High-Dimensional Sampling Algorithms

•

Santosh Vempala Algorithms and Randomness Center Georgia Tech

Format

- Please ask questions
- Indicate that I should go faster or slower
- Feel free to ask for more examples
- And for more proofs
- Exercises along the way.

High-dimensional problems

Input:

- A set of points S in n-dimensional space Rⁿ
 or a distribution in Rⁿ
- A function f that maps points to real values (could be the indicator of a set)

Algorithmic Geometry

- What is the complexity of computational problems as the dimension grows?
- Dimension = number of variables
- Typically, size of input is a function of the dimension.

Problem 1: Optimization

Input: function f: $R^n \rightarrow R$ specified by an oracle, point x, error parameter ε .

Output: point y such that

 $f(y) \ge \max f - \epsilon$

Problem 2: Integration

Input: function f: $R^n \rightarrow R$ specified by an oracle, point x, error parameter ε .

Output: number A such that:

 $(1-\epsilon)\int f \le A \le (1+\epsilon)\int f$

Problem 3: Sampling

Input: function f: $R^n \rightarrow R$ specified by an oracle, point x, error parameter ε .

Output: A point y from a distribution within distance ϵ of distribution with density proportional to f.

Problem 4: Rounding

Input: function f: $R^n \rightarrow R$ specified by an oracle, point x, error parameter ε .

Output: An affine transformation that approximately "sandwiches" f between concentric balls.

Problem 5: Learning

Input: i.i.d. points with labels from an unknown distribution, error parameter ε .

Output: A rule to correctly label 1- ϵ of the input distribution.

(generalizes integration)

Sampling

- Generate a uniform random point from a set S or with density proportional to function f.
- Numerous applications in diverse areas: statistics, networking, biology, computer vision, privacy, operations research etc.
- This course: mathematical and algorithmic foundations of sampling and its applications.

Course Outline

- Lecture 1. Introduction to Sampling, highdimensional Geometry and Complexity.
- L2. Algorithms based on Sampling.
- L3. Sampling Algorithms.

Lecture 1: Introduction

- Computational problems in high dimension
- The challenges of high dimensionality
- Convex bodies, Logconcave functions
- Brunn-Minkowski and its variants
- Isotropy
- Summary of applications

Lecture 2: Algorithmic Applications

- Convex Optimization
- Rounding
- Volume Computation
- Integration

Lecture 3: Sampling Algorithms

- Sampling by random walks
- Conductance
- Grid walk, Ball walk, Hit-and-run
- Isoperimetric inequalities
- Rapid mixing

High-dimensional problems are hard

P1. Optimization. Find minimum of f over a set.P2. Integration. Find the average (or integral) of f.

- These problems are intractable (hard) in general, i.e., for arbitrary sets and general functions
- Intractable for arbitrary sets and linear functions
- Intractable for polytopes and quadratic functions

P1 is NP-hard or worse

min number of unsatisfied clauses in a 3-SAT formula
 P2 is #P-hard or worse

Count number of satisfying solutions to a 3-SAT formula

High-dimensional Algorithms

P1. Optimization. Find minimum of f over the set S.

Ellipsoid algorithm [Yudin-Nemirovski; Shor; Khachiyan; GLS] S is a convex set and f is a convex function.

P2. Integration. Find the integral of f.

Dyer-Frieze-Kannan algorithm f is the indicator function of a convex set.

A glimpse of the complexity frontier

1. Are the entries of a given matrix inner products of a set of vectors?

2. Are they inner products of a set of nonnegative vectors?

Structure

Q. What geometric structure makes algorithmic problems computationally tractable?(i.e., solvable with polynomial complexity)

- "Convexity often suffices."
- Is convexity the frontier of polynomial-time solvability?
- Appears to be in many cases of interest

Convexity

How to specify a convex set?

- Explicit list of constraints, e.g., a linear program:
 Ax ≤ b
- What about the set of positive semidefinite matrices?
- Or the set of vectors on the edges of a graph that have weight at least one on every cut?

Structure I: Separation Oracle

Either x K or there is a halfspace containing K and not x.

Convex sets have separation oracles

• If x is not in K, let y be the point in K that is closest to x.

• y is unique: If y_1, y_2 are both closest, then $(y_1 + y_2)/2$ is closer.

• Take the hyperplane normal to (x-y):

$$\{z: (x-y)^T z \le (x-y)^T y\}$$

Separation oracles

- For an LP, simply check all the linear constraints
- For a ball or ellipsoid, find the tangent plane
- For the SDP cone, check if the eigenvalues are all nonnegative; if not eigenvector gives a separating hyperplane.
- For cut example, find mincut to check if all cuts are at least 1.

Example: Learning by Sampling

Sequence of points X_1 , X_2 , ..., Unknown -1/1 function f

We get X_i and have to guess $f(X_i)$

Goal: minimize number of wrong guesses.

Learning Halfspaces

Unknown -1/1 function f

f(X) = 1 if $w^T X > 0$ and f(X) = -1 otherwise

For an unknown vector w, with each component w_i being a b-bit integer.

What is the minimum number of mistakes?

Majority algorithm

After $X_1, X_2, ..., X_k$ the set of consistent functions f correspond to $S_k = \{w : w^T(sign(X_i)X_i) > 0 \text{ for } i = 1, 2, ..., k \}$

Guess $f(X_{k+1})$, to be the majority of the predictions of each w in S_k

Claim. Number of wrong guesses \leq bn

But how to compute majority?? $|S_k|$ could be 2^{bn} !

Random algorithm

- Pick random w in S_k
- Guess w^TX

Random algorithm

- Pick random w in S_k
- Guess $w^T X_{k+1}$

Lemma 1. E(#wrong guesses) ≤ 2bn. Proof idea. Every time random guess is wrong, majority algorithm has probability at least ½ of being wrong.

Exercise 1. Prove Lemma 1.

Learning by Sampling

- How to pick random w in $S_{k?}$
- S_k is a convex set!
- It can be efficiently sampled.

Structure of Convex Bodies

• Volume(unit cube) = 1

• Volume(unit ball) ~
$$\left(\frac{c}{n}\right)^{\frac{n}{2}}$$
 u

- drops exponentially with n

• For any central hyperplane, most of the mass of a ball is within distance $1/\sqrt{n}$.

Structure of Convex Bodies

- Volume(unit cube) = 1
- Volume(unit ball) ~ $\left(\frac{c}{n}\right)^{\frac{1}{2}}$ - drops exponentially with n
- Most of the volume is near the boundary: $\operatorname{vol}((1-\varepsilon)K) = (1-\varepsilon)^n \operatorname{vol}(K)$ So,

$$\operatorname{vol}(K) - \operatorname{vol}((1 - \varepsilon)K) \ge (1 - e^{-\varepsilon n})\operatorname{vol}(K)$$

Structure II: Volume Distribution

A,B sets in \mathbb{R}^n , their Minkowski sum is:

 $A + B = \{x + y : x \in A, y \in B\}$ + 0 = k, Ky For a convex body, the hyperplane section at (x+y)/2 contains $(A_x+A_y)/2$. What is the volume distribution?

Brunn-Minkowski inequality

A, B compact sets in \mathbb{R}^n

Thm. $\forall \lambda \in [0,1],$ $\operatorname{vol}(\lambda A + (1-\lambda)B)^{\frac{1}{n}} \ge \lambda \operatorname{vol}(A)^{\frac{1}{n}} + (1-\lambda)\operatorname{vol}(B)^{\frac{1}{n}}.$

Suffices to prove $vol(A + B)^{\frac{1}{n}} \ge vol(A)^{\frac{1}{n}} + vol(B)^{\frac{1}{n}}$

by taking the sets to be λA , $(1 - \lambda)B$

Brunn-Minkowski inequality

Thm. A, B: compact sets in \mathbb{R}^n $\operatorname{vol}(A + B)^{\frac{1}{n}} \ge \operatorname{vol}(A)^{\frac{1}{n}} + \operatorname{vol}(B)^{\frac{1}{n}}$

Proof. First take A, B to be cuboids, i.e., $A = [0, a_1] \times [0, a_2] \times ... \times [0, a_n]$ $B = [0, b_1] \times [0, b_2] \times ... \times [0, b_n]$ Then

 $A+B = [0, a_1 + b_1] \times [0, a_2 + b_2] \times ... \times [0, a_n + b_n].$

Brunn-Minkowski inequality

Thm. A, B: compact sets in \mathbb{R}^n $\operatorname{vol}(A + B)^{\frac{1}{n}} \ge \operatorname{vol}(A)^{\frac{1}{n}} + \operatorname{vol}(B)^{\frac{1}{n}}$

Proof. Next take A,B to be finite unions of disjoint cuboids: $A = \bigcup_i A_i$ and $B = \bigcup_i B_i$

Finally, note that any compact set can be approximated to arbitrary accuracy by the union of a finite set of cuboids.

Logconcave functions

• $f: \mathbb{R}^n \to \mathbb{R}$ is concave if for any $x, y \in \mathbb{R}^n$,

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

• $f: \mathbb{R}^n \to \mathbb{R}_+$ is logconcave if for any $x, y \in \mathbb{R}^n$,

$$f(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} f(y)^{1 - \lambda}$$

i.e., f is nonnegative and its logarithm is concave.
Logconcave functions

- $f: \mathbb{R}^n \to \mathbb{R}_+$ is logconcave if for any $x, y \in \mathbb{R}^n$, $f(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} f(y)^{1-\lambda}$
- Examples:
 - Indicator functions of convex sets are logconcave
 - Gaussian density function,
 - exponential function
- Level sets of f, $L_t = \{x : f(x) \ge t\}$, are convex.
- Many other useful geometric properties

Prekopa-Leindler inequality

Prekopa-Leindler: $f, g, h: \mathbb{R}^n \to \mathbb{R}_+ s. t$.

$$h(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda}g(y)^{1-\lambda}$$

then

$$\int h \geq \left(\int f\right)^{\lambda} \left(\int g\right)^{1-\lambda}.$$

Functional version of [B-M], equivalent to it.

Properties of logconcave functions

For two logconcave functions f and g

- Their sum might not be logconcave
- But their product h(x) = f(x)g(x) is logconcave
- And so is their minimum h(x) = min f(x), g(x).

Properties of logconcave functions

• Convolution is logconcave

$$h(x) = \int_{R^n} f(y)g(x-y)dy$$

• And so is any marginal:

$$h(x_1, x_2, ..., x_k) = \int_{\mathbb{R}^{n-k}} f(x) dx_{k+1} dx_{k+2} \dots dx_n$$

Exercise 2. Prove the above properties using the Prekopa-Leindler inequality.

Isotropic position

- Affine transformations preserve convexity and logconcavity.
- What can one use as a canonical position?
- E.g., ellipsoids map to a ball, parallelopipeds map to cubes.
- What about general convex bodies? Logconcave functions?

Isotropic position

- Let x be a random point from a convex body K
- z = E(x) is the center of gravity (or centroid). Shift so that z = 0.
- Now consider the covariance matrix

$$A = E(xx^T), \qquad A_{ij} = E(x_ix_j)$$

• A has bounded entries; it is positive semidefinite; it is full rank unless K lies in a lower-dimensional subspace.

Isotropic position

•
$$A = E(xx^T)$$

• $A = B^2$ for some n x n matrix B.

• Let
$$K' = B^{-1}K = \{B^{-1}x : x \in K\}.$$

- Then a random point y from K' satisfies: $E(y) = 0, \quad E(yy^T) = I_n.$
- K' is in isotropic position.

Isotropic position: Exercises

- Exercise 3. Find R s.t. the origin-centered cube of side length 2R is isotropic.
- Exercise 4. Show that for a random point x from a set in isotropic position, for any unit vector v, we have

$$E\bigl((v^T x)^2\bigr) = 1.$$

Isotropic position and sandwiching

• For any convex body K (in fact any set/distribution with bounded second moments), we can apply an affine transformation so that for a random point x from K :

$$E(x) = 0, \qquad E(xx^T) = I_n.$$

- Thus K "looks like a ball" up to second moments.
- How close is it really to a ball? Can it be sandwiched between two balls of similar radii?
- Yes!

Sandwiching

Thm (John). Any convex body K has an ellipsoid E s.t.

 $E \subseteq K \subseteq nE$.

The minimum volume ellipsoid contained in K can be used.

Thm (KLS). For a convex body K in isotropic position,

$$\sqrt{n+1} B \subseteq K \subseteq \sqrt{n(n+1)} B$$

- Also a factor n sandwiching, but with a different ellipsoid.
- As we will see, isotropic sandwiching (rounding) is algorithmically efficient while the classical approach is not.

Lecture 2: Algorithmic Applications

- Convex Optimization
- Rounding
- Volume Computation
- Integration

Lecture 3: Sampling Algorithms

- Sampling by random walks
- Conductance
- Grid walk, Ball walk, Hit-and-run
- Isoperimetric inequalities
- Rapid mixing

High-Dimensional Sampling Algorithms

•

Santosh Vempala Algorithms and Randomness Center Georgia Tech

Format

- Please ask questions
- Indicate that I should go faster or slower
- Feel free to ask for more examples
- And for more proofs
- Exercises along the way.

High-dimensional problems

Input:

- A set of points S in \mathbb{R}^n or a distribution in \mathbb{R}^n
- A function f that maps points to real values (could be the indicator of a set)

Algorithmic Geometry

- What is the complexity of computational problems as the dimension grows?
- Dimension = number of variables
- Typically, size of input is a function of the dimension.

Problem 1: Optimization

Input: function f: $R^n \rightarrow R$ specified by an oracle, point x, error parameter ε .

Output: point y such that

 $f(y) \ge \max f - \epsilon$

Problem 2: Integration

Input: function f: $R^n \rightarrow R$ specified by an oracle, point x, error parameter ε .

Output: number A such that:

 $(1-\epsilon)\int f \le A \le (1+\epsilon)\int f$

Problem 3: Sampling

Input: function f: $R^n \rightarrow R$ specified by an oracle, point x, error parameter ε .

Output: A point y from a distribution within distance ϵ of distribution with density proportional to f.

Problem 4: Rounding

Input: function f: $R^n \rightarrow R$ specified by an oracle, point x, error parameter ε .

Output: An affine transformation that approximately "sandwiches" f between concentric balls.

Problem 5: Learning

Input: i.i.d. points (with labels) from unknown distribution, error parameter ε .

Output: A rule to correctly label 1- ϵ of the input distribution.

(generalizes integration)

Sampling

- Generate a uniform random point from a set S or with density proportional to function f.
- Numerous applications in diverse areas: statistics, networking, biology, computer vision, privacy, operations research etc.
- This course: mathematical and algorithmic foundations of sampling and its applications.

Lecture 2: Algorithmic Applications

Given a blackbox for sampling, we will study algorithms for:

- Rounding
- Convex Optimization
- Volume Computation
- Integration

High-dimensional Algorithms

P1. Optimization. Find minimum of f over the set S.

Ellipsoid algorithm [Yudin-Nemirovski; Shor] works when S is a convex set and f is a convex function.

P2. Integration. Find the integral of f.

Dyer-Frieze-Kannan algorithm works when f is the indicator function of a convex set.

Structure

Q. What geometric structure makes algorithmic problems computationally tractable?(i.e., solvable with polynomial complexity)

- "Convexity often suffices."
- Is convexity the frontier of polynomial-time solvability?
- Appears to be in many cases of interest

Convexity

Sandwiching

Thm (John). Any convex body K has an ellipsoid E s.t.

 $E \subseteq K \subseteq nE$.

The minimum volume ellipsoid contained in K can be used.

Thm (KLS). For a convex body K in isotropic position,

$$\sqrt{n+1} B \subseteq K \subseteq \sqrt{n(n+1)} B$$

- Also a factor n sandwiching, but with a different ellipsoid.
- As we will see, isotropic sandwiching (rounding) is algorithmically efficient while the classical approach is not.

Rounding via Sampling

- 1. Sample m random points from K;
- 2. Compute sample mean z and sample covariance matrix A.
- 3. Compute $B = A^{-\frac{1}{2}}$.

Applying B to K achieves near-isotropic position.

Thm. C(ε).n random points suffice to achieve $E\left(\left||B - I|\right|_2\right) \le \epsilon$ for isotropic K.

[Adamczak et al.; Srivastava-Vershynin; improving on Bourgain; Rudelson]

I.e., for any unit vector v, $1 + \epsilon \leq E((v^T x)^2) \leq 1 + \epsilon$.

Convex Feasibility

Input: Separation oracle for a convex body K, guarantee that if K is nonempty, it contains a ball of radius r and is contained in the ball of radius R centered the origin.

Output: A point x in K.

Complexity: #oracle calls and #arithmetic operations.

To be efficient, complexity of an algorithm should be bounded by poly(n, log(R/r)).

Convex optimization reduces to feasibility

 To minimize a convex (or even quasiconvex) function f, we can reduce to the feasibility problem via a binary search.

•
$$K \coloneqq K \cap \{x : f(x) \le t\}$$

• Maintains convexity.

How to choose oracle queries?

Convex feasibility via sampling

[Bertsimas-V. 02]

- 1. Let $z=0, P = [-R, R]^n$.
- 2. Does $z \in K$? If yes, output K.
- 3. If no, let $H = \{x : a^T x \le a^T z\}$ be a halfspace containing K.
- 4. Let $P \coloneqq P \cap H$.
- 5. Sample $x_1, x_2, ..., x_m$ uniformly from P.

6. Let
$$z \coloneqq \frac{1}{m} \sum x_i$$
. Go to Step 2.

Centroid algorithm

- [Levin '65]. Use centroid of surviving set as query point in each iteration.
- #iterations = O(nlog(R/r)).
- Best possible.
- Problem: how to find centroid?
- #P-hard! [Rademacher 2007]

Why does centroid work?

Does not cut volume in half.

But it does cut by a constant fraction.

Thm [Grunbaum '60]. For any halfspace H containing the centroid of a convex body K, $vol(K \cap H) \ge \frac{1}{e}vol(K).$

Centroid cuts are balanced

K convex. Assume centroid is origin. Fix normal vector of halfspace to be e_1 .

Let $K_t = \{x \in K : x_1 = t\}$ be the slice of K at t.

Symmetrize K: Replace each slice K_t with a ball of the same volume as K_t .

Claim. Resulting set is convex. Pf. Use Brunn-Minkowski.

- Transform K to a cone while making the halfspace volume no larger.
- For a cone, the lower bound of the theorem holds.

- Transform K to a cone.
- Maintain volume of right "half". Centroid moves right, so halfspace through centroid has smaller mass.

- Complete K to a cone. Again centroid moves right.
- So cone has smaller halfspace volume than K.

Cone volume

• Exercise 1. Show that for a cone, the volume of a halfspace containing its centroid can be as small as $\left(\frac{n}{n+1}\right)^n$ times its volume but no smaller.

Convex optimization via Sampling

- How many iterations for the sampling-based algorithm?
- If we use only 1 random sample in each iteration, then the number of iterations could be exponential!
- Do poly(n) samples suffice?

Approximating the centroid

Let $x_1, x_2, ..., x_m$ be uniform random from K and y be their average.

Suppose K is isotropic. Then, $E(y)=0, E(||y||^2) = \frac{1}{m}E(||x_i||^2) = \frac{n}{m}.$

So m = O(n) samples give a point y within constant distance of the origin, IF K is isotropic.

Is this good enough? What if K is not isotropic?

Robust Grunbaum: cuts near centroid are also balanced

Lemma [BV02]. For isotropic convex body K and halfspace H containing a point within distance t of the origin,

$$\operatorname{vol}(K \cap H) \ge \left(\frac{1}{e} - t\right) \operatorname{vol}(K).$$

Thm [BV02]. For any convex body K and halfspace H containing the average of m random points from K,

$$E(vol(K \cap H)) \ge \left(\frac{1}{e} - \sqrt{\frac{n}{m}}\right) vol(K).$$

Robust Grunbaum: cuts near centroid are also balanced

Lemma. For isotropic convex body K and halfspace H containing a point within distance t of the origin,

$$\operatorname{vol}(K \cap H) \ge \left(\frac{1}{e} - t\right) \operatorname{vol}(K).$$

Proof uses similar ideas as Grunbaum, with more structural properties. In particular,

Lemma. For any 1-dimensional isotropic logconcave function f, $\max f < 1$.

Optimization via Sampling

Thm. For any convex body K and halfspace H containing the average of m random points from K,

$$E(vol(K \cap H)) \ge \left(\frac{1}{e} - \sqrt{\frac{n}{m}}\right) vol(K).$$

Proof. We can assume K is isotropic since affine transformations maintain $vol(K \cap H)/vol(K)$.

Distance of y, the average of random samples, from the centroid is bounded.

So O(n) samples suffice in each iteration.

Optimization via Sampling

Thm. [BV02] Convex feasibility can be solved using O(n log R/r) oracle calls.

Ellipsoid takes n^2 , Vaidya's algorithm also takes O(n log R/r).

With sampling, one can solve convex optimization using only a membership oracle and a starting point in K. We will see this later.

Integration

We begin with the important special case of volume computation: Given convex body K, and parameter ϵ , find a number A s.t.

 $(1 - \epsilon) \operatorname{vol}(K) \le A \le (1 + \epsilon) \operatorname{vol}(K).$

Volume via Rounding

• Using the John ellipsoid or the Inertial ellipsoid

 $E \subseteq K \subseteq nE \Rightarrow vol(E) \le vol(K) \le n^n vol(E).$

- Polytime algorithm, $n^{O(n)}$ approximation to volume
- Can we do better?

Complexity of Volume Estimation

Thm [E86, BF87]. For any deterministic algorithm that uses at most n^a membership calls to the oracle for a convex body K and computes two numbers A and B such that $A \le vol(K) \le B$, there is some convex body for which the ratio B/A is at least

$$\left(\frac{cn}{a\log n}\right)^{\frac{n}{2}}$$

where c is an absolute constant.

Complexity of Volume Estimation

Thm [BF]. For deterministic algorithms:

Thm [DV12].

Matching upper bound of $(1 + \epsilon)^n$ in time $\left(\frac{1}{\epsilon}\right)^{O(n)}$ poly(n).

Volume computation

[DFK89]. Polynomial-time randomized algorithm that estimates volume with probability at least $1 - \delta$ in time poly(n, $\frac{1}{\epsilon}$, $\log(\frac{1}{\delta})$).

Volume by Random Sampling

- Pick random samples from ball/cube containing K.
- Compute fraction **c** of sample in K.
- Output c.vol(outer ball).

• Need too many samples

Volume via Sampling

 $B \subseteq K \subseteq RB.$

Let $K_i = K \cap 2^{i/n} B$, $i = 0, 1, ..., m = n \log R$.

Estimate each ratio with random samples.

Volume via Sampling

 $K_i = K \cap 2^{i/n} B, \quad i = 0, 1, ..., m = n \log R.$

 $\operatorname{vol}(K) = \operatorname{vol}(B) \cdot \frac{\operatorname{vol}(K_1)}{\operatorname{vol}(K_0)} \frac{\operatorname{vol}(K_2)}{\operatorname{vol}(K_1)} \cdots \frac{\operatorname{vol}(K_m)}{\operatorname{vol}(K_{m-1})}.$

Claim. $vol(K_{i+1}) \leq 2.vol(K_i)$.

Total #samples = $m \cdot \frac{m}{\epsilon^2} = O^*(n^2)$.

Variance of product

Exercise 2. Let Y be the product estimator

$$Y = \prod X^i$$

with each X^i , i=1,2,..., m, estimated using k samples

as
$$X^i = \frac{1}{k} \sum_j X^i_j$$
 with $E(X^i_j) = \frac{vol(K_{i-1})}{vol(K_i)}$.

Show that

$$\operatorname{var}(\mathbf{Y}) \leq \left(\left(1 + \frac{3}{k} \right)^m - 1 \right) \mathbf{E}(\mathbf{Y})^2.$$

Appears to be optimal

- n phases, O*(n) samples in each phase.
- If we only took m < n phases, then the ratio to be estimated in some phase could be as large as n^{n/m} which is superpoly for m = o(n).
- Is $\Omega(n^2)$ total samples the best possible?

Simulated Annealing [Kalai-V.04, Lovasz-V.03]

To estimate $\int f$ consider a sequence

$$f_0, f_1, f_2, \dots, f_m = f$$

with $\int f_0$ being easy, e.g., constant function over ball.

Then,
$$\int f = \int f_0 \cdot \frac{\int f_1}{\int f_0} \cdot \frac{\int f_2}{\int f_1} \cdot \cdot \frac{\int f_m}{\int f_{m-1}}$$
.

Each ratio can be estimated by sampling:

- 1. Sample X with density proportional to f_i
- 2. Compute $Y = \frac{f_{i+1}(X)}{f_i(X)}$

$$E(Y) = \int \frac{f_{i+1}(X)}{f_i(X)} \cdot \frac{f_i(X)}{\int f_i(X)} dX = \frac{\int f_{i+1}}{\int f_i}.$$

A tight reduction [LV03]

Define: $f_i(X) = e^{-a_i||X||}$

 $m \sim \sqrt{n} \log(2R/\epsilon)$

$$a_0 = 2R$$
, $a_{i+1} = a_i \left(1 - \frac{1}{\sqrt{n}}\right)$, $a_m = \frac{\epsilon}{2R}$

Volume via Annealing

$$f_i(X) = e^{-a_i||X||}$$
 $a_{i+1} = a_i\left(1 - \frac{1}{\sqrt{n}}\right),$

$$Y = \frac{f_{i+1}(X)}{f_i(X)} \qquad E(Y) = \frac{\int f_{i+1}}{\int f_i}$$

Lemma. $E(Y^2) \le 4E(Y)^2$ for large enough n.

Although expectation of Y can be large (exponential even), it has small variance!

Proof via logconcavity

Exercise 2. For a logconcave function $f: \mathbb{R}^n \to \mathbb{R}$, let $Z(a) = \int f(X)^a dX$ for a > 0. Show that $a^n Z(a)$ is a logconcave function.

[Hint: Define
$$F(x, a) = f\left(\frac{x}{t}\right)^t$$
.]

Proof via logconcavity

 $Z(a) = \int f(aX) dX$ $a^n Z(a)$ is a logconcave function.

$$E(Y_i) = \frac{Z(a_{i+1})}{Z(a_i)} E(Y_i^2) = \frac{Z(2a_{i+1} - a_i)}{Z(a_i)}$$

$$\frac{E(Y_i^2)}{E(Y_i)} = \frac{Z(2a_{i+1} - a_i)Z(a_i)}{Z(a_{i+1})^2} \le \frac{(a_{i+1})^{2n}}{(2a_{i+1} - a_i)^n (a_i)^n} \le 4.$$

Progress on volume

	Power	New ideas
Dyer-Frieze-Kannan 91	23	everything
Lovász-Siminovits 90	16	localization
Applegate-K 90	10	logconcave integration
L 90	10	ball walk
DF 91	8	error analysis
LS 93	7	multiple improvements
KLS 97	5	speedy walk, isotropy
LV 03,04	4	annealing, wt. isoper.
LV 06	4	integration, local analysis

Optimization via Annealing

We can minimize quasiconvex function f over convex set S given only by a membership oracle and a starting point in S. [KV04, LV06].

Almost the same algorithm, in reverse: to find max f, define $f_i(X) = f(X)^{a_i}$ i = 1, ..., m. $a_0 = \epsilon$, $a_m = M$.

sequence of functions starting at nearly uniform and getting more and more concentrated points of near-optimal objective value.

Lecture 3: Sampling Algorithms

- Sampling by random walks
- Conductance
- Grid walk, Ball walk, Hit-and-run
- Isoperimetric inequalities
- Rapid mixing

High-Dimensional Sampling Algorithms

•

Santosh Vempala Algorithms and Randomness Center Georgia Tech

Sampling

- Generate a uniform random point from a set S or with density proportional to function f.
- Numerous applications in diverse areas: statistics, networking, biology, computer vision, privacy, operations research etc.
- This course: mathematical and algorithmic foundations of sampling and its applications.

Structure

Q. What geometric structure makes algorithmic problems computationally tractable?(i.e., solvable with polynomial complexity)

- "Convexity often suffices."
- Is convexity the frontier of polynomial-time solvability?
- Appears to be in many cases of interest

Convexity

Annealing

Integration

- $f_i(X) = f(X)^{a_i}, X \in K$
- $a_0 = \frac{\epsilon}{2R}$, $a_m = 1$
- $a_{i+1} = a_i \left(1 + \frac{1}{\sqrt{n}}\right)$
- Sample with density prop.
 to *f_i(X)*.
- Estimate $W_i \sim \int f_{i+1}(X) / \int f_i(X)$
- Output $W = W_1 W_2 \dots W_m$.

Optimization

• $f_i(X) = f(X)^{a_i}, X \in K$

•
$$a_0 = \frac{\epsilon}{2R}$$
, $a_m = \frac{2n}{\epsilon}$
• $a_{i+1} = a_i \left(1 + \frac{1}{\sqrt{n}}\right)$

- Sample with density prop. to $f_i(X)$.
- Output X with max f(X).

How to sample?

Take a random walk in K. Consider a lattice intersected with K Grid (lattice) walk: At grid point x, pick random y from $\{x \pm \delta e_i\}$ if y is in K, go to y

Ball walk

At x,

pick random y from $x + \delta B_n$ if y is in K, go to y

Hit-and-run

[Boneh, Smith]

At x,

- -pick a random chord L through x
- -go to a uniform random point y on L

Markov chains

- State space K,
- set of measurable subsets that form a σ -algebra, i.e., closed under finite unions and intersections
- A next step distribution $P_u(.)$ associated with each point u in the state space.
- A starting point.

•
$$w_0, w_1, \dots, w_k, \dots$$
 s.t.
 $P(w_k \in A \mid w_0, w_1, \dots, w_{k-1}) = P(w_k \in A \mid w_{k-1})$
Convergence

Stationary distribution Q, ergodic "flow" defined as

$$\Phi(A) = \int_{A} P_u(K \mathbf{X} A) dQ(u)$$

For a stationary distribution Q, we have

$$\Phi(A) = \Phi(K \mathbf{X} \mathbf{A})$$

Random walks in K

- For both walks, the distribution of the current point tends to uniform in K.
- The uniform distribution is stationary, in fact,

$$Q(u)P_u(v) = Q(v)P_v(u).$$

Exercise 1. Show that the uniform distribution is stationary for hit-and-run.

• Question: How many steps are needed?

Rate of convergence?

Ergodic "flow":

 $\Phi(A) = \int_A P_u(K \mathbf{X} \mathbf{A}) dQ(u)$

Conductance:

$$\phi(A) = \frac{\Phi(A)}{\min Q(A), \ Q(K \neq A)}$$

 $\phi = \inf \phi(A)$

Mixing rate cannot be faster than $1/\phi$

Since it takes this many steps to even escape from some subsets.

Does ϕ give an upper bound? Yes, for discrete Markov chains

Thm. [Jerrum-Sinclair]
$$\frac{\phi^2}{2} \leq 1 - \lambda \leq 2\phi$$

Where λ is the second eigenvalue of the transition matrix.

Thus, mixing rate =
$$\frac{1}{1-\lambda} \leq \frac{2}{\phi^2}$$
.

Rate of convergence
THM [LS93].
$$M = \sup_{A} \frac{Q_{o}(A)}{Q(A)}$$
 "WARM START"
 $d_{tv}(Q_{t},Q) \in \int_{M} (1-\frac{\phi^{2}}{2})^{t}$.

THM [LS93].
$$M = \operatorname{Val}_{Q}\left(\frac{Q_{o}(u)}{Q(u)}\right)$$

 $\forall \epsilon > 0, d_{tv}\left(Q_{t}, Q_{o}\right) \leq \epsilon + \int_{\varepsilon} \frac{M}{\epsilon} \left(1 - \frac{\phi^{2}}{2}\right)^{t}$.

High conductance => rapid mixing Proof does not go through eigenvalue gap

How to bound conductance?

- Conductance of ball walk is not bounded!
- Local conductance can be arbitrarily small.

$$\ell(x) = \frac{\operatorname{vol}(x + \delta B_n \cap K)}{\operatorname{vol}(\delta B_n)}$$

- What can we do?
- Modify K slightly
- Or start with a nearly random point in K.

Smoothing a convex body

 $K + \alpha B_n$

Each point of the original body has a small ball around it.

What about new points? No worse than local conductance of boundary points of a small ball.

Choosing step radius $\delta \leq \alpha/\sqrt{n}$ will ensure that every point has local conductance at least a fixed constant.

Consider an arbitrary measurable subset S.

We need to show that the escape probability from S is large.

• Points that do not cross over are far from each other

Need:

• If two subsets are far, then the rest of the set is large

One-step distributions

 \Rightarrow the balls around u,v have small intersection

 \Rightarrow u,v must be far

Prob. distance \Rightarrow Geometric distance

Lemma. $u, v \in K, \ell(u), \ell(v) \ge \ell$ for the ball walk with δ -steps. If

Coupling 1-step distributions

$$d(P_u, P_v) = \operatorname{vol}(\Box) \leq t$$

Isoperimetry

THM [LS92, DF91].

$$VOL(S_3) \ge 2d(S_1,S_2) \underset{M \in \mathbb{N}}{M \in \mathbb{N}} \{VOL(S_1), VOL(S_2)\}$$

$$S_1$$
 S_2 S_2 S_3

Extends to logconcave densities:

$$\Pi_{f}(S_{3}) \geq 2d(S_{1},S_{2}) \quad \text{Min} \quad \{\Pi_{f}(S_{1}),\Pi_{f}(S_{2})\}$$

$$D$$

T: DISTRIBUTION WITH LOGCONCAVE DENSITY f. $f(x+y) \ge f(x)f(y)$

Thm. Conductance of ball walk is at least $\ell^2 \delta$ $16\sqrt{nD}$

We can use

So

$$\ell = \frac{1}{n}, \delta = \frac{\ell}{\sqrt{n}} = \frac{1}{n\sqrt{n}}$$

 $\phi \ge \frac{C}{n^2 D}, \quad \text{mixing rate} = O(n^4 D^2)$

Thm. Conductance of ball walk is at least $\frac{\ell^2 \delta}{16\sqrt{n}D}$ Pf. $S_1 = \left\{ x \in S : P_x(K \notin S) < \frac{\ell}{4} \right\} \quad S_2 = \left\{ x \in K \notin S : P_x(S) < \frac{\ell}{4} \right\}$ $S_3 = K Y S_1 Y S_2$ $vol(S_1) \ge \frac{vol(S)}{2}, vol(S_2) \ge \frac{vol(K \neq S)}{2}$ lf not, $\int P_x(K \notin S) dx \ge \frac{\ell}{4} \cdot \frac{1}{2} \operatorname{vol}(S) \implies \phi(S) \ge \frac{\ell}{8}.$

Thm. Conductance of ball walk is at least $\frac{\ell^2 \delta}{16\sqrt{nD}}$ Pf. $S_1 = \left\{ x \in S : P_x \left(K \notin S \right) < \frac{\ell}{4} \right\}$ $S_2 = \left\{ x \in K \notin S : P_x \left(S \right) < \frac{\ell}{4} \right\}$ For $u \in S_1, v \in S_2$, $d(P_u, P_v) \ge 1 - P_u(K \notin S) - P_v(S) > 1 - \frac{\ell}{2} \implies d(u, v) \ge \frac{\ell \delta}{2\sqrt{n}}$.

$$vol(S_3) \ge \frac{\ell \delta}{\sqrt{n}} \min vol(S_1), vol(S_2)$$

 $\ge \frac{\ell \delta}{2\sqrt{n}} \min vol(S), vol(K \neq S).$

Thm. Conductance of ball walk is at least $\frac{\ell^2 \delta}{16\sqrt{n}D}$ Pf.

$$\int_{S} P_{x}(K \neq S) dx = \frac{1}{2} \int_{S} P_{x}(K \neq S) dx + \frac{1}{2} \int_{K \neq S} P_{x}(S) dx$$
$$\geq \frac{1}{2} \cdot \frac{\ell}{4} \cdot vol(S_{3})$$

$$\geq \frac{\ell^2 \delta}{16\sqrt{n}D} \min \ vol(S), vol(K \neq S).$$

KLS hyperplane conjecture

A: covariance matrix of stationary distribution

$$E\left(||X-\bar{Y}||^{2}\right) = t_{E}(A) = \sum_{i} \lambda_{i}(A)$$

$$THM. T_{f}(S_{3}) \ge \frac{l_{A2} d(S_{1},S_{2})}{\sqrt{E\lambda_{i}(A)}} T_{f}(S_{1})T_{f}(S_{2}) \qquad S_{1} \qquad S_{2}$$

$$OR \quad \varphi_{f} \ge \frac{1}{\sqrt{\sum_{i} \lambda_{i}(A)}}$$

$$ConJ \quad \exists C > 0,$$

$$\varphi_{f} \ge \frac{C}{\sqrt{\lambda_{i}(A)}} = C \quad \text{for isotropic } f.$$

Thin shell conjecture

Theorem [Bobkov].

$$D_{f} \geqslant \frac{C}{\operatorname{Val}(11 \times 11^{2})^{\frac{1}{4}}}$$

Conj. (Thin shell) $V_{AR} (|| \times ||^2) = O(n)$ Alternatively: $E((|| \times || - \sqrt{n})^2) = O(1)$

Current best bound [Guedon-E. Milman]: n^{1/3}

KLS-Slicing-Thin-shell

Moreover, KLS implies the others [Ball] and thinshell implies slicing [Eldan-Klartag10].

Convergence

Thm. [LS93, KLS97] If S is convex, then the ball walk with an M-warm start reaches an (independent) nearly random point in poly(n, D, M) steps.

- Strictly speaking, this is not rapid mixing!
- How to get the first random point?
- Better dependence on diameter D?

Is rapid mixing possible?

Min distance based isoperimetry is too coarse

Average distance isoperimetry

• How to average distance?

 $h(x) \leq \min_{\substack{u \in S_{i_1}, v \in S_2 \\ x \in l(x,y)}} d(u,v)$

• Theorem.[LV04; Dieker-V.12] $\mathcal{T}(S_3) \geq E(h(x)) \mathcal{T}(S_1) \mathcal{T}(S_2)$ \mathcal{D}

Average distance Isoperimetry

Hit-and-run

- Thm [LV04]. Hit-and-run mixes in polynomial time from *any* starting point inside a convex body.
- Conductance = $\int_{n} \left(\frac{1}{n} \right)$
- Gives $O^*(n^3)$ sampling algorithm

Multi-point random walks

- Maintain m points
- For each point X,
 - Pick a random combination of the m points
 - Use this to update X

Stationary distribution: m uniform random points!

Sampling

Q1. Is starting at a nice point faster? E.g., does ball walk mix rapidly starting at a single point, e.g., the centroid?

Q2. How to check convergence to stationarity on the fly? Does it suffice to check that the measures of all halfspaces have converged?

(Note: poly(n) sample can estimate all halfspace measures approximately)

Sampling: current status

Can be sampled efficiently:

- Convex bodies
- Logconcave distributions
- (1/n-1)-harmonic-concave distributions
- Near-logconcave distributions
- Star-shaped bodies

• ??

Cannot be sampled efficiently:

• Quasiconcave distributions

High-dimensional sampling algorithms

- Sampling manifolds
- Random reflections
- Deterministic sampling?
- Other applications...