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Format

Please ask questions

Indicate that | should go faster or slower
Feel free to ask for more examples

And for more proofs

Exercises along the way.



High-dimensional problems

Input:
e A set of points S in n-dimensional space R"
or a distribution in R™

* A function f that maps points to real values
(could be the indicator of a set)



Algorithmic Geometry

 What is the complexity of computational
problems as the dimension grows?

e Dimension = number of variables

e Typically, size of input is a function of the dimension.



Problem 1: Optimization

Input: function f: R™ - R specified by an oracle,

point x, error parameter € .

Output: point y such that

f(y) 2 maxf —e



Problem 2: Integration

Input: function f: R™ — R specified by an oracle,

point x, error parameter € .

Output: number A such that:

1-e)ff<A<A+e)ff



Problem 3: Sampling

Input: function f: R™ — R specified by an oracle,

point X, error parameter €.

Output: A point y from a distribution within distance ¢
of distribution with density proportional to f.



Problem 4: Rounding

Input: function f: R™ — R specified by an oracle,

point X, error parameter €.

Output: An affine transformation that approximately
“sandwiches” f between concentric balls.



Problem 5: Learning

Input: i.i.d. points with labels from an unknown
distribution, error parameter ¢.

Output: A rule to correctly label 1- € of the input
distribution.

(generalizes integration)



Sampling

 Generate a uniform random point from a set S
or with density proportional to function f.

e Numerous applications in diverse areas:
statistics, networking, biology, computer
vision, privacy, operations research etc.

e This course: mathematical and algorithmic
foundations of sampling and its applications.



Course Outline

e Lecture 1. Introduction to Sampling, high-
dimensional Geometry and Complexity.

e 2. Algorithms based on Sampling.

e 3. Sampling Algorithms.



Lecture 1: Introduction

Computational problems in high dimension
The challenges of high dimensionality
Convex bodies, Logconcave functions
Brunn-Minkowski and its variants

Isotropy

Summary of applications



Lecture 2: Algorithmic Applications

* Convex Optimization
 Rounding

* Volume Computation
* Integration



Lecture 3: Sampling Algorithms

Sampling by random walks
Conductance

Grid walk, Ball walk, Hit-and-run
Isoperimetric inequalities

Rapid mixing



High-dimensional problems are hard

P1. Optimization. Find minimum of f over a set.
P2. Integration. Find the average (or integral) of f.

e These problems are intractable (hard) in general, i.e., for
arbitrary sets and general functions

e |ntractable for arbitrary sets and linear functions
e |[ntractable for polytopes and quadratic functions

P1is NP-hard or worse

— min number of unsatisfied clauses in a 3-SAT formula
P2 is #P-hard or worse

— Count number of satisfying solutions to a 3-SAT formula



High-dimensional Algorithms

P1. Optimization. Find minimum of f over the set S.

Ellipsoid algorithm [Yudin-Nemirovski; Shor;Khachiyan;GLS]
Sis a convex set and f is a convex function.

P2. Integration. Find the integral of f.

Dyer-Frieze-Kannan algorithm
fis the indicator function of a convex set.



A glimpse of the complexity frontier

1.  Are the entries of a given matrix inner products of a set of vectors?

A =BB™ (semidefinite program) 4

\
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2.  Aretheyinner products of a set of nonnegative vectors?

/;
\

Is A =BB", B>0? (completely positive)




Structure

Q. What geometric structure makes algorithmic
problems computationally tractable?

(i.e., solvable with polynomial complexity)

e “Convexity often suffices.”
e |s convexity the frontier of polynomial-time solvability?
 Appears to be in many cases of interest



Convexity

(Indicator functions of) Convex sets:
Vx,yER" 1€ [01],x,yEK=>Ax+(1—-A)ycSK

Concave functions:

FQx + (1= Dy) 2 Af () + (1= Df ) N

Logconcave functions:

FQx+ (1= Dy) = FO f()1 s

Quasiconcave functions: -

fAx+ (1 =Dy) =z min f(x), f(y)

Star-shaped sets:
dx €Ss.t.VyeS,Ax+(1—-A)yES



How to specify a convex set?

e Explicit list of constraints, e.g., a linear program:
Ax <b

 What about the set of positive semidefinite
matrices?

 Orthe set of vectors on the edges of a graph that
have weight at least one on every cut?



Structure |: Separation Oracle

/

Either xeK or there is a halfspace containing K and not x.



Convex sets have separation oracles

e [fxisnotinK, letybe the pointin K that is closest to x.

e yisunique: If y;,y, are both closest, then (y; + y,)/2
is closer.

e Take the hyperplane normal to (x-y):

z:(x—y)'z< (x =)'y}



Separation oracles

For an LP, simply check all the linear constraints
For a ball or ellipsoid, find the tangent plane

For the SDP cone, check if the eigenvalues are all
nonnegative; if not eigenvector gives a separating
hyperplane.

For cut example, find mincut to check if all cuts
are at least 1.



Example: Learning by Sampling

Sequence of points X,, X,, ...,
Unknown -1/1 function f

We get X. and have to guess f(X))

Goal: minimize number of wrong guesses.



Learning Halfspaces

Unknown -1/1 function f
f(X)=1 ifwiX>0 and f(X)=-1 otherwise

For an unknown vector w, with each component
w. being a b-bit integer.

What is the minimum number of mistakes?



Majority algorithm
After X;, X,, ..., X,
the set of consistent functions f correspond to

S, ={w: wl(sign(X)X)>0 fori=1,2,.., k}

Guess f(X,,,), to be the majority of the predictions
of eachwin S,

Claim. Number of wrong guesses < bn

But how to compute majority?? |S,| could be 2°" |



Random algorithm

* Pickrandom win S,

e Guess w!X



Random algorithm

* Pickrandom winS,
e Guess W X1

Lemma 1. E(#wrong guesses) < 2bn.

Proof idea. Every time random guess is wrong,

majority algorithm has probability at least )% of
being wrong.

Exercise 1. Prove Lemma 1.



Learning by Sampling

* How to pick random w in S,
* S, is a convex set!

* |t can be efficiently sampled.



Structure of Convex Bodies

e Volume(unit cube) =1

n

e Volume(unit ball) ~ (5)E u

n
— drops exponentially with n

 For any central hyperplane, most of the mass
of a ball is within distance 1//n ..



Structure of Convex Bodies

 Volume(unit cube) =1

n
C

e Volume(unit ball) ~ (—)E

n
— drops exponentially with n

 Most of the volume is near the boundary:
vol((1 —¢)K) = (1 — &)"vol(K)
So,
vol(K) — Vol((l — s)K) > (1— e *)vol(K)



Structure |Il: Volume Distribution

A,B sets in R™, their Minkowski sum is:

A+B={x+y:x€AyeEB}

.j+O ‘-‘-D

For a convex body, the hyperplane section |
at (x+y)/2 contains (A,+A4,)/2. /\\

What is the volume distribution?




Brunn-Minkowski inequality

A, B compact sets in R

Thm. VA € |0,1],
1 1
vol(A4 + (1 —A)B)n = Avol(A)n + (1 — )L)VO](B)%.

Suffices to prove

1 1 1
vol(A + B)n = vol(A)n + vol(B)n

by taking the sets to be 14, (1 — A)B



Brunn-Minkowski inequality

Thm. A, B: compact sets in R™
1 1 1
vol(A + B)n > vol(A)n + vol(B)n

Proof. First take A, B to be cuboids, i.e.,

A=10,a;] x[0,a,] X ... x[0,a,]

B=[0,b;] x[0,b,] X ... Xx]0,b,]

Then

A+B=10,a, + b;] X|0,a, + b,] X ... X[0,a,, + b,].




Brunn-Minkowski inequality

Thm. A, B: compact sets in R™
1 1 1
vol(A + B)n > vol(A)n + vol(B)n

Proof. Next take A,B to be finite unions of disjoint
cuboids: A=U;A; andB=U; B;

Finally, note that any compact set can be approximated
to arbitrary accuracy by the union of a finite set of
cuboids.



Logconcave functions

e f:R"™ — Risconcave if for any x,y € R",
fAx+ (1 =Dy) 2 Af(x) + (1 = Df(y)
e f:R"™ - R, islogconcave if for any x,y € R",
fx + (1= Dy) = fFf )

i.e., fis nonnegative and its logarithm is concave.



Logconcave functions

f:R™ = R, islogconcave if for any x,y € R",

fOx+ A =Dy) = ff O

Examples:

— Indicator functions of convex sets are logconcave
— Gaussian density function,

— exponential function

Level sets of f, L, = {x : f(x) = t}, are convex.
Many other useful geometric properties



Prekopa-Leindler inequality

Prekopa-Leindler: f,g,h:R"™ = R, s.t.

h(Ax + (1 = Dy) = f()* gyt

fR= (1) Ua)™

Functional version of [B-M], equivalent to it.

then



Properties of logconcave functions

For two logconcave functions fand g
 Their sum might not be logconcave

e But their product h(x) = f(x)g(x) is logconcave
 And so is their minimum h(x) = min f(x), g(x).



Properties of logconcave functions

e Convolution is logconcave

h) = | F0IgG = y)dy
RTl
e And sois any marginal:

h(x{, Xy, ., Xp) = J fFo)dx,1dxsg 4o ... dxy,

Rn—k

Exercise 2. Prove the above properties using the Prekopa-
Leindler inequality.



|sotropic position

Affine transformations preserve convexity and
logconcavity.

What can one use as a canonical position?

E.g., ellipsoids map to a ball, parallelopipeds map
to cubes.

What about general convex bodies? Logconcave
functions?



|sotropic position

Let x be a random point from a convex body K

z = E(x) is the center of gravity (or centroid). Shift so
that z = 0.

Now consider the covariance matrix
A= E(.XXT), Al] — E(XLX])

A has bounded entries; it is positive semidefinite; it is
full rank unless K lies in a lower-dimensional subspace.



|sotropic position

A=E(xxD)
A = B? for some n x n matrix B.

let K' = B 'K ={B 'x:x € K}.

Then a random point y from K’ satisfies:
E(y)=0, EQ@y") =1,

K" is in isotropic position.



|sotropic position: Exercises

e Exercise 3. Find R s.t. the origin-centered cube
of side length 2R is isotropic.

e Exercise 4. Show that for a random point x
from a set in isotropic position, for any unit
vector v, we have

E((wTx)?) = 1.



Isotropic position and sandwiching

For any convex body K (in fact any set/distribution
with bounded second moments), we can apply an
affine transformation so that for a random point x
fromK:

E(x) =0, E(xx") =1,

Thus K “looks like a ball” up to second moments.

e How close is it really to a ball? Can it be
sandwiched between two balls of similar radii?

e Yes!



Sandwiching

Thm (John). Any convex body K has an ellipsoid E s.t.
E € K € nE.

The minimum volume ellipsoid contained in K can be used.

Thm (KLS). For a convex body K in isotropic position,

MR K C jn(v\fD B
n

e Also a factor n sandwiching, but with a different ellipsoid.

 As we will see, isotropic sandwiching (rounding) is
algorithmically efficient while the classical approach is not.



Lecture 2: Algorithmic Applications

* Convex Optimization
 Rounding

* Volume Computation
* Integration



Lecture 3: Sampling Algorithms

Sampling by random walks
Conductance

Grid walk, Ball walk, Hit-and-run
Isoperimetric inequalities

Rapid mixing
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High-dimensional problems

Input:
* Aset of points Sin R™ or a distribution in R™

e A function f that maps points to real values
(could be the indicator of a set)



Algorithmic Geometry

 What is the complexity of computational
problems as the dimension grows?

e Dimension = number of variables

e Typically, size of input is a function of the dimension.



Problem 1: Optimization

Input: function f: R™ - R specified by an oracle,

point x, error parameter € .

Output: point y such that

f(y) 2 maxf —e



Problem 2: Integration

Input: function f: R™ — R specified by an oracle,

point x, error parameter € .

Output: number A such that:

1-e)ff<A<A+e)ff



Problem 3: Sampling

Input: function f: R™ — R specified by an oracle,

point X, error parameter €.

Output: A point y from a distribution within distance ¢
of distribution with density proportional to f.



Problem 4: Rounding

Input: function f: R™ — R specified by an oracle,

point X, error parameter €.

Output: An affine transformation that approximately
“sandwiches” f between concentric balls.



Problem 5: Learning

Input: i.i.d. points (with labels) from unknown
distribution, error parameter ¢.

Output: A rule to correctly label 1- € of the input
distribution.

(generalizes integration)



Sampling

 Generate a uniform random point from a set S
or with density proportional to function f.

e Numerous applications in diverse areas:
statistics, networking, biology, computer
vision, privacy, operations research etc.

e This course: mathematical and algorithmic
foundations of sampling and its applications.



Lecture 2: Algorithmic Applications

Given a blackbox for sampling, we will study
algorithms for:

e Rounding

 Convex Optimization
* VVolume Computation
* |ntegration



High-dimensional Algorithms
P1. Optimization. Find minimum of f over the set S.

Ellipsoid algorithm [Yudin-Nemirovski; Shor] works
when

S is a convex set and f is a convex function.
P2. Integration. Find the integral of f.

Dyer-Frieze-Kannan algorithm works when
fis the indicator function of a convex set.



Structure

Q. What geometric structure makes algorithmic
problems computationally tractable?

(i.e., solvable with polynomial complexity)

e “Convexity often suffices.”
e |s convexity the frontier of polynomial-time solvability?
 Appears to be in many cases of interest



Convexity

(Indicator functions of) Convex sets:
Vx,yER" 1€ [01],x,yEK=>Ax+(1—-A)ycSK

Concave functions:

FQx + (1= Dy) 2 Af () + (1= Df ) N

Logconcave functions:

FQx+ (1= Dy) = FO f()1 s

Quasiconcave functions: -

fAx+ (1 =Dy) =z min f(x), f(y)

Star-shaped sets:
dx €Ss.t.VyeS,Ax+(1—-A)yES



Sandwiching

Thm (John). Any convex body K has an ellipsoid E s.t.
E € K € nE.

The minimum volume ellipsoid contained in K can be used.

Thm (KLS). For a convex body K in isotropic position,

MR K C jn(v\fD B
n

e Also a factor n sandwiching, but with a different ellipsoid.

 As we will see, isotropic sandwiching (rounding) is
algorithmically efficient while the classical approach is not.



Rounding via Sampling

1. Sample m random points from K;
2. Compute sample mean z and sample covariance matrix A.

1
3. ComputeB = A z.

Applying B to K achieves near-isotropic position.

Thm. C(€).n random points suffice to achieve E (||B — I||2) <e€

for isotropic K.

[Adamczak et al.;Srivastava-Vershynin; improving on Bourgain;Rudelson]

l.e., for any unitvectorv, 1+¢€¢ < E((vTx)Z) <1+e



Convex Feasibility

Input: Separation oracle for a convex body K, guarantee
that if K is nonempty, it contains a ball of radius r and is
contained in the ball of radius R centered the origin.

Output: A point x in K.
Complexity: #oracle calls and #arithmetic operations.

To be efficient, complexity of an algorithm should be
bounded by poly(n, log(R/r)).



Convex optimization reduces to feasibility

 To minimize a convex (or even quasiconvex) function
f, we can reduce to the feasibility problem via a
binary search.

e K:=Kn{x:f(x) <t}

* Maintains convexity.



How to choose oracle queries?



Convex feasibility via sampling

[Bertsimas-V. 02]

1.
2.
3.

Let z=0, P = |—R, R|™.
Does z € K? If yes, output K.

If no, letH ={x : a’x < a’z} be a halfspace
containing K.

let P == P N H.
Sample x4, X5, ..., X,,; uniformly from P.

Let z == %Z x;. Go to Step 2.



Centroid algorithm

[Levin ‘65]. Use centroid of surviving set as
qguery point in each iteration.

#iterations = O(nlog(R/r)).
Best possible.

Problem: how to find centroid?
#P-hard! [Rademacher 2007]



Why does centroid work?

Does not cut volume in half.
But it does cut by a constant fraction.

Thm [Grunbaum ‘60]. For any halfspace H containing
the centroid of a convex body K,

1
vol(KNH) > EVOI(K).



Centroid cuts are balanced

K convex. Assume centroid is origin. Fix normal
vector of halfspace to be e;.

let K; = {x € K:x, = t} be the slice of K at t.

Symmetrize K: Replace each slice K; with a ball of
the same volume as K;.

Claim. Resulting set is convex.
Pf. Use Brunn-Minkowski.



Centroid cuts are balanced

SN

I

 Transform K to a cone while making the
halfspace volume no larger.

e For a cone, the lower bound of the theorem
holds.



Centroid cuts are balanced

e Transform K to a cone.

 Maintain volume of right “half”. Centroid
moves right, so halfspace through centroid
has smaller mass.



Centroid cuts are balanced

e Complete K to a cone. Again centroid moves
right.

* So cone has smaller halfspace volume than K.



Cone volume

e Exercise 1. Show that for a cone, the volume

of a halfspace containing its centroid can be as

n
n . .
small as (m) times its volume but no

smaller.



Convex optimization via Sampling

e How many iterations for the sampling-based
algorithm?

e |f we use only 1 random sample in each
iteration, then the number of iterations could
be exponential!

* Do poly(n) samples suffice?



Approximating the centroid

Let x4, X5, ..., X,;,, be uniform random from Kand y
be their average.

Suppose K is isotropic. Then,
_ 2y 1 2y =1
E(y)=0, E(|lyl]") = —-E(Ix|1?) ==

So m = O(n) samples give a point y within constant
distance of the origin, IF K is isotropic.

Is this good enough? What if K is not isotropic?



Robust Grunbaum: cuts near centroid
are also balanced

Lemma [BVO02]. For isotropic convex body K and halfspace
H containing a point within distance t of the origin,

vol(KNn H) > (% — t) vol(K).

Thm [BVO02]. For any convex body K and halfspace H
containing the average of m random points from K,

E(vol(KNH)) > (% — \/%) vol(K).



Robust Grunbaum: cuts near centroid
are also balanced

Lemma. For isotropic convex body K and halfspace H
containing a point within distance t of the origin,

vol(KNH) > (1 — t) vol(K).

e

Proof uses similar ideas as Grunbaum, with more structural
properties. In particular,

Lemma. For any 1-dimensional isotropic logconcave function f,
max f < 1.



Optimization via Sampling

Thm. For any convex body K and halfspace H containing the
average of m random points from K,

E(vol(KNH)) > (% — \/%) vol(K).

Proof. We can assume K is isotropic since affine
transformations maintain vol(K N H)/vol(K).

Distance of y, the average of random samples, from the
centroid is bounded.

So O(n) samples suffice in each iteration.



Optimization via Sampling

Thm. [BV02] Convex feasibility can be solved using O(n log R/r)
oracle calls.

Ellipsoid takes n?, Vaidya’s algorithm also takes O(n log R/r).

With sampling, one can solve convex optimization using only a
membership oracle and a starting point in K. We will see this
later.




Integration

We begin with the important special case of volume
computation: Given convex body K, and parameter €,
find a number A s.t.

(1 —¢€e)vol(K) <A < (1+ ¢e)vol(K).



Volume via Rounding

* Using the John ellipsoid or the Inertial ellipsoid

EC K< nE = vol(E) < vol(K) < n" vol(E).

e Polytime algorithm, nom approximation to volume

e Can we do better?



Complexity of Volume Estimation

Thm [E86, BF87]. For any deterministic algorithm that
uses at most n% membership calls to the oracle for a
convex body K and computes two numbers A and B
such that A < vol(K) < B, there is some convex body
for which the ratio B/A is at least

cn
alogn

where c is an absolute constant.

N[5




Complexity of Volume Estimation

Thm [BF]. For deterministic algorithms:

# oracle calls approximation factor
1\
.~ ( cn )’z

aﬂozn

[ il
YL
(E‘) (I + €)
Thm [DV12].

1 o(n)
) poly(n).

€

Matching upper bound of (1 + €)™ in time (



Volume computation

[DFK89]. Polynomial-time randomized algorithm
that estimates volume with probability at least

L 1 1
1 — d in time poly(n, Z,log (5))'



Volume by Random Sampling

Pick random samples from ball/cube containing K.
Compute fraction c of sample in K.
Output c.vol(outer ball).

Need too many samples



Volume via Sampling

BC K CRB.

let K; = KN2Y"B, i =0,1,..,m = nlogR.

vol(K) = vol(B). “ka) vol(Kz) ~_volKm)

vol(Ky) vol(Ky)  vol(Ky—1)

Estimate each ratio with random samples.



Volume via Sampling

K;=Kn2/"B, i=0,1,..,m=nlogR.

vol(K;) vol(K,)  vol(Ky,)
vol(Ky) vol(K;)  vol(Ky—1)

vol(K) = vol(B).

Claim. vol(K;;1) < 2.vol(K;).

_ m _ x(.,2
Total #samples = m.— = 0*(n=).



Variance of product

Exercise 2. Let Y be the product estimator
Yy =[] X
with each X!, i=1,2,..., m, estimated using k samples

vol(Ki_q)
vol(K;)

1 . AN
aSXl—EZijL WlthE(X]) —

Show that

3 m
var(Y) < <1 +E> — 1 | E(Y)%.



Appears to be optimal

 n phases, O*(n) samples in each phase.

* If we only took m < n phases, then the ratio to be
estimated in some phase could be as large as n™/™
which is superpoly for m = o(n).

o |s Q(n?) total samples the best possible?



Simulated Annealing [Kalai-V.04,Lovasz-V.03]

To estimate [ f consider a sequence

fO'flerJ '"me — f

with ffo being easy, e.g., constant function over ball.

o 1=

Each ratio can be estimated by sampling:
1. Sample X with density proportional to f;
fi+1(X)

fi(X)

2. ComputeY =

_r firr X)) fi(X) . J fisa
EW) =] fi(X) ‘ffioodX IR




A tight reduction [LVO3]

Define:  f;(X) = e~ ailIX|

Ao = 2R, Qj4q =ai(1_\/%), a,, = —

P R -
.
7
/al

m ~ynlog(2R/€)




Volume via Annealing

fix) =e Xl g, =g (1 —\/%>

_ S (X0 _J S
“Troo PO

Lemma. E(Y?) < 4E(Y)? for large enough n.

Y

Although expectation of Y can be large (exponential
even), it has small variance!



Proof via logconcavity

Exercise 2. For a logconcave function f: R™ — R,

let Z(a)=[ f(X)%dX fora > 0.
Show that a™Z(a) is a logconcave function.

X

t
[Hint: Define F(x,a) = f (?) ]



Proof via logconcavity

Z(@) = | f(aX)dX

a"™Z(a) is a logconcave function.

Z(Aj41) Z(2aj1—a;)
B = L) (1) = Zrcs

E(Yiz) — Z(2aj41—a;)Z(a;) < (ajyq)%™ <4
E(y) Z(@i+1)? ~ (ajp—ap(a)™ T



Progress on volume

Power New ideas

Dyer-Frieze-Kannan 91 23 everything
Lovasz-Siminovits 90 16 localization

Applegate-K 90 10 logconcave integration

L 90 10 ball walk

DF 91 8 error analysis

LS 93 7 multiple improvements
KLS 97 5 speedy walk, isotropy

LV 03,04 4 annealing, wt. isoper.

LV 06 4 integration, local analysis



Optimization via Annealing

We can minimize quasiconvex function f over convex set S
given only by a membership oracle and a starting point in S.
[KV04, LVO6].

Almost the same algorithm, in reverse: to find max f, define
X))=fX)% i=1,...,m. ayg=¢€, a,, =M.
sequence of functions starting at nearly uniform and getting

more and more concentrated points of near-optimal
objective value.



Lecture 3: Sampling Algorithms

Sampling by random walks
Conductance

Grid walk, Ball walk, Hit-and-run
Isoperimetric inequalities

Rapid mixing
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Sampling

 Generate a uniform random point from a set S
or with density proportional to function f.

e Numerous applications in diverse areas:
statistics, networking, biology, computer
vision, privacy, operations research etc.

e This course: mathematical and algorithmic
foundations of sampling and its applications.



Structure

Q. What geometric structure makes algorithmic
problems computationally tractable?

(i.e., solvable with polynomial complexity)

e “Convexity often suffices.”
e |s convexity the frontier of polynomial-time solvability?
 Appears to be in many cases of interest



Convexity

(Indicator functions of) Convex sets:
Vx,yER" 1€ [01],x,yEK=>Ax+(1—-A)ycSK

Concave functions:

FQx + (1= Dy) 2 Af () + (1= Df ) N

Logconcave functions:

FQx+ (1= Dy) = FO f()1 s

Quasiconcave functions: -

fAx+ (1 =Dy) =z min f(x), f(y)

Star-shaped sets:
dx €Ss.t.VyeS,Ax+(1—-A)yES



Annealing

Integration
* i) =fX)"X€eK

€
ao__

= am=1

A; 1= a; (1 + \/iﬁ)

Sample with density prop.

to f;(X).
Estimate

Wi~ J firr XD /] fi(X)

Output W = W, W, ... W,,.

Optimization
* filX)=fX)"X€eK

__ € _Zn

Ao = R’ Am — 2
1

aj+1= Q; (1 +\/_ﬁ)

Sample with density prop.

to f;(X).

Output X with max f(X).



How to sample?

Take a random walk in K.
Consider a lattice intersected with K
Grid (lattice) walk:
At grid point x,
pick random y from {x + de;}
ifyisinK,gotoy



Ball walk

At X,
pick randomy from x 4+ 0B,,
ifyisinK,gotoy

o~




Hit-and-run

[Boneh, Smith]

At X,

-pick a random chord L through x
-go to a uniform random pointy on L

L

X



Markov chains

e State space K,

e set of measurable subsets that form a g-algebra,
i.e., closed under finite unions and intersections

* A next step distribution P,(.) associated with
each point u in the state space.

e A starting point.

* Wy, W1, wue, Wy, ... S.T.
P(w, €A |wyg,wq, ..., Wx_1) = P(w, EA|wWi_q)



Convergence

Stationary distribution Q, ergodic “flow” defined as

B(A) = j P, (K¥A)dQ (w)

A

For a stationary distribution Q, we have

D(A) = O(K¥A)



Random walks in K

 For both walks, the distribution of the current point
tends to uniform in K.

 The uniform distribution is stationary, in fact,
Qw)B,(v) = Q(W)P,(w).

Exercise 1. Show that the uniform distribution is
stationary for hit-and-run.

e Question: How many steps are needed?



Rate of convergence?

Ergodic “flow”:

D(4) = [, P(K¥A)dQ(w)

Conductance:

D(A)
min Q(4), Q(K¥A)

P(A) =

¢ =inf ¢p(A)



Conductance

Mixing rate cannot be faster than 1/¢
Since it takes this many steps to even escape from some subsets.

Does ¢ give an upper bound? Yes, for discrete Markov chains

2
Thm. [Jerrum-Sinclair] % <1—-A<52¢

Where A is the second eigenvalue of the transition matrix.

1

. 2
Thus, mixing rate = —/1 el



Rate of convergence

THM [593]. M = Sup (M) "WARM START'
At (N +

dy (8, ,9) < i (I-£L>

™ B = Nk ()

¢+ (M (-4
Xt50, dy\ (Q&,Qo) < — ( 2_).

High conductance => rapid mixing
Proof does not go through eigenvalue gap



How to bound conductance?

Conductance of ball walk is not bounded!

Local conductance can be arbitrarily small.

£(x) = vol(x + 8B, N K)
X T T V0I(6B,)

What can we do?

Modify K slightly
Or start with a nearly random point in K.



Smoothing a convex body
K + ab,
Each point of the original body has a small ball around it.

What about new points? No worse than local
conductance of boundary points of a small ball.

Choosing step radius 6 < a/+/n will ensure that every
point has local conductance at least a fixed constant.



Conductance

Consider an arbitrary measurable subset S.

5 : J

We need to show that the escape probability
from S is large.




Conductance

Need:
e Points that do not cross over are far from each other

* |If two subsets are far, then the rest of the set is large



One-step distributions

[dea:
d(P,, P,) large

= the balls around u,v have small intersection

= u,v must be far



Prob. distance = Geometric distance

Lemma. u,v € K, £(u),f(v) = ¢ for the ball walk with
0-steps. If

d(uv) < td
u,v
\/_
thend(P,P,) <1+t—+. \
ARV
/
anY
||




Coupling 1-step distributions




|lsoperimetry

Thm [L$12,DF11] .

VoL ($,) 2 24(5.5.) , NJVL(S,) ’\IoL/Sz)}
D

Extends to logconcave densities:

M (55) 2 24608 ww § T, 6)T,(5:) ]
D

T DisTRIfurod WITH LoaCoNCAVE DENSITY £
f(x:9) 5 JFooke




Conductance

Thm. Conductance of ball walk is at least

26
16+/nD
We can use
3_1 5 — 4 B 1
n’"  yn nyn
So
>L N te =0 4D2
q[)_nzD, mixing rate = O(n*D*)



Conductance

2

Thm. Conductance of ball walk is at least

16/nD
Pf.
t ¢
S1= {x €S: P.(K¥S) <Z} Sy, = {x € K¥S: P.(S) <Z}
S3 = K¥S:%¥S,
vol(S vol(K¥S
vol(S;) = 2( ),vol(SZ) > (2 )
If not,
£ 1 '
f P.(K¥S)dx = —.-vol(S) = ¢(S) =—.
s 4 2 8



Conductance

2

16/nD

Thm. Conductance of ball walk is at least
Pf.

a ¢
Slz{xES: Px(K¥S)<Z} SZ:{xeK¥S: PX(S)<Z}

Foru € S;,v € S,,

y 25
d(P,P)=1—P(K¥S) —P,(S) >1—= = du,v) > ——.
2 2n

26
vol(S3) = —min vol(S;), vol(S,)
Jn

05 .
> >v min vol(S), vol(K¥S).



Conductance

226

Thm. Conductance of ball walk is at least

Pf.

1 1
j P.(K¥S)dx = = f P.(K¥S)dx + = f P.(S)dx
S 2 S 2 K¥S

16+4/nD

4
.vol(S3)

> ==
2 4

2
> £<6
16/nD

min vol(S), vol(K¥S).



KLS hyperplane conjecture

A: covariance matrix of stationary distribution

E (1xid) = (A) = X (A)
L

sy M “j? (s )T (52)
\li (A)
S

Z?\(




Thin shell conjecture

Theorem [Bobkov].

b r

Vah (I11) A

Conj. (Thin shell) \Vae (I1X1%) = O(W)
Alternatively: E[(ixi-))=0(1)

Current best bound [Guedon-E. Milman]; nl/3

o(r)



KLS-Slicing-Thin-shell

known conj
thinshell  71°  0())
slicing ' O (1)
KLS o)

Moreover, KLS implies the others [Ball] and thin-
shell implies slicing [Eldan-Klartag10].



Convergence

Thm. [LS93, KLS97] If S is convex, then the ball
walk with an M-warm start reaches an

(independent) nearly random point in poly(n, D,
M) steps.

e Strictly speaking, this is not rapid mixing!
* How to get the first random point?

e Better dependence on diameter D?



Is rapid mixing possible?

Ball walk can have bad starts, but
Hit-and-run escapes from corners

N -

A£G, 8,) =0

Min distance based isoperimetry is too coarse



Average distance isoperimetry

e How to average distance?

h(x) £ mn - d(«v)

MéSUVégz
X e £(x,y)

e Theorem.[LV04; Dieker-V.12]
T(S3) 3 E(hG) TS (s))
D




Average distance Isoperimetry

0( (q ) - |- Vl“)“’i/\
Y

@), T()» d.6,8) T 6T
hix) = L MN O\k(“z")
3 uesuuesz
X €Tw,v)

W (04) T(s) » E () T (8) T (S,)




Hit-and-run

e Thm [LVO4]. Hit-and-run mixes in polynomial
time from any starting point inside a convex
body.

|
e Conductance = Q (@

e Gives 0*(n3) sampling algorithm



Multi-point random walks

* Maintain m points

* For each point X,

— Pick a random combination of the m points
— Use this to update X

Stationary distribution: m uniform random
points!



Sampling

Q1. Is starting at a nice point faster? E.g., does ball walk
mix rapidly starting at a single point, e.g., the centroid?

Q2. How to check convergence to stationarity on the
fly? Does it suffice to check that the measures of all
halfspaces have converged?

(Note: poly(n) sample can estimate all halfspace measures
approximately)



Sampling: current status

Can be sampled efficiently:

e Convex bodies

* Logconcave distributions

e (1/n-1)-harmonic-concave distributions
 Near-logconcave distributions

e Star-shaped bodies
°« 77

Cannot be sampled efficiently:
e Quasiconcave distributions



High-dimensional sampling algorithms

e Sampling manifolds
e Random reflections
e Deterministic sampling?

e Other applications...



