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Format

• Please ask questions 
• Indicate that I should go faster or slower
• Feel free to ask for more examples
• And for more proofs

• Exercises along the way.



High-dimensional problems

Input: 
• A set of points S in n-dimensional space 

or a distribution in 
• A function f that maps points to real values 

(could be the indicator of a set)



Algorithmic Geometry

• What is the complexity of computational 
problems as the dimension grows?

• Dimension = number of variables

• Typically, size of input is a function of the dimension.



Problem 1: Optimization

Input: function f:  specified by an oracle, 
point x, error parameter . 

Output: point y such that  



Problem 2: Integration

Input: function f:  specified by an oracle, 
point x, error parameter . 

Output: number A such that:



Problem 3: Sampling

Input: function f:  specified by an oracle, 
point x, error parameter . 

Output: A point y from a distribution within distance 
of distribution with density proportional to f.



Problem 4: Rounding

Input: function f:  specified by an oracle, 
point x, error parameter .

Output: An affine transformation that approximately 
“sandwiches” f between concentric balls.



Problem 5: Learning

Input: i.i.d. points with labels from an unknown 
distribution, error parameter .

Output: A rule to correctly label 1- of the input 
distribution.

(generalizes integration) 



Sampling

• Generate a uniform random point from a set S 
or with density proportional to function f.

• Numerous applications in diverse areas: 
statistics, networking, biology, computer 
vision, privacy, operations research etc.

• This course: mathematical and algorithmic 
foundations of sampling and its applications.



Course Outline

• Lecture 1. Introduction to Sampling, high-
dimensional Geometry and Complexity.

• L2. Algorithms based on Sampling.

• L3. Sampling Algorithms.



Lecture 1: Introduction

• Computational problems in high dimension
• The challenges of high dimensionality
• Convex bodies, Logconcave functions
• Brunn-Minkowski and its variants
• Isotropy
• Summary of applications



Lecture 2: Algorithmic Applications

• Convex Optimization
• Rounding
• Volume Computation
• Integration



Lecture 3: Sampling Algorithms

• Sampling by random walks
• Conductance 
• Grid walk, Ball walk, Hit-and-run
• Isoperimetric inequalities
• Rapid mixing



High-dimensional problems are hard

P1. Optimization. Find minimum of f over a set.
P2. Integration. Find the average (or integral) of f.

• These problems are intractable (hard) in general, i.e., for 
arbitrary sets and general functions

• Intractable for arbitrary sets and linear functions
• Intractable for polytopes and quadratic functions

P1 is NP-hard or worse 
– min number of unsatisfied clauses in a 3-SAT formula

P2 is #P-hard or worse
– Count number of satisfying solutions to a 3-SAT formula



High-dimensional Algorithms

P1. Optimization. Find minimum of f over the set S.

Ellipsoid algorithm [Yudin-Nemirovski; Shor;Khachiyan;GLS] 

S is a convex set and f is a convex function.

P2. Integration. Find the integral of f.

Dyer-Frieze-Kannan algorithm 
f is the indicator function of a convex set.



A glimpse of the complexity frontier
1. Are the entries of a given matrix inner products of a set of vectors?

A = BBT?    (semidefinite program)

2. Are they inner products of a set of nonnegative vectors? 

Is A =BBT, B ≥ 0?   (completely positive)



Structure

Q. What geometric structure makes algorithmic  
problems computationally tractable?
(i.e., solvable with polynomial complexity)

• “Convexity often suffices.” 
• Is convexity the frontier of polynomial-time solvability?
• Appears to be in many cases of interest



Convexity
(Indicator functions of) Convex sets:∀ݔ, ݕ ∈ ܴ, ߣ ∈ 0,1 , ,ݔ ݕ ∈ ⇒	ܭ ݔߣ	 + 1 − ߣ ݕ ⊆ 		ܭ
Concave functions:݂ ݔߣ + 1 − ߣ ݕ ≥ ݂ߣ ݔ + 1 − ߣ ݂ ݕ 		
Logconcave functions: ݂ ݔߣ + 1 − ߣ ݕ ≥ ݂ ݔ ఒ	݂ ݕ ଵିఒ			
Quasiconcave functions:݂ ݔߣ + 1 − ߣ ݕ ≥ min 	 ݂ ݔ , ݂ ݕ 					
Star-shaped sets:∃ݔ ∈ .ݏ	ܵ .ݐ ݕ∀ ∈ ܵ, ݔߣ + 1 − ߣ ݕ ∈ ܵ			



How to specify a convex set?

• Explicit list of constraints, e.g., a linear program:

• What about the set of positive semidefinite
matrices?

• Or the set of vectors on the edges of a graph that 
have weight at least one on every cut?



Structure I: Separation Oracle

Either  x   K or there is a halfspace containing K and not x.



Convex sets have separation oracles

• If x is not in K, let y be the point in K that is closest to x.

• y is unique: If ଵ ଶ are both closest, then ଵ ଶ /2 
is closer. 

• Take the hyperplane normal to (x-y):

் ்



Separation oracles
• For an LP, simply check all the linear constraints

• For a ball or ellipsoid, find the tangent plane

• For the SDP cone, check if the eigenvalues are all 
nonnegative; if not eigenvector gives a separating 
hyperplane.

• For cut example, find mincut to check if all cuts 
are at least 1. 



Example: Learning by Sampling

Sequence of points X1, X2, …,
Unknown -1/1 function f

We get Xi and have to guess f(Xi)

Goal: minimize number of wrong guesses.



Learning Halfspaces

Unknown -1/1 function f

f(X) = 1  if  > 0   and  f(X) = -1  otherwise

For an unknown vector w, with each component 
wi being a b-bit integer. 

What is the minimum number of mistakes?



Majority algorithm
After X1, X2, …,Xk
the set of consistent functions f correspond to
Sk = {w :  (sign(Xi)Xi) > 0  for i = 1,2,…, k }

Guess f(Xk+1), to be the majority of the predictions 
of each w in Sk

Claim. Number of wrong guesses ≤ bn

But how to compute majority?? |Sk| could be 2bn !  



Random algorithm

• Pick random w in Sk

• Guess 



Random algorithm

• Pick random w in Sk

• Guess  ୩ାଵ
Lemma 1. E(#wrong guesses) ≤ 2bn.
Proof idea. Every time random guess is wrong, 
majority algorithm has probability at least ½ of 
being wrong. 

Exercise 1. Prove Lemma 1.



Learning by Sampling

• How to pick random w in Sk?

• Sk is a convex set!

• It can be efficiently sampled.



Structure of Convex Bodies

• Volume(unit cube) = 1

• Volume(unit ball)  మ u
– drops exponentially with n

• For any central hyperplane, most of the mass 
of a ball is within distance .



Structure of Convex Bodies

• Volume(unit cube) = 1

• Volume(unit ball)  మ
– drops exponentially with n

• Most of the volume is near the boundary:
So, ିக



Structure II: Volume Distribution
A,B sets in , their Minkowski sum is:

For a convex body, the hyperplane section 
at (x+y)/2 contains ௫ ௬
What is the volume distribution?



Brunn-Minkowski inequality

A, B compact sets in 
Thm. ଵ ଵ ଵ
Suffices to prove ଵ ଵ ଵ

by taking the sets to be ܣߣ, 1 − ߣ ܤ



Brunn-Minkowski inequality

Thm. A, B: compact sets in ଵ୬ ଵ୬ ଵ୬
Proof.  First take A, B to be cuboids, i.e., 
A = ଵ ଶ 
B = ଵ ଶ 
Then 
A+B = ଵ ଵ ଶ ଶ   .



Brunn-Minkowski inequality

Thm. A, B: compact sets in ଵ୬ ଵ୬ ଵ୬
Proof.  Next take A,B to be finite unions of disjoint 
cuboids:   A =  and B = 
Finally, note that any compact set can be approximated 
to arbitrary accuracy by the union of a finite set of 
cuboids.



Logconcave functions

•  

•  ା 
ఒ ଵିఒ

i.e., f is nonnegative and its logarithm is concave.



Logconcave functions

•  ା ఒ ଵିఒ
• Examples:

– Indicator functions of convex sets are logconcave
– Gaussian density function, 
– exponential function

• Level sets of f, ௧ are convex.
• Many other useful geometric properties



Prekopa-Leindler inequality

Prekopa-Leindler:   ା ఒ ଵିఒ
then ఒ ଵିఒ
Functional version of [B-M], equivalent to it.



Properties of logconcave functions

For two logconcave functions f and g
• Their sum might not be logconcave

• But their product h(x) = f(x)g(x)  is logconcave
• And so is their minimum h(x) = min f(x), g(x).



Properties of logconcave functions

• Convolution is logconcave

ோ
• And so is any marginal:

ଵ ଶ  ାଵ ାଶ ோషೖ
Exercise 2. Prove the above properties using the Prekopa-
Leindler inequality.



Isotropic position

• Affine transformations preserve convexity and 
logconcavity. 

• What can one use as a canonical position?

• E.g., ellipsoids map to a ball, parallelopipeds map 
to cubes. 

• What about general convex bodies? Logconcave
functions? 



Isotropic position
• Let x be a random point from a convex body K

• z = E(x) is the center of gravity (or centroid). Shift so 
that z = 0.

• Now consider the covariance matrix 

்   
• A has bounded entries; it is positive semidefinite; it is 

full rank unless K lies in a lower-dimensional subspace. 



Isotropic position

• ்
• ଶ for some n x n matrix B. 

• Let ᇱ ିଵ ିଵ
• Then a random point y from K’ satisfies:் 
• K’ is in isotropic position.



Isotropic position: Exercises

• Exercise 3. Find R s.t. the origin-centered cube 
of side length 2R is isotropic. 

• Exercise 4. Show that for a random point x 
from a set in isotropic position, for any unit 
vector v, we have 

் ଶ



Isotropic position and sandwiching

• For any convex body K (in fact any set/distribution 
with bounded second moments), we can apply an 
affine transformation so that for a random point x 
from K : ் 

• Thus K “looks like a ball” up to second moments.
• How close is it really to a ball? Can it be 

sandwiched between two balls of similar radii?
• Yes!



Sandwiching
Thm (John). Any convex body K has an ellipsoid E s.t.ܧ ⊆ ܭ ⊆ .ܧ݊
The minimum volume ellipsoid contained in K can be used.

Thm (KLS).  For a convex body K in isotropic position,  

• Also a factor n sandwiching, but with a different ellipsoid. 
• As we will see, isotropic sandwiching (rounding) is 

algorithmically efficient while the classical approach is not.



Lecture 2: Algorithmic Applications

• Convex Optimization
• Rounding
• Volume Computation
• Integration



Lecture 3: Sampling Algorithms

• Sampling by random walks
• Conductance 
• Grid walk, Ball walk, Hit-and-run
• Isoperimetric inequalities
• Rapid mixing
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Format

• Please ask questions 
• Indicate that I should go faster or slower
• Feel free to ask for more examples
• And for more proofs

• Exercises along the way.



High-dimensional problems

Input: 
• A set of points S in  or a distribution in 
• A function f that maps points to real values 

(could be the indicator of a set)



Algorithmic Geometry

• What is the complexity of computational 
problems as the dimension grows?

• Dimension = number of variables

• Typically, size of input is a function of the dimension.



Problem 1: Optimization

Input: function f:  specified by an oracle, 
point x, error parameter . 

Output: point y such that  



Problem 2: Integration

Input: function f:  specified by an oracle, 
point x, error parameter . 

Output: number A such that:



Problem 3: Sampling

Input: function f:  specified by an oracle, 
point x, error parameter . 

Output: A point y from a distribution within distance 
of distribution with density proportional to f.



Problem 4: Rounding

Input: function f:  specified by an oracle, 
point x, error parameter .

Output: An affine transformation that approximately 
“sandwiches” f between concentric balls.



Problem 5: Learning

Input: i.i.d. points (with labels) from unknown 
distribution, error parameter .

Output: A rule to correctly label 1- of the input 
distribution.

(generalizes integration) 



Sampling

• Generate a uniform random point from a set S 
or with density proportional to function f.

• Numerous applications in diverse areas: 
statistics, networking, biology, computer 
vision, privacy, operations research etc.

• This course: mathematical and algorithmic 
foundations of sampling and its applications.



Lecture 2: Algorithmic Applications

Given a blackbox for sampling, we will study 
algorithms for: 

• Rounding
• Convex Optimization
• Volume Computation
• Integration



High-dimensional Algorithms

P1. Optimization. Find minimum of f over the set S.

Ellipsoid algorithm [Yudin-Nemirovski; Shor] works 
when
S is a convex set and f is a convex function.

P2. Integration. Find the integral of f.

Dyer-Frieze-Kannan algorithm works when
f is the indicator function of a convex set.



Structure

Q. What geometric structure makes algorithmic  
problems computationally tractable?
(i.e., solvable with polynomial complexity)

• “Convexity often suffices.” 
• Is convexity the frontier of polynomial-time solvability?
• Appears to be in many cases of interest



Convexity
(Indicator functions of) Convex sets:∀ݔ, ݕ ∈ ܴ, ߣ ∈ 0,1 , ,ݔ ݕ ∈ ⇒	ܭ ݔߣ	 + 1 − ߣ ݕ ⊆ 		ܭ
Concave functions:݂ ݔߣ + 1 − ߣ ݕ ≥ ݂ߣ ݔ + 1 − ߣ ݂ ݕ 		
Logconcave functions: ݂ ݔߣ + 1 − ߣ ݕ ≥ ݂ ݔ ఒ	݂ ݕ ଵିఒ			
Quasiconcave functions:݂ ݔߣ + 1 − ߣ ݕ ≥ min 	 ݂ ݔ , ݂ ݕ 					
Star-shaped sets:∃ݔ ∈ .ݏ	ܵ .ݐ ݕ∀ ∈ ܵ, ݔߣ + 1 − ߣ ݕ ∈ ܵ			



Sandwiching
Thm (John). Any convex body K has an ellipsoid E s.t.ܧ ⊆ ܭ ⊆ .ܧ݊
The minimum volume ellipsoid contained in K can be used.

Thm (KLS).  For a convex body K in isotropic position,  

• Also a factor n sandwiching, but with a different ellipsoid. 
• As we will see, isotropic sandwiching (rounding) is 

algorithmically efficient while the classical approach is not.



Rounding via Sampling
1. Sample m random points from K; 
2. Compute sample mean z and sample covariance matrix A.

3. Compute B = Aିభమ.	
Applying B to K achieves near-isotropic position.

Thm. C(ε).n random points suffice to achieve  ܧ ܤ − ܫ ଶ ≤ ߳
for isotropic K. 

[Adamczak et al.;Srivastava-Vershynin; improving on Bourgain;Rudelson]   

I.e., for any unit vector v, 1 + ߳ ≤ ܧ ݔ்ݒ ଶ ≤ 1 + ߳.



Convex Feasibility

Input: Separation oracle for a convex body K,  guarantee 
that if K is nonempty, it contains a ball of radius r and is 
contained in the ball of radius R centered the origin. 

Output: A point x in K.   

Complexity: #oracle calls and #arithmetic operations. 

To be efficient, complexity of an algorithm should be 
bounded by poly(n, log(R/r)).  



Convex optimization reduces to feasibility

• To minimize a convex (or even quasiconvex) function 
f, we can reduce to the feasibility problem via a 
binary search. 

•

• Maintains convexity.



How to choose oracle queries?



Convex feasibility via sampling 

[Bertsimas-V. 02]
1. Let z=0, P = .
2. Does If yes, output K. 
3. If no, let H = ் ் be a halfspace

containing K.
4. Let 
5. Sample ଵ ଶ  uniformly from P.

6. Let ଵ  Go to Step 2. 



Centroid algorithm

• [Levin ‘65]. Use centroid of surviving set as 
query point in each iteration.

• #iterations = O(nlog(R/r)). 
• Best possible.

• Problem: how to find centroid?
• #P-hard! [Rademacher 2007]



Why does centroid work?

Does not cut volume in half.

But it does cut by a constant fraction.

Thm [Grunbaum ‘60]. For any halfspace H containing 
the centroid of a convex body K, 



Centroid cuts are balanced
K convex. Assume centroid is origin. Fix normal 
vector of halfspace to be ଵ
Let ௧ ଵ be the slice of K at t.

Symmetrize K: Replace each slice ௧ with a ball of 
the same volume as ௧.
Claim. Resulting set is convex. 
Pf. Use Brunn-Minkowski.



Centroid cuts are balanced

• Transform K to a cone while making the 
halfspace volume no larger.

• For a cone, the lower bound of the theorem 
holds.



Centroid cuts are balanced

• Transform K to a cone. 
• Maintain volume of right “half”. Centroid 

moves right, so halfspace through centroid 
has smaller mass.



Centroid cuts are balanced

• Complete K to a cone. Again centroid moves 
right. 

• So cone has smaller halfspace volume than K. 



Cone volume

• Exercise 1. Show that for a cone, the volume 
of a halfspace containing its centroid can be as 

small as ାଵ 
times its volume but no 

smaller.



Convex optimization via Sampling

• How many iterations for the sampling-based 
algorithm?

• If we use only 1 random sample in each 
iteration, then the number of iterations could 
be exponential!

• Do poly(n) samples suffice?



Approximating the centroid
Let ଵ ଶ  be uniform random from K and y 
be their average.

Suppose K is isotropic. Then, 

E(y)=0,    E
ଶ ଵ୫ ୧ ଶ ୬୫

So m = O(n) samples give a point y within constant 
distance of the origin, IF K is isotropic.

Is this good enough? What if K is not isotropic?



Robust Grunbaum: cuts near centroid 
are also balanced

Lemma [BV02]. For isotropic convex body K and halfspace
H containing a point within distance t of the origin, 

Thm [BV02]. For any convex body K and halfspace H 
containing the average of m random points from K,



Robust Grunbaum: cuts near centroid 
are also balanced

Lemma. For isotropic convex body K and halfspace H 
containing a point within distance t of the origin, vol K ∩ H ≥ 1e − t vol K .
Proof uses similar ideas as Grunbaum, with more structural 
properties. In particular, 

Lemma. For any 1-dimensional isotropic logconcave function f, max f < 1.



Optimization via Sampling
Thm. For any convex body K and halfspace H containing the 
average of m random points from K,E(vol K ∩ H ) ≥ 1e − nm vol K .
Proof. We can assume K is isotropic since affine 
transformations maintain vol(K ∩ H)/vol(K).

Distance of y, the average of random samples, from the 
centroid is bounded.

So O(n) samples suffice in each iteration.



Optimization via Sampling
Thm. [BV02] Convex feasibility can be solved using O(n log R/r) 
oracle calls.  

Ellipsoid takes ݊ଶ, Vaidya’s algorithm also takes O(n log R/r). 

With sampling, one can solve convex optimization using only a 
membership oracle and a starting point in K. We will see this 
later. 



Integration

We begin with the important special case of volume 
computation: Given convex body K, and parameter , 
find a number A s.t.



Volume via Rounding

• Using the John ellipsoid or the Inertial ellipsoid

୬
• Polytime algorithm, ை  approximation to volume 

• Can we do better?



Complexity of Volume Estimation

Thm [E86, BF87]. For any deterministic algorithm that 
uses at most    membership calls to the oracle for a 
convex body K and computes two numbers A and B 
such that , there is some convex body 
for which the ratio B/A is at least୬ଶ
where c is an absolute constant.



Complexity of Volume Estimation

Thm [BF]. For deterministic algorithms:

# oracle calls approximation factor

Thm [DV12]. 

Matching upper bound of  in time ଵఢ ை 



Volume computation

[DFK89]. Polynomial-time randomized algorithm 
that estimates volume with probability at least 

in time poly(n, ଵఢ ଵఋ ). 



Volume by Random Sampling
• Pick random samples from ball/cube containing K. 
• Compute fraction c of sample in K.
• Output c.vol(outer ball).

• Need too many samples



Volume via Sampling

Let  /

ଵ ଶଵ ୫୫ିଵ
Estimate each ratio with random samples.



Volume via Sampling

 /
ଵ ଶଵ ୫୫ିଵ

Claim. ୧ାଵ ୧
Total #samples  ఢమ ∗ ଶ



Variance of product

Exercise 2. Let Y be the product estimatorܻ = ∏ܺ
with each ܺ, i=1,2,…, m, estimated using k samples

as ܺ = ଵ ∑ ܺ 	 with  ௩ షభ௩ 
Show that var Y ≤ 1 + 3݇  − 1 E Y ଶ.



Appears to be optimal

• n phases, O*(n) samples in each phase.

• If we only took m < n phases, then the ratio to be 
estimated in some phase could be as large as /
which is superpoly for m = o(n).

• Is ଶ total samples the best possible?



Simulated Annealing [Kalai-V.04,Lovasz-V.03]

To estimate ∫݂ consider a sequence ݂, ଵ݂, ଶ݂, … , ݂ = ݂
with ∫ ݂ being easy, e.g., constant function over ball.

Then,    ∫ భ∫ బ ∫ మ∫ భ ∫ ∫ షభ
Each ratio can be estimated by sampling:
1. Sample X with density proportional to ݂
2. Compute ܻ = శభ  ܧ ܻ = ∫ శభ   .  ∫   ݀ܺ = ∫ శభ∫  .



A tight reduction [LV03]

Define:  ି 
 ାଵ  ଵ  ఢଶோ݉	~	 ݊ log(2ܴ/߳)



Volume via Annealing

 ି  ାଵ 
ାଵ ାଵ

Lemma. ଶ ଶ for large enough n.

Although expectation of Y can be large (exponential 
even), it has small variance!



Proof via logconcavity

Exercise 2. For a logconcave function  , 
let  for .  
Show that  is a logconcave function.

[Hint: Define ௫௧ ௧
.] 



Proof via logconcavity

 is a logconcave function.

  శభ  ଶ  ଶశభି 
ா మா   ଶశభି   శభ మ శభ మଶశభି   



Progress on volume

Power New ideas
Dyer-Frieze-Kannan 91 23 everything
Lovász-Siminovits 90 16 localization 
Applegate-K 90 10 logconcave integration
L 90                             10 ball walk
DF 91                       8 error analysis
LS 93  7 multiple improvements
KLS 97 5 speedy walk, isotropy
LV 03,04    4             annealing, wt. isoper.
LV 06 4              integration, local analysis 



Optimization via Annealing

We can minimize quasiconvex function f over convex set S 
given only by a membership oracle and a starting point in S. 
[KV04, LV06].

Almost the same algorithm, in reverse: to find max f, define    M.
sequence of functions starting at nearly uniform and getting 
more and more concentrated points of near-optimal 
objective value.



Lecture 3: Sampling Algorithms

• Sampling by random walks
• Conductance 
• Grid walk, Ball walk, Hit-and-run
• Isoperimetric inequalities
• Rapid mixing
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Sampling

• Generate a uniform random point from a set S 
or with density proportional to function f.

• Numerous applications in diverse areas: 
statistics, networking, biology, computer 
vision, privacy, operations research etc.

• This course: mathematical and algorithmic 
foundations of sampling and its applications.



Structure

Q. What geometric structure makes algorithmic  
problems computationally tractable?
(i.e., solvable with polynomial complexity)

• “Convexity often suffices.” 
• Is convexity the frontier of polynomial-time solvability?
• Appears to be in many cases of interest



Convexity
(Indicator functions of) Convex sets:∀ݔ, ݕ ∈ ܴ, ߣ ∈ 0,1 , ,ݔ ݕ ∈ ⇒	ܭ ݔߣ	 + 1 − ߣ ݕ ⊆ 		ܭ
Concave functions:݂ ݔߣ + 1 − ߣ ݕ ≥ ݂ߣ ݔ + 1 − ߣ ݂ ݕ 		
Logconcave functions: ݂ ݔߣ + 1 − ߣ ݕ ≥ ݂ ݔ ఒ	݂ ݕ ଵିఒ			
Quasiconcave functions:݂ ݔߣ + 1 − ߣ ݕ ≥ min 	 ݂ ݔ , ݂ ݕ 					
Star-shaped sets:∃ݔ ∈ .ݏ	ܵ .ݐ ݕ∀ ∈ ܵ, ݔߣ + 1 − ߣ ݕ ∈ ܵ			



Annealing

Integration
• ݂ ܺ = ݂(ܺ), ܺ ∈ ܭ
• ܽ = ఢଶோ , 	 ܽ = 1
• 	ܽାଵ= ܽ 1 + ଵ
• Sample with density prop. 

to ݂ ܺ .
• Estimate ܹ 	~	∫ ݂ାଵ(ܺ)/∫ ݂ ܺ 	
• Output	ܹ = ଵܹ ଶܹ … ܹ.

Optimization
• ݂ ܺ = ݂(ܺ), ܺ ∈ ܭ
• ܽ = ఢଶோ , ܽ = ଶఢ
• 	ܽାଵ= ܽ 1 + ଵ
• Sample with density prop. 

to ݂ ܺ .

• Output X with max f(X).



How to sample?

Take a random walk in K.
Consider a lattice intersected with K
Grid (lattice) walk:  

At grid point x, 
pick random y from 
if y is in K, go to y



Ball walk

At x, 
pick random y from 
if y is in K, go to y



Hit-and-run

[Boneh, Smith]
At x, 
-pick a random chord L through x
-go to a uniform random point y on L 



Markov chains

• State space K, 
• set of measurable subsets that form a -algebra, 

i.e., closed under finite unions and intersections
• A next step distribution ௨ associated with 

each point u in the state space.
• A starting point. 

•  ଵ  s.t.  ଵ ିଵ  ିଵ



Convergence

Stationary distribution Q,  ergodic “flow” defined as

Φ ܣ = න ௨ܲ A¥ܭ (ݑ)ܳ݀
For a stationary distribution Q, we haveΦ ܣ = Φ(ܭ¥A)



Random walks in K
• For both walks, the distribution of the current point 

tends to uniform in K. 

• The uniform distribution is stationary, in fact, 

௨ ௩
Exercise 1. Show that the uniform distribution is 
stationary for hit-and-run. 

• Question: How many steps are needed?



Rate of convergence?
Ergodic “flow”:Φ ܣ = ∫ ௨ܲ A¥ܭ (ݑ)ܳ݀

Conductance:

߶ ܣ = Φ(ܣ)minܳ ܣ , ܳ A¥ܭ 									
߶ = inf (ܣ)߶	



Conductance
Mixing rate cannot be faster than 1/߶
Since it takes this many steps to even escape from some subsets.

Does ߶ give an upper bound?  Yes, for discrete Markov chains 

Thm. [Jerrum-Sinclair]     థమଶ
Where ߣ is the second eigenvalue of the transition matrix.

Thus, mixing rate = ଵଵିఒ ଶథమ



Rate of convergence

High conductance => rapid mixing
Proof does not go through eigenvalue gap



How to bound conductance?
• Conductance of ball walk is not bounded!

• Local conductance can be arbitrarily small. 

ℓ ݔ = vol ݔ + ܤߜ ∩ (ܤߜ)volܭ
• What can we do? 

• Modify K slightly
• Or start with a nearly random point in K.



Smoothing a convex body


Each point of the original body has a small ball around it. 

What about new points? No worse than local 
conductance of boundary points of a small ball.

Choosing step radius will ensure that every 
point has  local conductance at least a fixed constant. 



Conductance

Consider an arbitrary measurable subset S.

We need to show that the escape probability 
from S is large.



Conductance

Need: 
• Points that do not cross over are far from each other
• If two subsets are far, then the rest of the set is large



One-step distributions

௨ ௩ large  

the balls around u,v have small intersection

u,v must be far



Prob. distance Geometric distance

Lemma. for the ball walk with  
-steps. If 

then ௨ ௩ . 



Coupling 1-step distributions

௨ ௩
if ௨ ௩



Isoperimetry

Extends to logconcave densities:



Conductance

Thm. Conductance of ball walk is at least ଶ
We can use 

So 

ଶ ସ ଶ



Conductance

Thm. Conductance of ball walk is at least ℓమఋଵ 
Pf. 

ଵܵ = ݔ ∈ ܵ ∶ 		 ௫ܲ S¥ܭ < ℓ4 			ܵଶ = ݔ ∈ ܵ¥ܭ ∶ 		 ௫ܲ S < ℓ4ܵଷ = Sଵ¥Sଶ¥ܭ
݈ݒ ଵܵ ≥ ݈ݒ ܵ2 , ݈ݒ ܵଶ ≥ ݈ݒ S2¥ܭ

If not, න ௫ܲ S¥ܭ ݔ݀ ≥ ℓ4 . 12 ݈ݒ ܵ 			⇒ 			߶ ܵ ≥ ℓ8 .ௌ



Conductance

Thm. Conductance of ball walk is at least ℓమఋଵ 
Pf. 

ଵܵ = ݔ ∈ ܵ ∶ 		 ௫ܲ S¥ܭ < ℓ4 			ܵଶ = ݔ ∈ ܵ¥ܭ ∶ 		 ௫ܲ S < ℓ4
For ݑ ∈ ଵܵ, ݒ ∈ ܵଶ,	݀ ௨ܲ, ௩ܲ ≥ 1 − ௨ܲ S¥ܭ − ௩ܲ ܵ > 1 − ℓ2		⇒ 		݀ ,ݑ ݒ ≥ ℓ2ߜ ݊ .

݈ݒ ܵଷ ≥ ℓ݊ߜ min ݈ݒ	 ଵܵ , ݈ݒ ܵଶ≥ ℓఋଶ min ݈ݒ	 ܵ , ݈ݒ S¥ܭ .



Conductance

Thm. Conductance of ball walk is at least ℓమఋଵ 
Pf. 

௫ ௫ ௫¥ୗௌௌ ଷ
ℓమఋଵ 



KLS hyperplane conjecture
A: covariance matrix of stationary distribution



Thin shell conjecture

Theorem [Bobkov].  

Conj. (Thin shell)

Alternatively: 

Current best bound [Guedon-E. Milman]:  n1/3



KLS-Slicing-Thin-shell

known   conj
thin shell
slicing
KLS

Moreover, KLS implies the others [Ball] and thin-
shell implies slicing [Eldan-Klartag10].



Convergence

Thm. [LS93, KLS97] If S is convex, then the ball 
walk with an M-warm start reaches an 
(independent) nearly random point in poly(n, D, 
M) steps.

• Strictly speaking, this is not rapid mixing!
• How to get the first random point?
• Better dependence on diameter D?



Is rapid mixing possible?

Ball walk can have bad starts, but
Hit-and-run escapes from corners

Min distance based isoperimetry is too coarse



Average distance isoperimetry

• How to average distance?

• Theorem.[LV04; Dieker-V.12]



Average distance Isoperimetry



Hit-and-run

• Thm [LV04]. Hit-and-run mixes in polynomial 
time from any starting point inside a convex 
body.

• Conductance = 

• Gives  ∗ ଷ sampling algorithm



Multi-point random walks

• Maintain m points 
• For each point X, 

– Pick a random combination of the m points
– Use this to update X

Stationary distribution: m uniform random 
points!



Sampling

Q1. Is starting at a nice point faster? E.g., does ball walk 
mix rapidly starting at a single point, e.g., the centroid?

Q2. How to check convergence to stationarity on the 
fly? Does it suffice to check that the measures of all 
halfspaces have converged?

(Note: poly(n) sample can estimate all halfspace measures 
approximately)



Sampling: current status
Can be sampled efficiently:
• Convex bodies
• Logconcave distributions
• (1/n-1)-harmonic-concave distributions
• Near-logconcave distributions
• Star-shaped bodies
• ??
----------------------
Cannot be sampled efficiently:
• Quasiconcave distributions



High-dimensional sampling algorithms

• Sampling manifolds

• Random reflections

• Deterministic sampling?

• Other applications…


