
Convex Optimization: Modeling and

Algorithms

Lieven Vandenberghe

Electrical Engineering Department, UC Los Angeles

Tutorial lectures, 21st Machine Learning Summer School

Kyoto, August 29-30, 2012

Convex optimization — MLSS 2012

Introduction

• mathematical optimization

• linear and convex optimization

• recent history

1

Mathematical optimization

minimize f0(x1, . . . , xn)

subject to f1(x1, . . . , xn) ≤ 0
· · ·
fm(x1, . . . , xn) ≤ 0

• a mathematical model of a decision, design, or estimation problem

• finding a global solution is generally intractable

• even simple looking nonlinear optimization problems can be very hard

Introduction 2

The famous exception: Linear programming

minimize c1x1 + · · · c2x2
subject to a11x1 + · · ·+ a1nxn ≤ b1

. . .
am1x1 + · · ·+ amnxn ≤ bm

• widely used since Dantzig introduced the simplex algorithm in 1948

• since 1950s, many applications in operations research, network
optimization, finance, engineering, combinatorial optimization, . . .

• extensive theory (optimality conditions, sensitivity analysis, . . .)

• there exist very efficient algorithms for solving linear programs

Introduction 3

Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

• objective and constraint functions are convex: for 0 ≤ θ ≤ 1

fi(θx+ (1− θ)y) ≤ θfi(x) + (1− θ)fi(y)

• can be solved globally, with similar (polynomial-time) complexity as LPs

• surprisingly many problems can be solved via convex optimization

• provides tractable heuristics and relaxations for non-convex problems

Introduction 4

History

• 1940s: linear programming

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

• 1950s: quadratic programming

• 1960s: geometric programming

• 1990s: semidefinite programming, second-order cone programming,
quadratically constrained quadratic programming, robust optimization,
sum-of-squares programming, . . .

Introduction 5

New applications since 1990

• linear matrix inequality techniques in control

• support vector machine training via quadratic programming

• semidefinite programming relaxations in combinatorial optimization

• circuit design via geometric programming

• ℓ1-norm optimization for sparse signal reconstruction

• applications in structural optimization, statistics, signal processing,
communications, image processing, computer vision, quantum
information theory, finance, power distribution, . . .

Introduction 6

Advances in convex optimization algorithms

interior-point methods

• 1984 (Karmarkar): first practical polynomial-time algorithm for LP

• 1984-1990: efficient implementations for large-scale LPs

• around 1990 (Nesterov & Nemirovski): polynomial-time interior-point
methods for nonlinear convex programming

• since 1990: extensions and high-quality software packages

first-order algorithms

• fast gradient methods, based on Nesterov’s methods from 1980s

• extend to certain nondifferentiable or constrained problems

• multiplier methods for large-scale and distributed optimization

Introduction 7

Overview

1. Basic theory and convex modeling

• convex sets and functions
• common problem classes and applications

2. Interior-point methods for conic optimization

• conic optimization
• barrier methods
• symmetric primal-dual methods

3. First-order methods

• (proximal) gradient algorithms
• dual techniques and multiplier methods

Convex optimization — MLSS 2012

Convex sets and functions

• convex sets

• convex functions

• operations that preserve convexity

Convex set

contains the line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

convex not convex not convex

Convex sets and functions 8

Basic examples

affine set: solution set of linear equations Ax = b

halfspace: solution of one linear inequality aTx ≤ b (a 6= 0)

polyhedron: solution of finitely many linear inequalities Ax ≤ b

ellipsoid: solution of positive definite quadratic inquality

(x− xc)
TA(x− xc) ≤ 1 (A positive definite)

norm ball: solution of ‖x‖ ≤ R (for any norm)

positive semidefinite cone: Sn
+ = {X ∈ Sn | X � 0}

the intersection of any number of convex sets is convex

Convex sets and functions 9

Example of intersection property

C = {x ∈ Rn | |p(t)| ≤ 1 for |t| ≤ π/3}

where p(t) = x1 cos t+ x2 cos 2t+ · · ·+ xn cosnt

0 π/3 2π/3 π

−1

0

1

t

p
(t
)

x1
x
2 C

−2 −1 0 1 2
−2

−1

0

1

2

C is intersection of infinitely many halfspaces, hence convex

Convex sets and functions 10

Convex function

domain dom f is a convex set and Jensen’s inequality holds:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

f is concave if −f is convex

Convex sets and functions 11

Examples

• linear and affine functions are convex and concave

• expx, − log x, x log x are convex

• xα is convex for x > 0 and α ≥ 1 or α ≤ 0; |x|α is convex for α ≥ 1

• norms are convex

• quadratic-over-linear function xTx/t is convex in x, t for t > 0

• geometric mean (x1x2 · · ·xn)1/n is concave for x ≥ 0

• log detX is concave on set of positive definite matrices

• log(ex1 + · · · exn) is convex

Convex sets and functions 12

Epigraph and sublevel set

epigraph: epi f = {(x, t) | x ∈ dom f, f(x) ≤ t}

a function is convex if and only its
epigraph is a convex set

epi f

f

sublevel sets: Cα = {x ∈ dom f | f(x) ≤ α}

the sublevel sets of a convex function are convex (converse is false)

Convex sets and functions 13

Differentiable convex functions

differentiable f is convex if and only if dom f is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

twice differentiable f is convex if and only if dom f is convex and

∇2f(x) � 0 for all x ∈ dom f

Convex sets and functions 14

Establishing convexity of a function

1. verify definition

2. for twice differentiable functions, show ∇2f(x) � 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

• nonnegative weighted sum
• composition with affine function
• pointwise maximum and supremum
• minimization
• composition
• perspective

Convex sets and functions 15

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+ b) is convex if f is convex

examples

• logarithmic barrier for linear inequalities

f(x) = −
m
∑

i=1

log(bi − aTi x)

• (any) norm of affine function: f(x) = ‖Ax+ b‖

Convex sets and functions 16

Pointwise maximum

f(x) = max{f1(x), . . . , fm(x)}

is convex if f1, . . . , fm are convex

example: sum of r largest components of x ∈ Rn

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}

Convex sets and functions 17

Pointwise supremum

g(x) = sup
y∈A

f(x, y)

is convex if f(x, y) is convex in x for each y ∈ A

examples

• maximum eigenvalue of symmetric matrix

λmax(X) = sup
‖y‖2=1

yTXy

• support function of a set C

SC(x) = sup
y∈C

yTx

Convex sets and functions 18

Minimization

h(x) = inf
y∈C

f(x, y)

is convex if f(x, y) is convex in (x, y) and C is a convex set

examples

• distance to a convex set C: h(x) = infy∈C ‖x− y‖
• optimal value of linear program as function of righthand side

h(x) = inf
y:Ay≤x

cTy

follows by taking

f(x, y) = cTy, dom f = {(x, y) | Ay ≤ x}

Convex sets and functions 19

Composition

composition of g : Rn → R and h : R → R:

f(x) = h(g(x))

f is convex if

g convex, h convex and nondecreasing
g concave, h convex and nonincreasing

(if we assign h(x) = ∞ for x ∈ domh)

examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive

Convex sets and functions 20

Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h (g1(x), g2(x), . . . , gk(x))

f is convex if

gi convex, h convex and nondecreasing in each argument
gi concave, h convex and nonincreasing in each argument

(if we assign h(x) = ∞ for x ∈ domh)

example

log
m
∑

i=1

exp gi(x) is convex if gi are convex

Convex sets and functions 21

Perspective

the perspective of a function f : Rn → R is the function g : Rn ×R → R,

g(x, t) = tf(x/t)

g is convex if f is convex on dom g = {(x, t) | x/t ∈ dom f, t > 0}

examples

• perspective of f(x) = xTx is quadratic-over-linear function

g(x, t) =
xTx

t

• perspective of negative logarithm f(x) = − log x is relative entropy

g(x, t) = t log t− t log x

Convex sets and functions 22

Conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

f∗ is convex (even if f is not)

Convex sets and functions 23

Examples

convex quadratic function (Q ≻ 0)

f(x) =
1

2
xTQx f∗(y) =

1

2
yTQ−1y

negative entropy

f(x) =

n
∑

i=1

xi log xi f∗(y) =

n
∑

i=1

eyi − 1

norm

f(x) = ‖x‖ f∗(y) =

{

0 ‖y‖∗ ≤ 1
+∞ otherwise

indicator function (C convex)

f(x) = IC(x) =

{

0 x ∈ C
+∞ otherwise

f∗(y) = sup
x∈C

yTx

Convex sets and functions 24

Convex optimization — MLSS 2012

Convex optimization problems

• linear programming

• quadratic programming

• geometric programming

• second-order cone programming

• semidefinite programming

Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

f0, f1, . . . , fm are convex functions

• feasible set is convex

• locally optimal points are globally optimal

• tractable, in theory and practice

Convex optimization problems 25

Linear program (LP)

minimize cTx+ d
subject to Gx ≤ h

Ax = b

• inequality is componentwise vector inequality

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c

Convex optimization problems 26

Piecewise-linear minimization

minimize f(x) = max
i=1,...,m

(aTi x+ bi)

x

aT
i x + bi

f(x)

equivalent linear program

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m

an LP with variables x, t ∈ R

Convex optimization problems 27

ℓ1-Norm and ℓ∞-norm minimization

ℓ1-norm approximation and equivalent LP (‖y‖1 =
∑

k |yk|)

minimize ‖Ax− b‖1 minimize

n
∑

i=1

yi

subject to −y ≤ Ax− b ≤ y

ℓ∞-norm approximation (‖y‖∞ = maxk |yk|)

minimize ‖Ax− b‖∞ minimize y
subject to −y1 ≤ Ax− b ≤ y1

(1 is vector of ones)

Convex optimization problems 28

example: histograms of residuals Ax− b (with A is 200× 80) for

xls = argmin ‖Ax− b‖2, xℓ1 = argmin ‖Ax− b‖1

� 1.5 � 1.0 � 0.5 0.0 0.5 1.0 1.50
2
4
6
8
10

(Axls − b)k

� 1.5 � 1.0 � 0.5 0.0 0.5 1.0 1.50
20
40
60
80
100

(Axℓ1 − b)k

1-norm distribution is wider with a high peak at zero

Convex optimization problems 29

Robust regression

� 10 � 5 0 5 10� 20

� 15

� 10

� 5

0

5

10

15

20

25

t

f
(t
)

• 42 points ti, yi (circles), including two outliers

• function f(t) = α+ βt fitted using 2-norm (dashed) and 1-norm

Convex optimization problems 30

Linear discrimination

• given a set of points {x1, . . . , xN} with binary labels si ∈ {−1, 1}
• find hyperplane aTx+ b = 0 that strictly separates the two classes

aTxi + b > 0 if si = 1

aTxi + b < 0 if si = −1

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

si(a
Txi + b) ≥ 1, i = 1, . . . , N

Convex optimization problems 31

Approximate linear separation of non-separable sets

minimize

N
∑

i=1

max{0, 1− si(a
Txi + b)}

• a piecewise-linear minimization problem in a, b; equivalent to an LP

• can be interpreted as a heuristic for minimizing #misclassified points

Convex optimization problems 32

Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx ≤ h

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)

Convex optimization problems 33

Linear program with random cost

minimize cTx
subject to Gx ≤ h

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

expected cost-variance trade-off

minimize E cTx+ γ var(cTx) = c̄Tx+ γxTΣx
subject to Gx ≤ h

γ > 0 is risk aversion parameter

Convex optimization problems 34

Robust linear discrimination

H1 = {z | aTz + b = 1}
H−1 = {z | aTz + b = −1}

distance between hyperplanes is 2/‖a‖2

to separate two sets of points by maximum margin,

minimize ‖a‖22 = aTa

subject to si(a
Txi + b) ≥ 1, i = 1, . . . , N

a quadratic program in a, b

Convex optimization problems 35

Support vector classifier

minimize γ‖a‖22 +
N
∑

i=1

max{0, 1− si(a
Txi + b)}

γ = 0 γ = 10

equivalent to a quadratic program

Convex optimization problems 36

Kernel formulation

minimize f(Xa) + ‖a‖22

• variables a ∈ Rn

• X ∈ RN×n with N ≤ n and rank N

change of variables

y = Xa, a = XT (XXT)−1y

• a is minimum-norm solution of Xa = y

• gives convex problem with N variables y

minimize f(y) + yTQ−1y

Q = XXT is kernel matrix

Convex optimization problems 37

Total variation signal reconstruction

minimize ‖x̂− xcor‖22 + γφ(x̂)

• xcor = x+ v is corrupted version of unknown signal x, with noise v

• variable x̂ (reconstructed signal) is estimate of x

• φ : Rn → R is quadratic or total variation smoothing penalty

φquad(x̂) =

n−1
∑

i=1

(x̂i+1 − x̂i)
2, φtv(x̂) =

n−1
∑

i=1

|x̂i+1 − x̂i|

Convex optimization problems 38

example: xcor, and reconstruction with quadratic and t.v. smoothing

0 500 1000 1500 2000� 2

0

2

0 500 1000 1500 2000� 2

0

2

0 500 1000 1500 2000� 2

0

2

i

i

i

x
c
o
r

q
u
ad
.

t.
v.

• quadratic smoothing smooths out noise and sharp transitions in signal

• total variation smoothing preserves sharp transitions in signal

Convex optimization problems 39

Geometric programming

posynomial function

f(x) =
K
∑

k=1

ckx
a1k
1 x

a2k
2 · · ·xankn , dom f = Rn

++

with ck > 0

geometric program (GP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

with fi posynomial

Convex optimization problems 40

Geometric program in convex form

change variables to
yi = log xi,

and take logarithm of cost, constraints

geometric program in convex form:

minimize log

(

K
∑

k=1

exp(aT0ky + b0k)

)

subject to log

(

K
∑

k=1

exp(aTiky + bik)

)

≤ 0, i = 1, . . . ,m

bik = log cik

Convex optimization problems 41

Second-order cone program (SOCP)

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

• ‖ · ‖2 is Euclidean norm ‖y‖2 =
√

y21 + · · ·+ y2n

• constraints are nonlinear, nondifferentiable, convex

constraints are inequalities
w.r.t. second-order cone:

{

y
∣

∣

∣

√

y21 + · · ·+ y2p−1 ≤ yp

}

y1
y2

y
3

−1

0

1

−1

0

1
0

0.5

1

Convex optimization problems 42

Robust linear program (stochastic)

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m

• ai random and normally distributed with mean āi, covariance Σi

• we require that x satisfies each constraint with probability exceeding η

η = 10% η = 50% η = 90%

Convex optimization problems 43

SOCP formulation

the ‘chance constraint’ prob(aTi x ≤ bi) ≥ η is equivalent to the constraint

āTi x+Φ−1(η)‖Σ1/2
i x‖2 ≤ bi

Φ is the (unit) normal cumulative density function

0
0

0.5

1

t

Φ
(t
)

η

Φ−1(η)

robust LP is a second-order cone program for η ≥ 0.5

Convex optimization problems 44

Robust linear program (deterministic)

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m

• ai uncertain but bounded by ellipsoid Ei = {āi + Piu | ‖u‖2 ≤ 1}
• we require that x satisfies each constraint for all possible ai

SOCP formulation

minimize cTx
subject to āTi x+ ‖PT

i x‖2 ≤ bi, i = 1, . . . ,m

follows from
sup

‖u‖2≤1

(āi + Piu)
Tx = āTi x+ ‖PT

i x‖2

Convex optimization problems 45

Examples of second-order cone constraints

convex quadratic constraint (A = LLT positive definite)

xTAx+ 2bTx+ c ≤ 0

m
∥

∥LTx+ L−1b
∥

∥

2
≤ (bTA−1b− c)1/2

extends to positive semidefinite singular A

hyperbolic constraint

xTx ≤ yz, y, z ≥ 0

m
∥

∥

∥

∥

[

2x
y − z

]
∥

∥

∥

∥

2

≤ y + z, y, z ≥ 0

Convex optimization problems 46

Examples of SOC-representable constraints

positive powers

x1.5 ≤ t, x ≥ 0

m
∃z : x2 ≤ tz, z2 ≤ x, x, z ≥ 0

• two hyperbolic constraints can be converted to SOC constraints

• extends to powers xp for rational p ≥ 1

negative powers

x−3 ≤ t, x > 0

m
∃z : 1 ≤ tz, z2 ≤ tx, x, z ≥ 0

• two hyperbolic constraints on r.h.s. can be converted to SOC constraints

• extends to powers xp for rational p < 0

Convex optimization problems 47

Semidefinite program (SDP)

minimize cTx
subject to x1A1 + x2A2 + · · ·+ xnAn � B

• A1, A2, . . . , An, B are symmetric matrices

• inequality X � Y means Y −X is positive semidefinite, i.e.,

zT (Y −X)z =
∑

i,j

(Yij −Xij)zizj ≥ 0 for all z

• includes many nonlinear constraints as special cases

Convex optimization problems 48

Geometry

[

x y
y z

]

� 0

xy
z

0

0.5

1

−1

0

1
0

0.5

1

• a nonpolyhedral convex cone

• feasible set of a semidefinite program is the intersection of the positive
semidefinite cone in high dimension with planes

Convex optimization problems 49

Examples

A(x) = A0 + x1A1 + · · ·+ xmAm (Ai ∈ Sn)

eigenvalue minimization (and equivalent SDP)

minimize λmax(A(x)) minimize t
subject to A(x) � tI

matrix-fractional function

minimize bTA(x)−1b
subject to A(x) � 0

minimize t

subject to

[

A(x) b
bT t

]

� 0

Convex optimization problems 50

Matrix norm minimization

A(x) = A0 + x1A1 + x2A2 + · · ·+ xnAn (Ai ∈ Rp×q)

matrix norm approximation (‖X‖2 = maxk σk(X))

minimize ‖A(x)‖2 minimize t

subject to

[

tI A(x)T

A(x) tI

]

� 0

nuclear norm approximation (‖X‖∗ =
∑

k σk(X))

minimize ‖A(x)‖∗ minimize (trU + trV)/2

subject to

[

U A(x)T

A(x) V

]

� 0

Convex optimization problems 51

Semidefinite relaxation

semidefinite programming is often used

• to find good bounds for nonconvex polynomial problems, via relaxation

• as a heuristic for good suboptimal points

example: Boolean least-squares

minimize ‖Ax− b‖22
subject to x2i = 1, i = 1, . . . , n

• basic problem in digital communications

• could check all 2n possible values of x ∈ {−1, 1}n . . .

• an NP-hard problem, and very hard in general

Convex optimization problems 52

Lifting

Boolean least-squares problem

minimize xTATAx− 2bTAx+ bT b
subject to x2i = 1, i = 1, . . . , n

reformulation: introduce new variable Y = xxT

minimize tr(ATAY)− 2bTAx+ bT b
subject to Y = xxT

diag(Y) = 1

• cost function and second constraint are linear (in the variables Y , x)

• first constraint is nonlinear and nonconvex

. . . still a very hard problem

Convex optimization problems 53

Relaxation

replace Y = xxT with weaker constraint Y � xxT to obtain relaxation

minimize tr(ATAY)− 2bTAx+ bT b
subject to Y � xxT

diag(Y) = 1

• convex; can be solved as a semidefinite program

Y � xxT ⇐⇒
[

Y x
xT 1

]

� 0

• optimal value gives lower bound for Boolean LS problem

• if Y = xxT at the optimum, we have solved the exact problem

• otherwise, can use randomized rounding

generate z from N (x, Y − xxT) and take x = sign(z)

Convex optimization problems 54

Example

1 1.2
0

0.1

0.2

0.3

0.4

0.5

‖Ax − b‖2/(SDP bound)

fr
eq
u
en
cy

SDP bound LS solution

• n = 100: feasible set has 2100 ≈ 1030 points

• histogram of 1000 randomized solutions from SDP relaxation

Convex optimization problems 55

Overview

1. Basic theory and convex modeling

• convex sets and functions
• common problem classes and applications

2. Interior-point methods for conic optimization

• conic optimization
• barrier methods
• symmetric primal-dual methods

3. First-order methods

• (proximal) gradient algorithms
• dual techniques and multiplier methods

Convex optimization — MLSS 2012

Conic optimization

• definitions and examples

• modeling

• duality

Generalized (conic) inequalities

conic inequality: a constraint x ∈ K with K a convex cone in Rm

we require that K is a proper cone:

• closed

• pointed: does not contain a line (equivalently, K ∩ (−K) = {0}
• with nonempty interior: intK 6= ∅ (equivalently, K + (−K) = Rm)

notation

x �K y ⇐⇒ x− y ∈ K, x ≻K y ⇐⇒ x− y ∈ intK

subscript in �K is omitted if K is clear from the context

Conic optimization 56

Cone linear program

minimize cTx
subject to Ax �K b

if K is the nonnegative orthant, this is a (regular) linear program

widely used in recent literature on convex optimization

• modeling: a small number of ‘primitive’ cones is sufficient to express
most convex constraints that arise in practice

• algorithms: a convenient problem format when extending interior-point
algorithms for linear programming to convex optimization

Conic optimization 57

Norm cone

K =
{

(x, y) ∈ Rm−1 × R | ‖x‖ ≤ y
}

x1
x2

y

−1

0

1

−1

0

1
0

0.5

1

for the Euclidean norm this is the second-order cone (notation: Qm)

Conic optimization 58

Second-order cone program

minimize cTx

subject to ‖Bk0x+ dk0‖2 ≤ Bk1x+ dk1, k = 1, . . . , r

cone LP formulation: express constraints as Ax �K b

K = Qm1 × · · · × Qmr, A =

















−B10

−B11

...

−Br0

−Br1

















, b =

















d10

d11
...

dr0

dr1

















(assuming Bk0, dk0 have mk − 1 rows)

Conic optimization 59

Vector notation for symmetric matrices

• vectorized symmetric matrix: for U ∈ Sp

vec(U) =
√
2

(

U11√
2
, U21, . . . , Up1,

U22√
2
, U32, . . . , Up2, . . . ,

Upp√
2

)

• inverse operation: for u = (u1, u2, . . . , un) ∈ Rn with n = p(p+ 1)/2

mat(u) =
1√
2









√
2u1 u2 · · · up
u2

√
2up+1 · · · u2p−1

...

up u2p−1 · · ·
√
2up(p+1)/2









coefficients
√
2 are added so that standard inner products are preserved:

tr(UV) = vec(U)T vec(V), uTv = tr(mat(u)mat(v))

Conic optimization 60

Positive semidefinite cone

Sp = {vec(X) | X ∈ Sp
+} = {x ∈ Rp(p+1)/2 | mat(x) � 0}

0

0.5

1

−1

0

1

0

0.5

1

xy

z

S2 =

{

(x, y, z)

∣

∣

∣

∣

[

x y/
√
2

y/
√
2 z

]

� 0

}

Conic optimization 61

Semidefinite program

minimize cTx
subject to x1A11 + x2A12 + · · ·+ xnA1n � B1

. . .
x1Ar1 + x2Ar2 + · · ·+ xnArn � Br

r linear matrix inequalities of order p1, . . . , pr

cone LP formulation: express constraints as Ax �K B

K = Sp1 × Sp2 × · · · × Spr

A =









vec(A11) vec(A12) · · · vec(A1n)
vec(A21) vec(A22) · · · vec(A2n)

...
vec(Ar1) vec(Ar2) · · · vec(Arn)









, b =









vec(B1)
vec(B2)

...
vec(Br)









Conic optimization 62

Exponential cone

the epigraph of the perspective of expx is a non-proper cone

K =
{

(x, y, z) ∈ R3 | yex/y ≤ z, y > 0
}

the exponential cone is Kexp = clK = K ∪ {(x, 0, z) | x ≤ 0, z ≥ 0}

−2
−1

0
1

0

1

2

3
0

0.5

1

x
y

z

Conic optimization 63

Geometric program

minimize cTx

subject to log
ni
∑

k=1

exp(aTikx+ bik) ≤ 0, i = 1, . . . , r

cone LP formulation

minimize cTx

subject to





aTikx+ bik
1
zik



 ∈ Kexp, k = 1, . . . , ni, i = 1, . . . , r

ni
∑

k=1

zik ≤ 1, i = 1, . . . ,m

Conic optimization 64

Power cone

definition: for α = (α1, α2, . . . , αm) > 0,
m
∑

i=1

αi = 1

Kα =
{

(x, y) ∈ Rm
+ × R | |y| ≤ xα1

1 · · ·xαm
m

}

examples for m = 2

α = (12,
1
2) α = (23,

1
3) α = (34,

1
4)

0
0.5

1 0 0.5 1

−0.4

−0.2

0

0.2

0.4

x1 x2

y

0
0.5

1 0 0.5 1

−0.5

0

0.5

x1 x2

y

0
0.5

1 0 0.5 1

−0.5

0

0.5

x1 x2

y

Conic optimization 65

Outline

• definition and examples

• modeling

• duality

Modeling software

modeling packages for convex optimization

• CVX, YALMIP (MATLAB)

• CVXPY, CVXMOD (Python)

assist the user in formulating convex problems, by automating two tasks:

• verifying convexity from convex calculus rules

• transforming problem in input format required by standard solvers

related packages

general-purpose optimization modeling: AMPL, GAMS

Conic optimization 66

CVX example

minimize ‖Ax− b‖1
subject to 0 ≤ xk ≤ 1, k = 1, . . . , n

MATLAB code

cvx_begin

variable x(3);

minimize(norm(A*x - b, 1))

subject to

x >= 0;

x <= 1;

cvx_end

• between cvx_begin and cvx_end, x is a CVX variable

• after execution, x is MATLAB variable with optimal solution

Conic optimization 67

Modeling and conic optimization

convex modeling systems (CVX, YALMIP, CVXPY, CVXMOD, . . .)

• convert problems stated in standard mathematical notation to cone LPs

• in principle, any convex problem can be represented as a cone LP

• in practice, a small set of primitive cones is used (Rn
+, Qp, Sp)

• choice of cones is limited by available algorithms and solvers (see later)

modeling systems implement set of rules for expressing constraints

f(x) ≤ t

as conic inequalities for the implemented cones

Conic optimization 68

Examples of second-order cone representable functions

• convex quadratic

f(x) = xTPx+ qTx+ r (P � 0)

• quadratic-over-linear function

f(x, y) =
xTx

y
with dom f = Rn × R+ (assume 0/0 = 0)

• convex powers with rational exponent

f(x) = |x|α, f(x) =

{

xβ x > 0
+∞ x ≤ 0

for rational α ≥ 1 and β ≤ 0

• p-norm f(x) = ‖x‖p for rational p ≥ 1

Conic optimization 69

Examples of SD cone representable functions

• matrix-fractional function

f(X, y) = yTX−1y with dom f = {(X, y) ∈ Sn
+ × Rn | y ∈ R(X)}

• maximum eigenvalue of symmetric matrix

• maximum singular value f(X) = ‖X‖2 = σ1(X)

‖X‖2 ≤ t ⇐⇒
[

tI X
XT tI

]

� 0

• nuclear norm f(X) = ‖X‖∗ =
∑

i σi(X)

‖X‖∗ ≤ t ⇐⇒ ∃U, V :

[

U X
XT V

]

� 0,
1

2
(trU + trV) ≤ t

Conic optimization 70

Functions representable with exponential and power cone

exponential cone

• exponential and logarithm

• entropy f(x) = x log x

power cone

• increasing power of absolute value: f(x) = |x|p with p ≥ 1

• decreasing power: f(x) = xq with q ≤ 0 and domain R++

• p-norm: f(x) = ‖x‖p with p ≥ 1

Conic optimization 71

Outline

• definition and examples

• modeling

• duality

Linear programming duality

primal and dual LP

(P) minimize cTx
subject to Ax ≤ b

(D) maximize −bTz
subject to ATz + c = 0

z ≥ 0

• primal optimal value is p⋆ (+∞ if infeasible, −∞ if unbounded below)

• dual optimal value is d⋆ (−∞ if infeasible, +∞ if unbounded below)

duality theorem

• weak duality: p⋆ ≥ d⋆, with no exception

• strong duality: p⋆ = d⋆ if primal or dual is feasible

• if p⋆ = d⋆ is finite, then primal and dual optima are attained

Conic optimization 72

Dual cone

definition
K∗ = {y | xTy ≥ 0 for all x ∈ K}

K∗ is a proper cone if K is a proper cone

dual inequality: x �∗ y means x �K∗ y for generic proper cone K

note: dual cone depends on choice of inner product:

H−1K∗

is dual cone for inner product 〈x, y〉 = xTHy

Conic optimization 73

Examples

• Rp
+, Qp, Sp are self-dual: K = K∗

• dual of a norm cone is the norm cone of the dual norm

• dual of exponential cone

K∗
exp =

{

(u, v, w) ∈ R− × R× R+ | −u log(−u/w) + u− v ≤ 0
}

(with 0 log(0/w) = 0 if w ≥ 0)

• dual of power cone is

K∗
α =

{

(u, v) ∈ Rm
+ × R | |v| ≤ (u1/α1)

α1 · · · (um/αm)αm
}

Conic optimization 74

Primal and dual cone LP

primal problem (optimal value p⋆)

minimize cTx
subject to Ax � b

dual problem (optimal value d⋆)

maximize −bTz
subject to ATz + c = 0

z �∗ 0

weak duality: p⋆ ≥ d⋆ (without exception)

Conic optimization 75

Strong duality

p⋆ = d⋆

if primal or dual is strictly feasible

• slightly weaker than LP duality (which only requires feasibility)

• can have d⋆ < p⋆ with finite p⋆ and d⋆

other implications of strict feasibility

• if primal is strictly feasible, then dual optimum is attained (if d⋆ is finite)

• if dual is strictly feasible, then primal optimum is attained (if p⋆ is finite)

Conic optimization 76

Optimality conditions

minimize cTx
subject to Ax+ s = b

s � 0

maximize −bTz
subject to ATz + c = 0

z �∗ 0

optimality conditions

[

0
s

]

=

[

0 AT

−A 0

] [

x
z

]

+

[

c
b

]

s � 0, z �∗ 0, zTs = 0

duality gap: inner product of (x, z) and (0, s) gives

zTs = cTx+ bTz

Conic optimization 77

Convex optimization — MLSS 2012

Barrier methods

• barrier method for linear programming

• normal barriers

• barrier method for conic optimization

History

• 1960s: Sequentially Unconstrained Minimization Technique (SUMT)

solves nonlinear convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

via a sequence of unconstrained minimization problems

minimize tf0(x)−
m
∑

i=1

log(−fi(x))

• 1980s: LP barrier methods with polynomial worst-case complexity

• 1990s: barrier methods for non-polyhedral cone LPs

Barrier methods 78

Logarithmic barrier function for linear inequalities

• barrier for nonnegative orthant Rm
+ : φ(s) = −

m
∑

i=1

log si

• barrier for inequalities Ax ≤ b:

ψ(x) = φ(b−Ax) = −
m
∑

i=1

log(bi − aTi x)

convex, ψ(x) → ∞ at boundary of domψ = {x | Ax < b}

gradient and Hessian

∇ψ(x) = −AT∇φ(s), ∇2ψ(x) = AT∇φ2(s)A

with s = b−Ax and

∇φ(s) = −
(

1

s1
, . . . ,

1

sm

)

, ∇φ2(s) = diag

(

1

s21
, . . . ,

1

s2m

)

Barrier methods 79

Central path for linear program

minimize cTx
subject to Ax ≤ b

central path: minimizers x⋆(t) of

ft(x) = tcTx+ φ(b−Ax)

t is a positive parameter

c

x⋆ x⋆(t)

optimality conditions: x = x⋆(t) satisfies

∇ft(x) = tc−AT∇φ(s) = 0, s = b−Ax

Barrier methods 80

Central path and duality

dual feasible point on central path

• for x = x⋆(t) and s = b−Ax,

z∗(t) = −1

t
∇φ(s) =

(

1

ts1
,
1

ts2
, . . . ,

1

tsm

)

z = z⋆(t) is strictly dual feasible: c+ATz = 0 and z > 0

• can be corrected to account for inexact centering of x ≈ x⋆(t)

duality gap between x = x⋆(t) and z = z⋆(t) is

cTx+ bTz = sTz =
m

t

gives bound on suboptimality: cTx⋆(t)− p⋆ ≤ m/t

Barrier methods 81

Barrier method

starting with t > 0, strictly feasible x

• make one or more Newton steps to (approximately) minimize ft:

x+ = x− α∇2ft(x)
−1∇ft(x)

step size α is fixed or from line search

• increase t and repeat until cTx− p⋆ ≤ ǫ

complexity: with proper initialization, step size, update scheme for t,

#Newton steps = O
(√
m log(1/ǫ)

)

result follows from convergence analysis of Newton’s method for ft

Barrier methods 82

Outline

• barrier method for linear programming

• normal barriers

• barrier method for conic optimization

Normal barrier for proper cone

φ is a θ-normal barrier for the proper cone K if it is

• a barrier: smooth, convex, domain intK, blows up at boundary of K

• logarithmically homogeneous with parameter θ:

φ(tx) = φ(x)− θ log t, ∀x ∈ intK, t > 0

• self-concordant: restriction g(α) = φ(x+ αv) to any line satisfies

g′′′(α) ≤ 2g′′(α)3/2

(Nesterov and Nemirovski, 1994)

Barrier methods 83

Examples

nonnegative orthant: K = Rm
+

φ(x) = −
m
∑

i=1

log xi (θ = m)

second-order cone: K = Qp = {(x, y) ∈ Rp−1 × R | ‖x‖2 ≤ y}

φ(x, y) = − log(y2 − xTx) (θ = 2)

semidefinite cone: K = Sm = {x ∈ Rm(m+1)/2 | mat(x) � 0}

φ(x) = − log detmat(x) (θ = m)

Barrier methods 84

exponential cone: Kexp = cl{(x, y, z) ∈ R3 | yex/y ≤ z, y > 0}

φ(x, y, z) = − log (y log(z/y)− x)− log z − log y (θ = 3)

power cone: K = {(x1, x2, y) ∈ R+ × R+ × R | |y| ≤ xα1
1 x

α2
2 }

φ(x, y) = − log
(

x2α1
1 x2α2

2 − y2
)

− log x1 − log x2 (θ = 4)

Barrier methods 85

Central path

conic LP (with inequality with respect to proper cone K)

minimize cTx
subject to Ax � b

barrier for the feasible set

φ(b−Ax)

where φ is a θ-normal barrier for K

central path: set of minimizers x⋆(t) (with t > 0) of

ft(x) = tcTx+ φ(b−Ax)

Barrier methods 86

Newton step

centering problem

minimize ft(x) = tcTx+ φ(b−Ax)

Newton step at x
∆x = −∇2ft(x)

−1∇ft(x)

Newton decrement

λt(x) =
(

∆xT∇2ft(x)∆x
)1/2

=
(

−∇ft(x)T∆x
)1/2

useful as a measure of proximity of x to x⋆(t)

Barrier methods 87

Damped Newton method

minimize ft(x) = tcTx+ φ(b−Ax)

algorithm (with parameters ǫ ∈ (0, 1/2), η ∈ (0, 1/4])

select a starting point x ∈ dom ft

repeat:

1. compute Newton step ∆x and Newton decrement λt(x)
2. if λt(x)

2 ≤ ǫ, return x
3. otherwise, set x := x+ α∆x with

α =
1

1 + λt(x)
if λt(x) ≥ η, α = 1 if λt(x) < η

• stopping criterion λt(x)
2 ≤ ǫ implies ft(x)− inf ft(x) ≤ ǫ

• alternatively, can use backtracking line search

Barrier methods 88

Convergence results for damped Newton method

• damped Newton phase: ft decreases by at least a positive constant γ

ft(x
+)− ft(x) ≤ −γ if λt(x) ≥ η

where γ = η − log(1 + η)

• quadratic convergence phase: λt rapidly decreases to zero

2λt(x
+) ≤ (2λt(x))

2
if λt(x) < η

implies λt(x
+) ≤ 2η2 < η

conclusion: the number of Newton iterations is bounded by

ft(x
(0))− inf ft(x)

γ
+ log2 log2(1/ǫ)

Barrier methods 89

Outline

• barrier method for linear programming

• normal barriers

• barrier method for conic optimization

Central path and duality

x⋆(t) = argmin
(

tcTx+ φ(b−Ax)
)

duality point on central path: x⋆(t) defines a strictly dual feasible z⋆(t)

z⋆(t) = −1

t
∇φ(s), s = b−Ax⋆(t)

duality gap: gap between x = x⋆(t) and z = z⋆(t) is

cTx+ bTz = sTz =
θ

t
, cTx− p⋆ ≤ θ

t

extension near central path (for λt(x) < 1): cTx− p⋆ ≤
(

1 +
λt(x)√
θ

)

θ

t

(results follow from properties of normal barriers)

Barrier methods 90

Short-step barrier method

algorithm (parameters ǫ ∈ (0, 1), β = 1/8)

• select initial x and t with λt(x) ≤ β

• repeat until 2θ/t ≤ ǫ:

t :=

(

1 +
1

1 + 8
√
θ

)

t, x := x−∇ft(x)−1∇ft(x)

properties

• increases t slowly so x stays in region of quadratic region (λt(x) ≤ β)

• iteration complexity

#iterations = O

(√
θ log

(

θ

ǫt0

))

• best known worst-case complexity; same as for linear programming

Barrier methods 91

Predictor-corrector methods

short-step barrier methods

• stay in narrow neighborhood of central path (defined by limit on λt)

• make small, fixed increases t+ = µt

as a result, quite slow in practice

predictor-corrector method

• select new t using a linear approximation to central path (‘predictor’)

• re-center with new t (‘corrector’)

allows faster and ‘adaptive’ increases in t; similar worst-case complexity

Barrier methods 92

Convex optimization — MLSS 2012

Primal-dual methods

• primal-dual algorithms for linear programming

• symmetric cones

• primal-dual algorithms for conic optimization

• implementation

Primal-dual interior-point methods

similarities with barrier method

• follow the same central path

• same linear algebra cost per iteration

differences

• more robust and faster (typically less than 50 iterations)

• primal and dual iterates updated at each iteration

• symmetric treatment of primal and dual iterates

• can start at infeasible points

• include heuristics for adaptive choice of central path parameter t

• often have superlinear asymptotic convergence

Primal-dual methods 93

Primal-dual central path for linear programming

minimize cTx
subject to Ax+ s = b

s ≥ 0

maximize −bTz
subject to ATz + c = 0

z ≥ 0

optimality conditions (s ◦ z is component-wise vector product)

Ax+ s = b, ATz + c = 0, (s, z) ≥ 0, s ◦ z = 0

primal-dual parametrization of central path

Ax+ s = b, ATz + c = 0, (s, z) ≥ 0, s ◦ z = µ1

• solution is x = x∗(t), z = z∗(t) for t = 1/µ

• µ = (sTz)/m for x, z on the central path

Primal-dual methods 94

Primal-dual search direction

current iterates x̂, ŝ > 0, ẑ > 0 updated as

x̂ := x̂+ α∆x, ŝ := ŝ+ α∆s, ẑ := ẑ + α∆z

primal and dual steps ∆x, ∆s, ∆z are defined by

A(x̂+∆x) + ŝ+∆s = b, AT (ẑ +∆z) + c = 0

ẑ ◦∆s+ ŝ ◦∆z = σµ̂1− ŝ ◦ ẑ

where µ̂ = (ŝT ẑ)/m and σ ∈ [0, 1]

• last equation is linearization of (ŝ+∆s) ◦ (ẑ +∆z) = σµ̂1

• targets point on central path with µ = σµ̂ i.e., with gap σ(ŝT ẑ)

• different methods use different strategies for selecting σ

• α ∈ (0, 1] selected so that ŝ > 0, ẑ > 0

Primal-dual methods 95

Linear algebra complexity

at each iteration solve an equation





A I 0
0 0 AT

0 diag(ẑ) diag(ŝ)









∆x
∆s
∆z



 =





b−Ax̂− ŝ
−c−AT ẑ
σµ̂1− ŝ ◦ ẑ





• after eliminating ∆s, ∆z this reduces to an equation

ATDA∆x = r,

with D = diag(ẑ1/ŝ1, . . . , ẑm/ŝm)

• similar equation as in simple barrier method (with different D, r)

Primal-dual methods 96

Outline

• primal-dual algorithms for linear programming

• symmetric cones

• primal-dual algorithms for conic optimization

• implementation

Symmetric cones

symmetric primal-dual solvers for cone LPs are limited to symmetric cones

• second-order cone

• positive semidefinite cone

• direct products of these ‘primitive’ symmetric cones (such as Rp
+)

definition: cone of squares x = y2 = y ◦ y for a product ◦ that satisfies

1. bilinearity (x ◦ y is linear in x for fixed y and vice-versa)

2. x ◦ y = y ◦ x
3. x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x
4. xT (y ◦ z) = (x ◦ y)Tz

not necessarily associative

Primal-dual methods 97

Vector product and identity element

nonnegative orthant: component-wise product

x ◦ y = diag(x)y

identity element is e = 1 = (1, 1, . . . , 1)

positive semidefinite cone: symmetrized matrix product

x ◦ y =
1

2
vec(XY + Y X) with X = mat(x), Y = mat(Y)

identity element is e = vec(I)

second-order cone: the product of x = (x0, x1) and y = (y0, y1) is

x ◦ y =
1√
2

[

xTy
x0y1 + y0x1

]

identity element is e = (
√
2, 0, . . . , 0)

Primal-dual methods 98

Classification

• symmetric cones are studied in the theory of Euclidean Jordan algebras

• all possible symmetric cones have been characterized

list of symmetric cones

• the second-order cone

• the positive semidefinite cone of Hermitian matrices with real, complex,
or quaternion entries

• 3× 3 positive semidefinite matrices with octonion entries

• Cartesian products of these ‘primitive’ symmetric cones (such as Rp
+)

practical implication

can focus on Qp, Sp and study these cones using elementary linear algebra

Primal-dual methods 99

Spectral decomposition

with each symmetric cone/product we associate a ‘spectral’ decomposition

x =
θ
∑

i=1

λiqi, with
θ
∑

i=1

qi = e and qi ◦ qj =
{

qi i = j
0 i 6= j

semidefinite cone (K = Sp): eigenvalue decomposition of mat(x)

θ = p, mat(x) =

p
∑

i=1

λiviv
T
i , qi = vec(viv

T
i)

second-order cone (K = Qp)

θ = 2, λi =
x0 ± ‖x1‖2√

2
, qi =

1√
2

[

1
±x1/‖x1‖2

]

, i = 1, 2

Primal-dual methods 100

Applications

nonnegativity

x � 0 ⇐⇒ λ1, . . . , λθ ≥ 0, x ≻ 0 ⇐⇒ λ1, . . . , λθ > 0

powers (in particular, inverse and square root)

xα =
∑

i

λαi qi

log-det barrier

φ(x) = − log detx = −
θ
∑

i=1

log λi

a θ-normal barrier, with gradient ∇φ(x) = −x−1

Primal-dual methods 101

Outline

• primal-dual algorithms for linear programming

• symmetric cones

• primal-dual algorithms for conic optimization

• implementation

Symmetric parametrization of central path

centering problem

minimize tcTx+ φ(b−Ax)

optimality conditions (using ∇φ(s) = −s−1)

Ax+ s = b, ATz + c = 0, (s, z) ≻ 0, z =
1

t
s−1

equivalent symmetric form (with µ = 1/t)

Ax+ b = s, ATz + c = 0, (s, z) ≻ 0, s ◦ z = µ e

Primal-dual methods 102

Scaling with Hessian

linear transformation with H = ∇2φ(u) has several important properties

• preserves conic inequalities: s ≻ 0 ⇐⇒ Hs ≻ 0

• if s is invertible, then Hs is invertible and (Hs)−1 = H−1s−1

• preserves central path:

s ◦ z = µ e ⇐⇒ (Hs) ◦ (H−1z) = µ e

example (K = Sp): transformation w = ∇2φ(u)s is a congruence

W = U−1SU−1, W = mat(w), S = mat(s), U = mat(u)

Primal-dual methods 103

Primal-dual search direction

steps ∆x, ∆s, ∆z at current iterates x̂, ŝ, ẑ are defined by

A(x̂+∆x) + ŝ+∆s = b, AT (ẑ +∆z) + c = 0

(Hŝ) ◦ (H−1∆z) + (H−1ẑ) ◦ (H∆s) = σµ̂e− (Hŝ) ◦ (H−1ẑ)

where µ̂ = (ŝT ẑ)/θ, σ ∈ [0, 1], and H = ∇2φ(u)

• last equation is linearization of

(H(ŝ+∆s)) ◦
(

H−1(ẑ +∆z)
)

= σµ̂e

• different algorithms use different choices of σ, H

• Nesterov-Todd scaling: choose H = ∇2φ(u) such that Hŝ = H−1ẑ

Primal-dual methods 104

Outline

• primal-dual algorithms for linear programming

• symmetric cones

• primal-dual algorithms for conic optimization

• implementation

Software implementations

general-purpose software for nonlinear convex optimization

• several high-quality packages (MOSEK, Sedumi, SDPT3, SDPA, . . .)

• exploit sparsity to achieve scalability

customized implementations

• can exploit non-sparse types of problem structure

• often orders of magnitude faster than general-purpose solvers

Primal-dual methods 105

Example: ℓ1-regularized least-squares

minimize ‖Ax− b‖22 + ‖x‖1

A is m× n (with m ≤ n) and dense

quadratic program formulation

minimize ‖Ax− b‖22 + 1Tu
subject to −u ≤ x ≤ u

• coefficient of Newton system in interior-point method is

[

ATA 0
0 0

]

+

[

D1 +D2 D2 −D1

D2 −D1 D1 +D2

]

(D1, D2 positive diagonal)

• expensive for large n: cost is O(n3)

Primal-dual methods 106

customized implementation

• can reduce Newton equation to solution of a system

(AD−1AT + I)∆u = r

• cost per iteration is O(m2n)

comparison (seconds on 2.83 Ghz Core 2 Quad machine)

m n custom general-purpose
50 200 0.02 0.32
50 400 0.03 0.59
100 1000 0.12 1.69
100 2000 0.24 3.43
500 1000 1.19 7.54
500 2000 2.38 17.6

custom solver is CVXOPT; general-purpose solver is MOSEK

Primal-dual methods 107

Overview

1. Basic theory and convex modeling

• convex sets and functions
• common problem classes and applications

2. Interior-point methods for conic optimization

• conic optimization
• barrier methods
• symmetric primal-dual methods

3. First-order methods

• (proximal) gradient algorithms
• dual techniques and multiplier methods

Convex optimization — MLSS 2012

Gradient methods

• gradient and subgradient method

• proximal gradient method

• fast proximal gradient methods

108

Classical gradient method

to minimize a convex differentiable function f : choose x(0) and repeat

x(k) = x(k−1) − tk∇f(x(k−1)), k = 1, 2, . . .

step size tk is constant or from line search

advantages

• every iteration is inexpensive

• does not require second derivatives

disadvantages

• often very slow; very sensitive to scaling

• does not handle nondifferentiable functions

Gradient methods 109

Quadratic example

f(x) =
1

2
(x21 + γx22) (γ > 1)

with exact line search and starting point x(0) = (γ, 1)

‖x(k) − x⋆‖2
‖x(0) − x⋆‖2

=

(

γ − 1

γ + 1

)k

� 10 0 10

� 4

0

4

x1

x
2

Gradient methods 110

Nondifferentiable example

f(x) =
√

x21 + γx22 (|x2| ≤ x1), f(x) =
x1 + γ|x2|√

1 + γ
(|x2| > x1)

with exact line search, x(0) = (γ, 1), converges to non-optimal point

� 2 0 2 4� 2

0

2

x1

x
2

Gradient methods 111

First-order methods

address one or both disadvantages of the gradient method

methods for nondifferentiable or constrained problems

• smoothing methods

• subgradient method

• proximal gradient method

methods with improved convergence

• variable metric methods

• conjugate gradient method

• accelerated proximal gradient method

we will discuss subgradient and proximal gradient methods

Gradient methods 112

Subgradient

g is a subgradient of a convex function f at x if

f(y) ≥ f(x) + gT (y − x) ∀y ∈ dom f

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

generalizes basic inequality for convex differentiable f

f(y) ≥ f(x) +∇f(x)T (y − x) ∀y ∈ dom f

Gradient methods 113

Subdifferential

the set of all subgradients of f at x is called the subdifferential ∂f(x)

absolute value f(x) = |x|

f(x) = |x| ∂f(x)

x

x

1

−1

Euclidean norm f(x) = ‖x‖2

∂f(x) =
1

‖x‖2
x if x 6= 0, ∂f(x) = {g | ‖g‖2 ≤ 1} if x = 0

Gradient methods 114

Subgradient calculus

weak calculus

rules for finding one subgradient

• sufficient for most algorithms for nondifferentiable convex optimization

• if one can evaluate f(x), one can usually compute a subgradient

• much easier than finding the entire subdifferential

subdifferentiability

• convex f is subdifferentiable on dom f except possibly at the boundary

• example of a non-subdifferentiable function: f(x) = −√
x at x = 0

Gradient methods 115

Examples of calculus rules

nonnegative combination: f = α1f1 + α2f2 with α1, α2 ≥ 0

g = α1g1 + α2g2, g1 ∈ ∂f1(x), g2 ∈ ∂f2(x)

composition with affine transformation: f(x) = h(Ax+ b)

g = AT g̃, g̃ ∈ ∂h(Ax+ b)

pointwise maximum f(x) = max{f1(x), . . . , fm(x)}

g ∈ ∂fi(x) where fi(x) = max
k

fk(x)

conjugate f∗(x) = supy(x
Ty − f(y)): take any maximizing y

Gradient methods 116

Subgradient method

to minimize a nondifferentiable convex function f : choose x(0) and repeat

x(k) = x(k−1) − tkg
(k−1), k = 1, 2, . . .

g(k−1) is any subgradient of f at x(k−1)

step size rules

• fixed step size: tk constant

• fixed step length: tk‖g(k−1)‖2 constant (i.e., ‖x(k)− x(k−1)‖2 constant)

• diminishing: tk → 0,
∞
∑

k=1

tk = ∞

Gradient methods 117

Some convergence results

assumption: f is convex and Lipschitz continuous with constant G > 0:

|f(x)− f(y)| ≤ G‖x− y‖2 ∀x, y

results

• fixed step size tk = t

converges to approximately G2t/2-suboptimal

• fixed length tk‖g(k−1)‖2 = s

converges to approximately Gs/2-suboptimal

• decreasing
∑

k tk → ∞, tk → 0: convergence

rate of convergence is 1/
√
k with proper choice of step size sequence

Gradient methods 118

Example: 1-norm minimization

minimize ‖Ax− b‖1 (A ∈ R500×100, b ∈ R500)

subgradient is given by AT sign(Ax− b)

0 500 1000 1500 2000 2500 300010-4

10-3

10-2

10-1

100
0.1
0.01
0.001

k

(f
(k

)
b
e
st
−

f
⋆
)/

f
⋆

fixed steplength
s = 0.1, 0.01, 0.001

0 1000 2000 3000 4000 500010-5

10-4

10-3

10-2

10-1

100
0.01/

�

k

0.01/k

k

diminishing step size
tk = 0.01/

√
k, tk = 0.01/k

Gradient methods 119

Outline

• gradient and subgradient method

• proximal gradient method

• fast proximal gradient methods

Proximal operator

the proximal operator (prox-operator) of a convex function h is

proxh(x) = argmin
u

(

h(u) +
1

2
‖u− x‖22

)

• h(x) = 0: proxh(x) = x

• h(x) = IC(x) (indicator function of C): proxh is projection on C

proxh(x) = argmin
u∈C

‖u− x‖22 = PC(x)

• h(x) = ‖x‖1: proxh is the ‘soft-threshold’ (shrinkage) operation

proxh(x)i =







xi − 1 xi ≥ 1
0 |xi| ≤ 1
xi + 1 xi ≤ −1

Gradient methods 120

Proximal gradient method

unconstrained problem with cost function split in two components

minimize f(x) = g(x) + h(x)

• g convex, differentiable, with dom g = Rn

• h convex, possibly nondifferentiable, with inexpensive prox-operator

proximal gradient algorithm

x(k) = proxtkh

(

x(k−1) − tk∇g(x(k−1))
)

tk > 0 is step size, constant or determined by line search

Gradient methods 121

Examples

minimize g(x) + h(x)

gradient method: h(x) = 0, i.e., minimize g(x)

x+ = x− t∇g(x)

gradient projection method: h(x) = IC(x), i.e., minimize g(x) over C

x+ = PC (x− t∇g(x))
C

x

x− t∇g(x)x+

Gradient methods 122

iterative soft-thresholding: h(x) = ‖x‖1

x+ = proxth (x− t∇g(x))

where

proxth(u)i =







ui − t ui ≥ t
0 −t ≤ ui ≤ t
ui + t ui ≤ −t

ui
t

−t

proxth(u)i

Gradient methods 123

Properties of proximal operator

proxh(x) = argmin
u

(

h(u) +
1

2
‖u− x‖22

)

assume h is closed and convex (i.e., convex with closed epigraph)

• proxh(x) is uniquely defined for all x

• proxh is nonexpansive

‖proxh(x)− proxh(y)‖2 ≤ ‖x− y‖2

• Moreau decomposition

x = proxh(x) + proxh∗(x)

Gradient methods 124

Moreau-Yosida regularization

h(t)(x) = inf
u

(

h(u) +
1

2t
‖u− x‖22

)

(with t > 0)

• h(t) is convex (infimum over u of a convex function of x, u)

• domain of h(t) is R
n (minimizing u = proxth(x) is defined for all x)

• h(t) is differentiable with gradient

∇h(t)(x) =
1

t
(x− proxth(x))

gradient is Lipschitz continuous with constant 1/t

• can interpret proxth(x) as gradient step x− t∇h(t)(x)

Gradient methods 125

Examples

indicator function (of closed convex set C): squared Euclidean distance

h(x) = IC(x), h(t)(x) =
1

2t
dist(x)2

1-norm: Huber penalty

h(x) = ‖x‖1, h(t)(x) =

n
∑

k=1

φt(xk)

φt(z) =

{

z2/(2t) |z| ≤ t
|z| − t/2 |z| ≥ t

t/2−t/2 z

φ
t(
z
)

Gradient methods 126

Examples of inexpensive prox-operators

projection on simple sets

• hyperplanes and halfspaces

• rectangles
{x | l ≤ x ≤ u}

• probability simplex
{x | 1Tx = 1, x ≥ 0}

• norm ball for many norms (Euclidean, 1-norm, . . .)

• nonnegative orthant, second-order cone, positive semidefinite cone

Gradient methods 127

Euclidean norm: h(x) = ‖x‖2

proxth(x) =

(

1− t

‖x‖2

)

x if ‖x‖2 ≥ t, proxth(x) = 0 otherwise

logarithmic barrier

h(x) = −
n
∑

i=1

log xi, proxth(x)i =
xi +

√

x2i + 4t

2
, i = 1, . . . , n

Euclidean distance: d(x) = infy∈C ‖x− y‖2 (C closed convex)

proxtd(x) = θPC(x) + (1− θ)x, θ =
t

max{d(x), t}

generalizes soft-thresholding operator

Gradient methods 128

Prox-operator of conjugate

proxth(x) = x− tproxh∗/t(x/t)

• follows from Moreau decomposition

• of interest when prox-operator of h∗ is inexpensive

example: norms

h(x) = ‖x‖, h∗(y) = IC(y)

where C is unit ball for dual norm ‖ · ‖∗

• proxh∗/t is projection on C

• formula useful for prox-operator of ‖ · ‖ if projection on C is inexpensive

Gradient methods 129

Support function

many convex functions can be expressed as support functions

h(x) = SC(x) = sup
y∈C

xTy

with C closed, convex

• conjugate is indicator function of C: h∗(y) = IC(y)

• hence, can compute proxth via projection on C

example: h(x) is sum of largest r components of x

h(x) = x[1] + · · ·+ x[r] = SC(x), C = {y | 0 ≤ y ≤ 1,1Ty = r}

Gradient methods 130

Convergence of proximal gradient method

minimize f(x) = g(x) + h(x)

assumptions

• ∇g is Lipschitz continuous with constant L > 0

‖∇g(x)−∇g(y)‖2 ≤ L‖x− y‖2 ∀x, y

• optimal value f⋆ is finite and attained at x⋆ (not necessarily unique)

result: with fixed step size tk = 1/L

f(x(k))− f⋆ ≤ L

2k
‖x(0) − x⋆‖22

• compare with 1/
√
k rate of subgradient method

• can be extended to include line searches

Gradient methods 131

Outline

• gradient and subgradient method

• proximal gradient method

• fast proximal gradient methods

Fast (proximal) gradient methods

• Nesterov (1983, 1988, 2005): three gradient projection methods with
1/k2 convergence rate

• Beck & Teboulle (2008): FISTA, a proximal gradient version of
Nesterov’s 1983 method

• Nesterov (2004 book), Tseng (2008): overview and unified analysis of
fast gradient methods

• several recent variations and extensions

this lecture: FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

Gradient methods 132

FISTA

unconstrained problem with composite objective

minimize f(x) = g(x) + h(x)

• g convex differentiable with dom g = Rn

• h convex with inexpensive prox-operator

algorithm: choose any x(0) = x(−1); for k ≥ 1, repeat the steps

y = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtkh
(y − tk∇g(y))

Gradient methods 133

Interpretation

• first two iterations (k = 1, 2) are proximal gradient steps at x(k−1)

• next iterations are proximal gradient steps at extrapolated points y

x(k−2) x(k−1) y

x(k) = proxtkh
(y − tk∇g(y))

sequence x(k) remains feasible (in domh); y may be outside domh

Gradient methods 134

Convergence of FISTA

minimize f(x) = g(x) + h(x)

assumptions

• dom g = Rn and ∇g is Lipschitz continuous with constant L > 0

• h is closed (implies proxth(u) exists and is unique for all u)

• optimal value f⋆ is finite and attained at x⋆ (not necessarily unique)

result: with fixed step size tk = 1/L

f(x(k))− f⋆ ≤ 2L

(k + 1)2
‖x(0) − f⋆‖22

• compare with 1/k convergence rate for gradient method

• can be extended to include line searches

Gradient methods 135

Example

minimize log
m
∑

i=1

exp(aTi x+ bi)

randomly generated data with m = 2000, n = 1000, same fixed step size

0 50 100 150 20010-6

10-5

10-4

10-3

10-2

10-1

100

gradient
FISTA

k

f
(x

(k
))
−
f
⋆

|f
⋆
|

0 50 100 150 20010-6

10-5

10-4

10-3

10-2

10-1

100

gradient
FISTA

k

FISTA is not a descent method

Gradient methods 136

Convex optimization — MLSS 2012

Dual methods

• Lagrange duality

• dual decomposition

• dual proximal gradient method

• multiplier methods

Dual function

convex problem (with linear constraints for simplicity)

minimize f(x)
subject to Gx ≤ h

Ax = b

Lagrangian

L(x, λ, ν) = f(x) + λT (Gx− h) + νT (Ax− b)

dual function

g(λ, ν) = inf
x
L(x, λ, ν)

= −f∗(−GTλ−ATν)− hTλ− bTν

f∗(y) = supx(y
Tx− f(x)) is conjugate of f

Dual methods 137

Dual problem

maximize g(λ, ν)
subject to λ ≥ 0

a convex optimization problem in λ, ν

duality theorem (p⋆ is primal optimal value, d⋆ is dual optimal value)

• weak duality: p⋆ ≥ d⋆ (without exception)

• strong duality: p⋆ = d⋆ if a constraint qualification holds

(for example, primal problem is feasible and dom f open)

Dual methods 138

Norm approximation

minimize ‖Ax− b‖

reformulated problem

minimize ‖y‖
subject to y = Ax− b

dual function

g(ν) = inf
x,y

(

‖y‖+ νTy − νTAx+ bTν
)

=

{

bTν ATν = 0, ‖ν‖∗ ≤ 1
−∞ otherwise

dual problem
maximize bTz
subject to ATz = 0, ‖z‖∗ ≤ 1

Dual methods 139

Karush-Kuhn-Tucker optimality conditions

if strong duality holds, then x, λ, ν are optimal if and only if

1. x is primal feasible

x ∈ dom f, Gx ≤ h, Ax = b

2. λ ≥ 0

3. complementary slackness holds

λT (h−Gx) = 0

4. x minimizes L(x, λ, ν) = f(x) + λT (Gx− h) + νT (Ax− b)

for differentiable f , condition 4 can be expressed as

∇f(x) +GTλ+ATν = 0

Dual methods 140

Outline

• Lagrange dual

• dual decomposition

• dual proximal gradient method

• multiplier methods

Dual methods

primal problem
minimize f(x)
subject to Gx ≤ h

Ax = b

dual problem

maximize −hTλ− bTν − f∗(−GTλ−ATν)
subject to λ ≥ 0

possible advantages of solving the dual when using first-order methods

• dual problem is unconstrained or has simple constraints

• dual is differentiable

• dual (almost) decomposes into smaller problems

Dual methods 141

(Sub-)gradients of conjugate function

f∗(y) = sup
x

(

yTx− f(x)
)

• subgradient: x is a subgradient at y if it maximizes yTx− f(x)

• if maximizing x is unique, then f∗ is differentiable at y

this is the case, for example, if f is strictly convex

strongly convex function: f is strongly convex with modulus µ > 0 if

f(x)− µ

2
xTx is convex

implies that ∇f∗(x) is Lipschitz continuous with parameter 1/µ

Dual methods 142

Dual gradient method

primal problem with equality constraints and dual

minimize f(x)
subject to Ax = b

dual ascent: use (sub-)gradient method to minimize

−g(ν) = bTν + f∗(−ATν) = sup
x

(

(b−Ax)Tν − f(x)
)

algorithm

x = argmin
x̂

(

f(x̂) + νT (Ax̂− b)
)

ν+ = ν + t(Ax− b)

of interest if calculation of x is inexpensive (for example, separable)

Dual methods 143

Dual decomposition

convex problem with separable objective, coupling constraints

minimize f1(x1) + f2(x2)
subject to G1x1 +G2x2 ≤ h

dual problem

maximize −hTλ− f∗1 (−GT
1 λ)− f∗2 (−GT

2 λ)
subject to λ ≥ 0

• can be solved by (sub-)gradient projection if λ ≥ 0 is the only constraint

• evaluating objective involves two independent minimizations

f∗j (−GT
j λ) = − inf

xj

(

fj(xj) + λTGjxj
)

minimizer xj gives subgradient −Gjxj of f∗j (−GT
j λ) with respect to λ

Dual methods 144

dual subgradient projection method

• solve two unconstrained (and independent) subproblems

xj = argmin
x̂j

(

fj(x̂j) + λTGjx̂j
)

, j = 1, 2

• make projected subgradient update of λ

λ+ = (λ+ t(G1x1 +G2x2 − h))+

interpretation: price coordination between two units in a system

• constraints are limits on shared resources; λi is price of resource i

• dual update λ+i = (λi − tsi)+ depends on slacks s = h−G1x1 −G2x2

– increases price λi if resource is over-utilized (si < 0)
– decreases price λi if resource is under-utilized (si > 0)
– never lets prices get negative

Dual methods 145

Outline

• Lagrange dual

• dual decomposition

• dual proximal gradient method

• multiplier methods

First-order dual methods

minimize f(x)
subject to Gx ≥ h

Ax = b

maximize −f∗(−GTλ−ATν)
subject to λ ≥ 0

subgradient method: slow, step size selection difficult

gradient method: faster, requires differentiable f∗

• in many applications f∗ is not differentiable, or has nontrivial domain

• f∗ can be smoothed by adding a small strongly convex term to f

proximal gradient method (this section): dual cost split in two terms

• first term is differentiable

• second term has an inexpensive prox-operator

Dual methods 146

Composite structure in the dual

primal problem with separable objective

minimize f(x) + h(y)
subject to Ax+By = b

dual problem

maximize −f∗(ATz)− h∗(BTz) + bTz

has the composite structure required for the proximal gradient method if

• f is strongly convex; hence ∇f∗ is Lipschitz continuous

• prox-operator of h∗(BTz) is cheap (closed form or simple algorithm)

Dual methods 147

Regularized norm approximation

minimize f(x) + ‖Ax− b‖

f strongly convex with modulus µ; ‖ · ‖ is any norm

reformulated problem and dual

minimize f(x) + ‖y‖
subject to y = Ax− b

maximize bTz − f∗(ATz)
subject to ‖z‖∗ ≤ 1

• gradient of dual cost is Lipschitz continuous with parameter ‖A‖22/µ

∇f∗(ATz) = argmin
x

(

f(x)− zTAx
)

• for most norms, projection on dual norm ball is inexpensive

Dual methods 148

dual gradient projection algorithm for

minimize f(x) + ‖Ax− b‖

choose initial z and repeat

x = argmin
x̂

(

f(x̂)− zTAx̂
)

z+ = PC (z + t(b−Ax))

• PC is projection on C = {y | ‖y‖∗ ≤ 1}
• step size t is constant or from backtracking line search

• can use accelerated gradient projection algorithm (FISTA) for z-update

• first step decouples if f is separable

Dual methods 149

Outline

• Lagrange dual

• dual decomposition

• dual proximal gradient method

• multiplier methods

Moreau-Yosida smoothing of the dual

dual of equality constrained problem

maximize g(ν) = infx
(

f(x) + νT (Ax− b)
)

smoothed dual problem

maximize g(t)(ν) = sup
z

(

g(z)− 1

2t
‖z − ν‖22

)

• same solution as non-smoothed dual

• equivalent expression (from duality)

g(t)(ν) = inf
x

(

f(x) + νT (Ax− b) +
t

2
‖Ax− b‖22

)

∇g(t)(ν) = Ax− b with x the minimizer in the definition

Dual methods 150

Augmented Lagrangian method

algorithm: choose initial ν and repeat

x = argmin
x̂

Lt(x̂, ν)

ν+ = ν + t(Ax− b)

• Lt is the augmented Lagrangian (Lagrangian plus quadratic penalty)

Lt(x, ν) = f(x) + νT (Ax− b) +
t

2
‖Ax− b‖22

• maximizes smoothed dual function gt via gradient method

• can be extended to problems with inequality constraints

Dual methods 151

Dual decomposition

convex problem with separable objective

minimize f(x) + h(y)
subject to Ax+By = b

augmented Lagrangian

Lt(x, y, ν) = f(x) + h(y) + νT (Ax+By − b) +
t

2
‖Ax+By − b‖22

• difficulty: quadratic penalty destroys separability of Lagrangian

• solution: replace minimization over (x, y) by alternating minimization

Dual methods 152

Alternating direction method of multipliers

apply one cycle of alternating minimization steps to augmented Lagrangian

1. minimize augmented Lagrangian over x:

x(k) = argmin
x

Lt(x, y
(k−1), ν(k−1))

2. minimize augmented Lagrangian over y:

y(k) = argmin
y

Lt(x
(k), y, ν(k−1))

3. dual update:

ν(k) := ν(k−1) + t
(

Ax(k) +By(k) − b
)

can be shown to converge under weak assumptions

Dual methods 153

Example: regularized norm approximation

minimize f(x) + ‖Ax− b‖

f convex (not necessarily strongly)

reformulated problem

minimize f(x) + ‖y‖
subject to y = Ax− b

augmented Lagrangian

Lt(x, y, z) = f(x) + ‖y‖+ zT (y −Ax+ b) +
t

2
‖y −Ax+ b‖22

Dual methods 154

ADMM steps (with f(x) = ‖x− a‖22/2 as example)

Lt(x, y, z) = f(x) + ‖y‖+ zT (y −Ax+ b) +
t

2
‖y −Ax+ b‖22

1. minimization over x

x := argmin
x̂

Lt(x̂, y, ν) = (I + tATA)−1(a+AT (z + t(y − b))

2. minimization over y via prox-operator of ‖ · ‖/t

y := argmin
ŷ

Lt(x, ŷ, z) = prox‖·‖/t (Ax− b− (1/t)z)

can be evaluated via projection on dual norm ball C = {u | ‖u‖∗ ≤ 1}

3. dual update: z := z + t(y −Ax− b)

cost per iteration dominated by linear equation in step 1

Dual methods 155

Example: sparse covariance selection

minimize tr(CX)− log detX + ‖X‖1

variable X ∈ Sn; ‖X‖1 is sum of absolute values of X

reformulation

minimize tr(CX)− log detX + ‖Y ‖1
subject to X − Y = 0

augmented Lagrangian

Lt(X,Y, Z)

= tr(CX)− log detX + ‖Y ‖1 + tr(Z(X − Y)) +
t

2
‖X − Y ‖2F

Dual methods 156

ADMM steps: alternating minimization of augmented Lagrangian

tr(CX)− log detX + ‖Y ‖1 + tr(Z(X − Y)) +
t

2
‖X − Y ‖2F

• minimization over X:

X := argmin
X̂

(

− log det X̂ +
t

2
‖X̂ − Y +

1

t
(C + Z)‖2F

)

solution follows from eigenvalue decomposition of Y − (1/t)(C + Z)

• minimization over Y :

Y := argmin
Ŷ

(

‖Ŷ ‖1 +
t

2
‖Ŷ −X − 1

t
Z‖2F

)

apply element-wise soft-thresholding to X − (1/t)Z

• dual update Z := Z + t(X − Y)

cost per iteration dominated by cost of eigenvalue decomposition

Dual methods 157

Douglas-Rachford splitting algorithm

minimize g(x) + h(x)

with g and h closed convex functions

algorithm

x̂(k+1) = proxtg(x
(k) − y(k))

x(k+1) = proxth(x̂
(k+1) + y(k))

y(k+1) = y(k) + x̂(k+1) − x(k+1)

• converges under weak conditions (existence of a solution)

• useful when g and h have inexpensive prox-operators

Dual methods 158

ADMM as Douglas-Rachford algorithm

minimize f(x) + h(y)
subject to Ax+By = b

dual problem

maximize bTz − f∗(ATz)− h∗(BTz)

ADMM algorithm

• split dual objective in two terms g1(z) + g2(z)

g1(z) = bTz − f∗(ATz), g2(z)− h∗(BTz)

• Douglas-Rachford algorithm applied to the dual gives ADMM

Dual methods 159

Sources and references

these lectures are based on the courses

• EE364A (S. Boyd, Stanford), EE236B (UCLA), Convex Optimization

www.stanford.edu/class/ee364a

www.ee.ucla.edu/ee236b/

• EE236C (UCLA) Optimization Methods for Large-Scale Systems

www.ee.ucla.edu/~vandenbe/ee236c

• EE364B (S. Boyd, Stanford University) Convex Optimization II

www.stanford.edu/class/ee364b

see the websites for expanded notes, references to literature and software

Dual methods 160

