = ((depth(v1), label(v1)) , … , (depth(vk), label(vk))

A
T

B B

B A

C

C

Code(T) = (0A,1B,2A,3C,2B,1B,2C)

69

Canonical representation

Ordered tree T with lexicographically
maximum code

A T1 T3 T4

B B

B A

C

C

A

B B

B A

C

C

A

B B

B A

C

C

A T2

B B

B A

C

C

(0A,1B,2A,3C,2B,1B,2C) (0A,1B,2B,2A,3C,1B,2C) (0A,1B,2C,1B,2A,3C,2B) (0A,1B,2C,1B,2B,2A,3C)

＞

Left Heavy Condition

(Nakano and Uno, 2002)

 T(v): subtree rooted on v

 Ordered tree is canonical if and only if

 Code(T(v1)) ≧Code(T(v2))

 for any pair of sibling nodes v1 (left)

and v2 (right)

•70

Reduction Map

 How to define parent from child in the

enumeration tree

 Generate canonical tree of size k-1

from canonical tree of size k

 Remove the last element of DFS Code

•71

Code(T) = (0A,1B,2A,3C,2B,1B,2C)

Children Generation

 Generate children

candidates by

rightmost extension

 Check the maximality

of candidate based

on left heavy property

 Discard if not

maximal
•72

C

B A

C B

1

2 4

5 6
C 3

pattern S

Maximality Check by Left Heavy

Property

 Code of left subtree must be larger than that

of right subtree

 Check only rightmost sibling and second

rightmost sibling

•73

Complexity of UNOT

 Delay per pattern O(kb2 mn)

 k: pattern size

 b: branching factor of the data tree

m: size of data tree

 n: database size

•74

Summary: Mining Unordered Tree

 The following three elements are

necessary for a mining algorithm

 Canonical Representation

 Reduction Map

 Children Generation including

Maximality Check

 Backtracking on the resulting

enumeration tree

•75

Part 6: Graph Mining

•76

•77

Frequent Subgraph Mining

• Enumerate all subgraphs occurring more

than 3 times

Graph

Database

Patterns

Gspan (Yan and Han, 2002)

• Most widely used graph
mining algorithm

• Can be interpreted with
reverse search principle

– Canonical representation?

– Reduction map?

– Children generation?

•78

DFS Code for Graph

• Depth first search and preorder node labeling
• (src, dest, src_label, edge_label, dest_label)
• Some edges not traversed

– backward edge (dest < src)

• Elements sorted in the code

•79

A

A

B A

a

a

a

b

0

1
2 3

{(0,1,A,a,A), (1,2,A,a,B),

(2,0,B,a,A), (2,3,B,b,A)}

Canonical Representation

• Multiple DFS codes: different starting point
and children ordering

• Minimum DFS Code: Lexicographically
Minimum

•80

Reduction Map

• Removing the tail of minimum DFS code
preserves minimality

•81

min DFS:

 {e1, e2, e3, e4} {e1, e2, e3}

Children Generation

• Create candidates by
adding an element to
DFS code

• Check if each candidate
is minimum

• If not, remove it

•82

Children
candidates

Parent real
child

real
child

Minimality Check

• Reconstruct the graph from
DFS Code

• Derive the minimum DFS
Code by trying all DFSs
– Speed up by traversing

minimal label only

• If the minimal code is not
identical to the original,
prune it

•83

{(0,1,A,a,A), (1,2,A,a,B),

(2,0,B,a,A), (2,3,B,b,A)}

A

A

B A

a

a

a

b

0

1
2 3

Summary: Graph Mining

• gSpan is a typical example of reverse search

• Not explained: Closed tree mining, Closed
Graph mining

• Delay exponential to pattern size
– It cannot be avoided due to NP-hardness of graph

isomorphism

– Yet it scales to millions for sparse molecular
graphs

• Applications covered in next chapter

•84

Part7: Dense Module Enumeration

•85

•29/08/2012 •86

Biological Motivation

 Most cellular processes performed by multi-component

protein complexes

 Increasing amount of experimental protein interaction

data available

 Our approach

 Predict complexes (modules) from protein

interaction network

 Exploit additional information given by gene

expression data, evolutionary conservation,

phenotypic profiles etc.

•29/08/2012 •87

•29/08/2012 •88

Protein interaction networks

 Node: Proteins

 Edge: Physical interaction of two proteins

 Challenge 1: False negative edges

 Go beyond clique search!

 Challenge 2: False positive edges

 Assign confidence scores to edges

 Find node sets with high density of high confidence
edges

•29/08/2012 •89

Module Discovery

 Previous work

 Clique percolation [Palla et al., 2005]

 Partitioning
 Hierarchical clustering [Girvan and Newman, 2001]

 Flow Simulation [Krogan et al., 2006]

 Spectral methods [Newman, 2006]

 Heuristic Local Search [Bader and Hogue, 2003]

 Our approach

 Exhaustively enumerate all dense subgraphs
efficiently

•29/08/2012 •90

Motivation for Enumeration Approach

 Detects overlapping modules

 Allows to specify minimum density for outcoming

modules

 Outputs all modules satisfying the density threshold

•29/08/2012 •91

Differential Expression Criterion

 Incorporation of gene expression

 Presence of proteins depends on cell type

 Additional Criterion for modules

 : Num of conditions where whole module expressed

 : Num of conditions where whole module not expressed

 Fix minimum values for both quantities

•29/08/2012 •92

Problem Formalization

•29/08/2012 •93

Typical Enumeration Algorithms

 Itemset mining, graph mining etc.

 Enumerate all entities whose frequency >= 10

 Set up a search tree

 Tree Pruning by anti-monotonicity

 An entity’s frequency is always smaller than that of

sub-entity

Not generated

•29/08/2012 •94

Network Example

•29/08/2012 •95

Graph-shaped Search Space of Modules

•29/08/2012 •96

Choosing a search tree

 For efficient search, a

search tree is needed

 There are many possible

search trees

 Default: Lexicographical

ordering

•29/08/2012 •97

Density is not a monotonic criterion

 Subset of dense set is not necessarily dense

 Density does not decrease monotonically on a path

 Pruning Impossible

1 1,2 1,2,3

Density 1.0 0.1 0.5

•29/08/2012 •98

Question

 Is it possible to make a search tree such that

density decreases monotonically?

•29/08/2012 •99

Question

 Is it possible to make a search tree such that

density decreases monotonically?

 YES!

 Use Reverse Search (Avis and Fukuda 1993)

•29/08/2012 •100

Reverse search (Avis and Fukuda, 1993)

 Specify a search tree in the graph-shaped search space

 Reduction Mapping

 Rule to generate a parent from a child

 Remove the node with the smallest degree

 Density always increase by the removal

CHILD PARENT

•29/08/2012 •101

Search Tree is uniquely specified by the

reduction mapping

 Condition: Every node should converge to the root node

by applying the reduction mapping repeatedly

•29/08/2012 •102

Enumeration algorithm by reverse search

 A set of children is generated from a parent

node

 Try every possible children, and choose the

ones satisfying the reduction mapping

 Prune if no children exist

•29/08/2012 •103

Constraint Integration

 Differential expression constraint

 Monotonicity: e_0 and e_1 decrease with extension of U

 Can be used for extra pruning without difficulty

•29/08/2012 •104

 k : The number of nodes in the module

 : Density of the module

 : The number of modules of size k with density at

least

 Probability of random selection making a denser

module (p-value)

Statistical Significance of a module

•29/08/2012 •105

Benchmarking in yeast complex discovery

 Combined interactions from CYGD-Mpact and DIP

 Interactions among 3559 nodes

 Confidence weights on edges due to (Jansen, 2003)

 Methods in comparison

 Clique detection (Clique)

 Clique Parcolation Method (CPM)

 Markov Clustering

 Modules compared with MIPS complexes

•29/08/2012 •106

•29/08/2012 •107

Evolutionary Conserved Yeast Modules

 Use ortholog profiles (10 species, InParanoid)

 Density >= 50%, at least three orthologs

 1917 modules in 30 minutes

 Recovered evolutionary conserved complexes

 20S proteasome

 19S/22S regulator

 COPI vesicle coat complex

 DNA polymerase I and II subunits

 Translation initiation factor eIF2B complex

 They could not be recovered by simple DME due to low

density

•29/08/2012 •108

MIPS Complexes discovered by DME

(Conserved in Evolution)

•29/08/2012 •109

Phenotype-associated yeast modules

 Use growth phenotypic profiles (21 conditions, Dudley

et al, 2005)

 Growth defect in at least one condition

 Each of the 13 highest ranking modules covers the large

subunit of mitochondrial ribosome

 Found additional protein, Mhr1

 Exactly recovered the nucleoplasmic THO complex

(Hpr1, Mft1, Rlr1, Thp2)

 Transcription elongation, hyperrecombination

 Growth defect under ethanol

•29/08/2012 •110

Phenotype Associated Modules

Large subunit of mitochondrial ribosome

Mhr1: involved in homologous recombination of the mitochondrial
genome

•29/08/2012 •111

Human Settings

 Tissue-specific gene expression data (Su et al., 2004)

 79 different tissues

 Consistently expressed in 3 tissues, not in 10 tissues

 7763 proteins, density >= 35%, 5 minutes

 1021 maximal modules

 MIPS human complex database (Ruepp et al., to

appear)

•29/08/2012 •112

Human-expression result

 Around MCM complex, we found inter-complex relationships with
ORC, CDC7, Toposome, PLK1 protein

 Module Uqcrc1, Uqcrc2, Uqcrb, Cyc1 (lg p = -13)

 No overlap with MIPS

 Ubiquinol-cytochrome c reductase complex

 SCF E3 ubiquitin ligase complex: Mark protein for degradation

 5 different modules with different tissue specificity

 Peripheral proteins: Substrate recognition particles

 Target proteins are selected in a tissue specific manner!

 Natural Killer cells have all particles

•29/08/2012 •113

High ranking modules around the MCM

complex

Expressed in bone mallow cells
Not expressed in brain, liver, kidney etc.

•29/08/2012 •114

Tissue Specific organization of the SCF ligase

complex

•29/08/2012 •115

Summary: Dense Module Enumeration

 Novel module enumeration algorithm based on reverse

search

 Combination with other information sources

 Statistical significance of dense modules

 Successfully applied to

 yeast/human protein interaction networks

Reference

 [1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Proc. 20th

Int. Conf. Very Large Data Bases, 1994.

 [2] T. Asai, H. Arimura, T. Uno, and S. Nakano, “Discovering frequent substructures in large

unordered trees,” Discovery science, 2003.

 [3] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa, “Efficient

Substructure Discovery from Large Semi-structured Data.,” in SDM, 2002.

 [4] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete Applied

Mathematics, vol. 65, no. 1–3, pp. 21–46, 1996.

 [5] E. Georgii, S. Dietmann, T. Uno, P. Pagel, and K. Tsuda, “Enumeration of condition-

dependent dense modules in protein interaction networks.,” Bioinformatics (Oxford, England),

vol. 25, no. 7, pp. 933–40, Apr. 2009.

 [6] S. Nijssen and J. Kok, “Efficient discovery of frequent unordered trees,” MGTS, 2003.

 [7] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed itemsets

for association rules,” Database Theory—ICDT’99, 1999.

 [8] I. Takigawa and H. Mamitsuka, “Efficiently mining δ-tolerance closed frequent

subgraphs,” Machine Learning, vol. 82, no. 2, pp. 95–121, Sep. 2010.

 [9] X. Yan and J. Han, “gSpan: graph-based substructure pattern mining,” in 2002 IEEE

International Conference on Data Mining, 2002. Proceedings., pp. 721–724.

 [10] M. Zaki, “Efficiently mining frequent trees in a forest: Algorithms and applications,”

IEEE Transaction on Knowledge and Data Engineering, 2005.

•29/08/2012 •116

1

 Machine Learning Summer School Kyoto 2012

Graph Mining
Chapter 2: Learning from Structured Data

National Institute of Advanced Industrial
Science and Technology

 Koji Tsuda

2

Agenda 2 (Learning from
Structured Data)

1. Preliminaries

2. Graph Clustering by EM

3. Graph Boosting

4. Regularization Paths in Graph Classification

5. Itemset Boosting for predicting HIV drug resistance

3

Part 1: Preliminaries

4

Clustering Graphs

5

Graph Regression

 (,-0.2)

Training

 (, 0.7)

(,-0.5)

(, ?)

Test

6

Substructure Representation

0/1 vector of pattern indicators

Huge dimensionality!

Need Graph Mining for selecting features

patterns

7

Graph Mining

Frequent Substructure Mining

 Enumerate all patterns occurred in at least
m graphs

 :Indicator of pattern k in graph i

Support(k): # of occurrence of pattern k

8

Enumeration on Tree-shaped
Search Space

Each node has a pattern

Generate nodes from the root:

 Add an edge at each step

9

Tree Pruning

Anti-monotonicity:

If support(g) < m, stop exploring!

Not generated

Support(g): # of occurrence of pattern g

10

Gspan (Yan and Han, 2002)

Efficient Frequent Substructure Mining
Method

DFS Code

 Efficient detection of isomorphic patterns

11

Depth First Search (DFS) Code

A

B A

C

b

a b

c

 A labeled graph G

0

2 1

3
DFS Code Tree on G

[0,1,A,a,B]

[1,2,B,c,A]

[2,0,A,b,A]

[0,3,A,b,C]

[0,3,A,b,C]

[0,2,A,b,A]

[0,3,A,b,C] [0,3,A,b,C]

[2,0,A,b,A]

[0,1,A,a,B]

Non-minimum DFS

code. Prune it.

Isomorphic

G1 G0

12

Discriminative patterns

w_i > 0: positive class

w_i < 0: negative class

Weighted Substructure Mining

Patterns with large frequency difference

Not Anti-Monotonic: Use a bound

13

Multiclass version

Multiple weight vectors

 (graph belongs to class)

 (otherwise)

Search patterns overrepresented in a
class

Basic Bound

• : Occurrence of pattern j

• If k is supergraph of pattern j,

14

xij

Pruning Condition

Summarizing the bound for all classes,

If it is negative, the search tree can be
pruned safely

15

16

Summary: Preliminaries

Various graph learning problems
 Supervised/Unsupervised

Discovery of salient features by graph
mining

Actual speed depends on the data
 Faster for..

 Sparse graphs

Diverse kinds of labels

17

Part 2: EM-based clustering of
graphs

18

EM-based graph clustering

Motivation

 Learning a mixture model in the feature
space of patterns

 Basis for more complex probabilistic
inference

L1 regularization & Graph Mining

E-step -> Mining -> M-step

19

Probabilistic Model

Binomial Mixture

Each Component

:Mixing weight for cluster

:Feature vector of a graph (0 or 1)

:Parameter vector for cluster

20

Ordinary EM algorithm

Maximizing the log likelihood

E-step: Get posterior

M-step: Estimate using posterior probs.

Both are computationally prohibitive (!)

21

Regularization

L1-Regularized log likelihood

Baseline constant
 ML parameter estimate using single binomial

distribution

In solution, most parameters exactly equal to
constants

22

E-step

Active pattern

E-step computed only with active
patterns (computable!)

23

M-step
Putative cluster assignment

Each parameter is solved separately

Naïve way:

 solve it for all params and identify active patterns

Use graph mining to find active patterns

24

Solution

Occurrence probability in a cluster

Overall occurrence probability

25

Solution

26

Important Observation

For active pattern k, the occurrence probability in a graph
cluster is significantly different from the average

27

Mining for Active Patterns

Active pattern

Equivalently written as

F can be found by graph mining!
(multiclass)

28

Experiments: RNA graphs

Stem as a node

Secondary structure by RNAfold

0/1 Vertex label (self loop or not)

29

Clustering RNA graphs

Three Rfam families

 Intron GP I (Int, 30 graphs)

 SSU rRNA 5 (SSU, 50 graphs)

 RNase bact a (RNase, 50 graphs)

Three bipartition problems

 Results evaluated by ROC scores (Area
under the ROC curve)

30

Examples of RNA Graphs

31

ROC Scores

32

No of Patterns & Time

33

Found Patterns

34

Summary (graph EM)
Substructure representation is better
than paths

Probabilistic inference helped by graph
mining

 Extension to Dirichlet mixture model

 Reported in Tsuda et al., SDM 2008

Possible extension

 Graph PCA, LFD, CCA

 Semi-supervised learning

35

Part 3: Graph Boosting

36

Graph classification problem in
chemoinformatics

Known as SAR problem in chemical
informatics

 (Quantitative) Structure-Activity Analysis

Given a graph, predict a class-label (+1 or -1)

 Typically, features (descriptors) are given

 e.g., Dragon Descriptors, JOELIB2

37

SAR with conventional descriptors

#atoms #bonds #rings … Activity

22 25 +1

20 21 +1

23 24 +1

11 11 -1

21 22 -1

38

Motivation of Graph Boosting

Descriptors are not always available

New features by obtaining informative
patterns (i.e., subgraphs)

Greedy pattern discovery by Boosting +
gSpan

Linear Programming (LP) Boosting
 Reduce the number of graph mining calls

 Faster than AdaBoost

Accurate prediction & interpretable results

39

Molecule as a labeled graph

 C

 C

 C
 C

 C
 C

 O

 C
 C C

 C

40

SAR with patterns
… Activity

1 1 1 +1

-1 1 -1 +1

-1 1 -1 +1

-1 1 -1 -1

1 1 -1 -1

 C

 C

 C

 C

 C

 C

 C
 C

 C
 C

 C

 C

 C
 C

 C
 C

 O

 Cl
 C

f
 C

 C

 C

 C

 C

 C

 C
 C

 C
 C

 C

 C

 C
 C

 C
 C

 O

 Cl
 C

 1 2 3 ...

41

Sparse classification in a very
high dimensional space

G: all possible patterns (intractably large)

|G|-dimensional feature vector x for a
molecule

Linear Classifier

Use L1 regularizer to have sparse α

Select a tractable number of patterns

d

j

jj xαf
1

)(x

42

Problem formulation

Sum of hinge loss and L1 regularizer

 : Training examples

ξ: slack variables

43

Dual LP

Primal: Huge number of weight variables

Dual: Huge number of constraints

Dual problem

44

Column Generation Algorithm
for LP Boost (Demiriz et al., 2002)

Start from the dual with no constraints

Add the most violated constraint each time

Guaranteed to converge

Constraint Matrix

Used
Part

45

Finding the most violated
constraint

Constraint for a pattern (shown again)

Finding the most violated one

Searched by weighted substructure mining

46

Algorithm Overview

Iteration

 Find a new pattern by graph mining with weight u

 If all constraints are satisfied, break

 Add a new constraint

 Update u by solving the dual problem

Return

 Convert dual solution to obtain primal solution α

47

Experimental Settings

Classification and Regression Datasets

48

Classification Results

49

Regression Results

50

Extracted patterns from CPDB

51

Memory Usage

52

Runtime

53

Comparison with AdaBoost

54

Summary (Graph Boosting)

Graph Boosting simultaneously generate
patterns and learn their weights

Finite convergence by column generation

Interpretable by chemists.

Flexible constraints and speed-up by LP.

Part 4: Entire Regularization
Path

55

56

Overview

Entire regularization paths
 LARS-LASSO (Efron et al., 2004), L1SVM

 Forward selection of features

 Trace the solution trajectory of L1-regularized
learning

Path following algorithm for graph data
 Feature search -> pattern search

 Branch-and-bound algorithm

 DFS code tree, New Bound

57

Path Following Algorithms

LASSO regression

Follow the complete trajectory of

 : Infinity to Zero

Active feature set

 Features corresponding to nonzero weights

58

Piecewise Linear Path

At a turning point,

 A new feature included into the active set,
or

 An existing feature excluded from the
active set

59

Practical Merit of Path Following

Cross validation by grid search

 Has to solve QP many times

 Especially time-consuming for graph data

Path following does not include QP

Determine the CV-optimal regularization
parameter in the finest precision

60

Pseudo code of path following

Main
Search
Problem

Set initial point and direction

Do
 d1 = Step size if next event is inclusion

 d2 = Step size if next event is exclusion

 d = min(d1,d2)

 Update the active feature set

 Set the next direction

Until all features are included

61

Feature space of patterns

Graph training data

Set of all subgraphs (patterns)

Each graph is represented as

62

Main Search problem

Step size if pattern t is included next

Find pattern that minimizes

: constants computed
 from active set

63

Tree-shaped Search Space

Each node has a pattern

Generate nodes from the root:

 Add an edge at each step

64

Tree Pruning

If it is guaranteed that the optimal pattern is
not in the downstream, the search tree can be
pruned

Not generated

65

Theorem (Pruning condition)

 Traversed up to pattern t

 :Minimum value so far

 No better pattern in the downstream, if

where

66

Initial Experiments

EDKB Estrogen receptor database

 131 training graphs (chemical compounds)

Computation Time: 4 sec/search

 Pattern size limitation: 10 edges

67

Solution Path

68

Events

69

Summary: Regularization Path
Path following implemented for graph
data

Pattern search by graph mining

Classification: To do

Combination with item set mining

Part 5: . Itemset Boosting for

predicting HIV drug resistance

•70

71

Life cycle of an HIV Virus

Drug Target

72

Approved HIV Drugs

• 8 Protease inhibitors (PI)

• 8 Nucleoside/nucleotide reverse transcriptase

inhibitors (NRTI)

• 3 Non-nucleoside reverse transcriptase

inhibitors (NNRTI)

• 1 Fusion inhibitor

73

Drug resistance of HIV

• Exposure to a drug causes mutations in HIV’s

genes

• As a result, HIV gains resistance against the drug

• Cost of identifying the genotypes of HIV in a

patient is relatively cheap

• Predict the drug resistance from HIV’s genotypes !

– Effective Pharmacotherapy for individuals

74

Drug resistance prediction

problem as regression

• Input: Set of mutations in a target protein

– 41L: Amino acid at position 41 changed to L

• Output: Resistance against a drug (fold

change)

(40F,41L,43E,210W,211K,215Y)
(43Q,75M,122E,210W,211K)
(75I, 77L, 116Y,151M,184V)

 0.8

 12.8

 ?

75

Simple vs Complex Genotypic

Features

• Simple genotypic features

• Complex genotypic features

(0, 1, 0, 1, 0, 0, 0, 1,…)

41L

(0, 1, 0, 1, 0, 0, 0, 1,…)

77L,116Y 103N,210W,215Y

62V F116Y

76

Linear Regression on Simple

Genotypic Features

(Rhee et al., PNAS 2006)

• Mutation associations not discovered

77

Complex Genotypic Features

0/1 vector of pattern indicators

Huge dimensionality!

Need itemset mining for selecting features

Selection of salient features

patterns

(0, 1, 0, 1, 0, 0, 0, 1,…)

77L,116Y 103N,210W,215Y

78

Other methods

• Nonlinear SVM

– Not interpretable

– High accuracy

• Decision trees

– Interpretable

– Low accuracy

79

Motivation of Itemset Boosting

Impossible to maintain all complex features

Greedy feature discovery by Boosting +
itemset mining

Quadratic Programming (QP) Boosting

 Reduce the number of itemset mining calls

 Faster than AdaBoost

Accurate prediction & interpretable results

80

Sparse classification in a very
high dimensional space

G: all possible patterns (intractably large)

|G|-dimensional feature vector x

Linear Classifier

Use L1 regularizer to have sparse α
(LASSO)

Select a tractable number of patterns

d

j

jj xαf
1

)(x

81

Problem formulation:
Quadratic Programming

Sum of squared loss and L1 regularizer

 : Training examples

ξ: slack variables

82

Dual QP

Primal: Huge number of weight variables

Dual: Huge number of constraints

83

Column Generation Algorithm
for QP Boost (Demiriz et al., 2002)

Start from the dual with no constraints

Add the most violated constraint each time

Guaranteed to converge

Constraint Matrix

Used
Part

84

Finding the most violated
constraint

Constraint for a pattern (shown again)

Finding the most violated one

Searched by weighted itemset mining

85

Algorithm Overview

Iteration

 Find a new pattern by graph mining with weight u

 If all constraints are satisfied, break

 Add a new constraint

 Update u by solving the dual problem

Return

 Convert dual solution to obtain primal solution α

86

Experimental settings

• Three classes of drugs
– NRTI (Nucleotide Reverse Transcriptase

Inhibitors)

– PI (Protease Inhibitors)

– NNRTI (Nonnucleotide Reverse Transcriptase
Inhibitors)

• 5fold cross validation
– Linear SVM, Ridge regression, Lars

– Nonlinear SVM, iBoost

87

Regression results

Accuracy:

88

Accuracy Summary

• NRTIs: iBoost performed best

• PIs:

– Nonlinear methods were better than linear

– SVMs were slightly better (non-significant)

• NNRTIs

– Linear methods were better

– Combination is not necessary

89
NRTI Drugs

90

Known mutation associations in

RT

Red: Thymidine-

associated Mutations

(TAM)

– 41L, 67N, 70R, 210W,

215Y/F, 219Q, 69i

Blue: Q151M Complex

– 75I, 77L, 116Y, 151M,

65R, 74V, 184I/V

RT of HIV-1

91

PI Drugs

92

NNRTI Drugs
(almost no combination found)

93

Computation Time of iBoost

• Training time for 3TC

• 507 isolates with 371

mutations on average

• QP time longer than

mining time

94

Summary (HIV)
• Itemset Boosting for finding mutation

associations

• Good accuracy for NRTIs

• Our complex features re-discover known
mutation clusters

• Broad applications
– Multiple SNP analysis, RNAi efficacy prediction

– Motif combination, Flu mutation analysis

– P53 mutation analysis

Reference

• [1] K. Tsuda and T. Kudo, “Clustering graphs by weighted substructure mining,” in

Proceedings of the 23rd international conference on Machine learning - ICML ’06, 2006, pp.

953–960.

• [2] H. Saigo, N. Krämer, and K. Tsuda, “Partial least squares regression for graph

mining,” in Proceeding of the 14th ACM SIGKDD international conference on Knowledge

discovery and data mining - KDD ’08, 2008, p. 578.

• [3] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda, “gBoost: a mathematical

programming approach to graph classification and regression,” Machine Learning, vol. 75,

no. 1, pp. 69–89, Nov. 2008.

• [4] H. Saigo, T. Uno, and K. Tsuda, “Mining complex genotypic features for predicting

HIV-1 drug resistance.,” Bioinformatics (Oxford, England), vol. 23, no. 18, pp. 2455–62, Sep.

2007.

• [5] K. Tsuda, “Entire regularization paths for graph data,” in Proceedings of the 24th

international conference on Machine learning - ICML ’07, 2007, pp. 919–926.

95

1

 Machine Learning Summer School Kyoto 2012

 Graph Mining
 Chapter 3: Kernels for Structured Data

National Institute of Advanced Industrial
Science and Technology

 Koji Tsuda

2

Agenda 3 (Kernel)

1. Kernel Method Revisited

2. Marginalized Kernels (Fisher Kernels)

3. Marginalized Graph Kernels

4. Weisfeiler-Lehman kernels

5. Reaction Graph kernels

6. Concluding Remark

3

Part 1: Kernel Method Revisited

4

Kernels and Learning

In Kernel-based learning algorithms,
problem solving is now decoupled into:

 A general purpose learning algorithm (e.g.
SVM, PCA, …) – Often linear algorithm

 A problem specific kernel

Complex Learning

Task

Simple (linear)

learning algorithm

Specific Kernel function

5

Current Synthesis

Modularity and re-usability

 Same kernel ,different learning algorithms

 Different kernels, same learning algorithms

Kernel 1
Data 1

(Sequence)
Gram Matrix

(not necessarily stored)

Learning

Algo 1

Kernel 2
Data 2

(Network)
Gram Matrix

Learning

Algo 2

6

Kernel Methods : intuitive idea

Find a mapping f such that, in the new
space, problem solving is linear

Kernel represents the similarity between
two objects, defined as the dot-product in
this new vector space

But the mapping is left implicit

Easy generalization of a lot of dot-
product-based learning algorithms

7

Kernel Methods : the mapping

Original Space Feature (Vector) Space

f

f

f

8

Kernel : more formal definition

A kernel k(x,y)
 is a similarity measure

 defined by an implicit mapping f,

 such that: k(x,y)=f(x)•f(y)

This similarity measure implies:
 Invariance or other a priori knowledge

 The class of functions the solution is taken from

 Possibly infinite dimension (hypothesis space for
learning)

 … but still computational efficiency when
computing k(x,y)

9

Kernel Trick

Generalizes (nonlinearly) algorithms in
clustering, classification, density estimation ..

 When these algorithms are dot-product based, by
replacing the dot product (x•y) by k(x,y)=f(x)•f(y)

 When these algorithms are distance-based, by
replacing d(x,y) by k(x,x)+k(y,y)-2k(x,y)

Freedom of choosing f implies a large variety
of learning algorithms

10

Valid Kernels

Theorem: k(x,y) is a valid kernel if k is
positive definite and symmetric (Mercer
Kernel)

 A function is P.D. if

 In other words, the Gram matrix K (whose
elements are k(xi,xj)) must be positive definite for
all xi, xj of the input space

 One possible choice of f(x): k(•,x) (maps a point x
to a function k(•,x) feature space with infinite

dimension!)

 20)()(),(LfddffK yxyxyx

11

How to build new kernels

Kernel combinations, preserving validity:

)()(

)(
)(

)(

))()(()(

)().()(

)().()(

0)(.)(

10)()1()()(

11

1

3

21

1

21

yyxx

yx
yx

yxyx

yφxφyx

yx

yxyxyx

yxyx

yxyxyx

,K,K

,K
,K

positivedefinitesymmetricPP,K

,K,K

functionvaluedrealisfyfxf,K

,K,K,K

a,Ka,K

,K,K,K

12

Strategies of Design

Convolution Kernels: text is a
recursively-defined data structure. How
to build “global” kernels form local

(atomic level) kernels?

Generative model-based kernels: the
“topology” of the problem will be

translated into a kernel function

IBM Research – Tokyo Research Laboratory © 2005 IBM Corporation

Family of kernels

 Kernels for biological sequences

– Spectrum kernel

– Marginalized kernel

– Profile kernel

– Local alignment kernel

 Tree Kernels

– Kernel for phylogenetic profiles

– Kernel for natural language

– Kernel for RNA sequences

Kernel Methods in Computational

Biology, MIT Press

IBM Research – Tokyo Research Laboratory © 2005 IBM Corporation

Family of kernels

 Kernels for nodes in a network

– Diffusion kernel

– Locally constrained diffusion kernel

 Graph Kernels

– Marginalized Graph Kernels

– MGK without tottering

– Acyclic Pattern Kernels

– Shortest Path Kernel

– Weisfeiler-Lehman Kernel

15

Weak points of kernel methods

Not Interpretable

 Not sure which features are used

 -> Graph Mining, Boosting

Dense kernel matrices: Slow

 Take O(n^3) time for manipulation

 -> Semi-supervised learning

16

Part 2. Marginalized kernels

17

Biological Sequences:
Classification Tasks

DNA sequences (A,C,G,T)
 Gene Finding, Splice Sites

RNA sequences (A,C,G,U)
 MicroRNA discovery, Classification into

Rfam families

Amino Acid Sequences (20 symbols)
 Remote Homolog Detection, Fold

recognition

18

Kernels for Sequences

Similarity between sequences of different
lengths

Later combined with SVMs and other kernel
methods

ACGGTTCAA

ATATCGCGGGAA

19

Count Kernel

Inner product between symbol counts

Extension: Spectrum kernels (Leslie et al., 2002)

 Counts the number of k-mers (k-grams) efficiently

Not good for sequences with frequent context change

 E.g., coding/non-coding regions in DNA

20

Hidden Markov Models for
Estimating Context

Visible Variable : Symbol Sequence

Hidden Variable : Context

HMM can estimate the posterior probability of hidden
variables from data

21

Marginalized kernels

Design a joint kernel for combined

 Hidden variable is not usually available

 Take expectation with respect to the hidden
variable

The marginalized kernel for visible variables

22

Designing a joint kernel for
sequences

Symbols are counted separately in each context

 :count of a combined symbol (k,l)

Joint kernel: count kernel with context information

23

Marginalization of the joint kernel

Joint kernel

Marginalized count kernel

24

Computing Marginalized Counts
from HMM

Marginalized count is described as

Posterior probability of i-th hidden variable is
efficiently computed as

25

2nd order marginalized count
kernel

If adjacent relations between symbols have essential
meanings, the count kernel is obviously not sufficient

2nd order marginalized count kernel

 4 neighboring symbols (i.e. 2 visible and 2 hidden)
are combined and counted

26

Fisher Kernel
Probabilistic mode

Fisher Kernel

 Mapping to a feature vector (Fisher score vector)

 Inner product of Fisher scores

Z: Fisher information matrix

27

Fisher Kernel from HMM

Derive FK from HMM (Jaakkola et al. 2000)

 Derivative for emission probabilities only

 No Fisher information matrix

FK from HMM is a special case of marginalized kernels

 Counts are centralized and weighted

28

Difference between FK and
Marginalized Kernels

FK: Probabilistic model determines the
joint kernel and the posterior
probabilities

MK: You can determine them separately

 More flexible design!

29

Protein clustering experiment

84 proteins containing five classes

 gyrB proteins from five bacteria species

Clustering methods

 HMM + {FK,MCK1,MCK2}+K-Means

Evaluation

 Adjusted Rand Index (ARI)

30

Kernel Matrices

31

Clustering Evaluation

32

Applications since then..

Marginalized Graph Kernels (Kashima et al., ICML
2003)

Sensor networks (Nyugen et al., ICML 2004)

Labeling of structured data (Kashima et al., ICML
2004)

Robotics (Shimosaka et al., ICRA 2005)

Kernels for Promoter Regions (Vert et al., NIPS 2005)

Web data (Zhao et al., WWW 2006)

33

Summary (Marginalized Kernels)

General Framework for using generative
model for defining kernels

Fisher kernel as a special case

Broad applications

34

Part 3 Marginalized Graph
Kernels

35

Existing methods assume ” tables”

Structured data beyond this framework

→ New methods for analysis

Motivations for graph analysis

… Osaka Female 31 ×× 0002

… Tokyo Male 40 ○○ 0001

… Address Sex Age Name Serial Num

36

Graphs..

37

DNA Sequence

RNA

Texts in literature

Graph Structures in Biology

C

C O C

C

C

C

H

A C G C

Amitriptyline inhibits adenosine uptake

H

H

H

H

H

Compounds

CG

CG

U U U U

UA

38

Marginalized Graph Kernels

Going to define the kernel function

Both vertex and edges are labeled

(Kashima, Tsuda, Inokuchi, ICML 2003)

39

Label path

Sequence of vertex and edge labels

Generated by random walking

Uniform initial, transition, terminal
probabilities

40

Path-probability vector

41

Kernel definition

Kernels for paths

Take expectation over all possible paths!

Marginalized kernels for graphs

A c D b E

B c D a A

42

Computation

v’

v

A(v)

A(v’)

 : Set of paths ending at v

 KV : Kernel computed from the paths ending at (v, v’)

 KV is written recursively

 Kernel computed by solving

 linear equations

（polynomial time）

Transition probability :

Initial and terminal : omitted

43

Graph Kernel Applications

Chemical Compounds (Mahe et al., 2005)

Protein 3D structures (Borgwardt et al, 2005)

RNA graphs (Karklin et al., 2005)

Pedestrian detection

Signal Processing

44

Predicting Mutagenicity

MUTAG benchmark dataset

 Mutation of Salmonella typhimurium

 125 positive data (effective for mutations)

 63 negative data (not effective for mutations)

Mahe et al. J. Chem. Inf. Model., 2005

45

Classification of Protein 3D
structures

Graphs for protein 3D structures

 Node: Secondary structure elements

 Edge: Distance of two elements

Calculate the similarity by graph kernels

Borgwardt et al. “Protein function prediction via graph kernels”, ISMB2005

46

Classification of proteins:
Accuracy

Borgwardt et al. “Protein function prediction via graph kernels”, ISMB2005

47

Pedestrian detection in images
(F. Suard et al., 2005)

48

Classifying RNA graphs (Y.

Karklin et al.,, 2005)

49

Strong points of MGK

Polynomial time computation O(n^3)

Positive definite kernel

 Support Vector Machines

 Kernel PCA

 Kernel CCA

 And so on…

50

Drawbacks of graph kernels

Global similarity measure

 Fails to capture subtle differences

 Long paths suppressed

Results not interpretable

Structural features ignored (e.g. loops)

 No labels -> kernel always 1

Part 4. Weisfeiler Lehman
kernel

51

Convert a graph into a set of words

i) Make a label set of adjacent

 vertices ex) {E,A,D}

ii) Sort ex) A,D,E

iii) Add the vertex label as a prefix

 ex) B,A,D,E

iv) Map the label sequence to a

unique value

 ex) B,A,D,E→R

v) Assign the value as the new

 vertex label

A

D

E B

Bag-of-words

{A,B,D,E,…,R,…}

A

D

R E

•29/08/2012 •53

Courtesy K. Borgwardt

54

Part 5. Reaction Graph Kernels

55

KEGG lysine degradation pathway

Missing enzymes in metabolic networks

• Many enzymatic reactions

whose substrate and product

are known, but the enzyme

involved is unknown.

• Need to assign Enzymatic

Classification numbers.

?

?

EC number

• EC (Enzymatic Classification)

number is a hierarchical

categorization of

– Enzymes

– Enzymatic reactions

EC 1.3.3.-

class

subclass

subsubclass

Task

EC: 3.5.2

Query

Result of

Retrieval

?

Given a pair of substrate and product as a query, find

similar reactions in the database

Similarity measure of reactions is necessary

Reaction Graph

• Represent enzymatic reaction as reaction graph

• Node: Molecules

• Edge: chemical relation of molecules (main, leave,

co-factor, transferase, ligase)

• Reaction graph kernel: Similarity measure of

reaction graphs

• Molecule = Graph of atoms

• Reaction graph has ‘graph of graphs’ structure

• Extension of existing walk-based graph kernel
(Kashima et al., 2003)

main

main

leave

＋ ＋

Main Substrate 2 Main Products

Reaction graph kernels (RGK)

• Two-layered kernels on graphs of graphs

– Node kernel = walk-based graph kernel of molecules

– Edge kernel = delta kernel of labels

• “main”, “leave”, “cofactor”, “transferase”, “ligase”

)',(RRKr

R

R'

• Query might not come in the complete form

• Remove some edges in the database entries

RPAIR

main-only

Use only reactant edges

(main, leave)

Use “main” only

Simplified Settings

Automatic classification of

enzymatic reactions in KEGG

• KEGG/REACTION database

• 4610 reactions with known EC number

• 6 classes, 50 subclasses, 124 subsubclasses

• Construct nearest neighbor classifier based on the
reaction graph kernel

• Three different levels: class, subclass,subsubclass

• Three kernel versions: full, RPAIR, main-only

• Measure leave-one-out classification error

Prediction Accuracy

• As expected, classification is easier for upper

categories, but difficult for lower categories

such as subsubclass.

• The order of accuracy (full-edge > RPAIR >

main-pair) suggests that detailed edge

information contributes to further accuracy.

Predicting unannotated reactions in

plant secondary metabolism

• KEGG pathway “Biosynthesis of Secondary
Metabolites”

• Out of unannotated 56 reactions, we have manually
assigned ECs of 36 reactions under chemists’ guidance

• Comparison with an existing rule-based method: e-
zyme (Kotera et al., J. Am. Chem. Soc, 2004).

• RGK’s accuracy was better than e-zyme. (50%
improvement for the top candidate)

Case 1: EC 3.1.1

＋

query

Manual

annotation

Structures of C02046 and C01479 are almost same except structural

isomerism. A hydrolysis occur at a carboxylic-esther bond.

method rank1 rank2 rank3

RGK 3.1.1 1.14.11 1.14.11

e-zyme 6.1.1 3.1.1 NA

3.1.1

Case 2: EC 2.1.1+1.1.1

Manual

annotation

query

After removing a methyl group of C06175 (2.1.1), C01735 will be produced

by oxidation of CH-OH group (1.1.1). In the second reactions, enzymes

usually use NAD+/NADP+ as an acceptor.

method rank1 rank2 rank3

RGK 1.1.1 1.1.1 1.1.1

e-zyme 2.1.1 1.13.12 1.14.14

Case 3: EC1.14+2.4.1+5.2.1+3.2.1

Query

This reaction is thought to be a set of 5 reactions by analogy with the

pathway from C00423 => C01772 => C05158 => C05839 => C05838, and

to C05851. The last reaction is spontaneous and not enzymatic.

method rank1 rank2 rank3

RGK 1.14.13 1.2.3 1.2.1

e-zyme NA NA- NA-

Manual

Annotation

A difficult case

No

annotation

A very similar reaction (below) is found by manual inspection

Multi-step reaction is difficult to analyze. We don’t know how

many steps are hidden between given substrate and product.

71

Concluding Remarks: New Frontier

Developing Algorithms for Learning from Graphs

Taming Combinatorial Explosion

 Recursive Fixed Point Iteration: Graph Kernels

 Statistical Pruning in Search Tree: Graph Boosting

 Hashing to a set of words: WL Kernel

New ideas are necessary to get beyond the current
level of speed and prediction accuracy

Deeper integration of learning and mining

THANK YOU VERY MUCH!!

Reference

[1] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between
labeled graphs,” ICML, pp. 321–328, 2003.

[2] H. Saigo, M. Hattori, H. Kashima, and K. Tsuda, “Reaction graph kernels
predict EC numbers of unknown enzymatic reactions in plant secondary
metabolism.,” BMC bioinformatics, vol. 11 Suppl 1, no. Suppl 1, p. S31, Jan.
2010.

[3] N. Shervashidze, P. Schweitzer, V. Leeuwen, E. Jan, K. Mehlhorn, and K.
Borgwardt, “Weisfeiler-Lehman graph kernels,” Journal of Machine Learning
Research, vol. 12, pp. 2539–2561, 2011.

[4] K. Tsuda, T. Kin, and K. Asai, “Marginalized kernels for biological
sequences,” Bioinformatics, vol. 18, no. Suppl 1, pp. S268–S275, Jul. 2002.

72

