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Introduction

graphical model:
∗ graph G = (V,E) with N vertices
∗ random vector: (X1, X2, . . . , XN )

(a) Markov chain (b) Multiscale quadtree (c) Two-dimensional grid

useful in many statistical and computational fields:
◮ machine learning, artificial intelligence
◮ computational biology, bioinformatics
◮ statistical signal/image processing, spatial statistics
◮ statistical physics
◮ communication and information theory
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Graphs and factorization
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clique C is a fully connected subset of vertices
compatibility function ψC defined on variables xC = {xs, s ∈ C}
factorization over all cliques

p(x1, . . . , xN ) =
1
Z

∏

C∈C

ψC(xC).
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Example: Optical digit/character recognition

Goal: correctly label digits/characters based on “noisy” versions

E.g., mail sorting; document scanning; handwriting recognition systems



Example: Optical digit/character recognition

Goal: correctly label digits/characters based on “noisy” versions

strong sequential dependencies captured by (hidden) Markov chain

“message-passing” spreads information along chain
(Baum & Petrie, 1966; Viterbi, 1967, and many others)



Example: Image processing and denoising

8-bit digital image: matrix of intensity values {0, 1, . . . 255}
enormous redundancy in “typical” images (useful for denoising,
compression, etc.)



Example: Image processing and denoising

8-bit digital image: matrix of intensity values {0, 1, . . . 255}
enormous redundancy in “typical” images (useful for denoising,
compression, etc.)
multiscale tree used to represent coefficients of a multiscale transform
(e.g., wavelets, Gabor filters etc.)

(e.g., Willsky, 2002)



Example: Depth estimation in computer vision

Stereo pairs: two images taken from horizontally-offset cameras



Modeling depth with a graphical model
Introduce variable at pixel location (a, b):

xab ≡ Offset between images in position (a, b)

Left image

Right image

ψab(xab)ψcd(xcd)

ψab,cd(xab, xcd)

Use message-passing algorithms to estimate most likely offset/depth map.
(Szeliski et al., 2005)



Many other examples

natural language processing (e.g., parsing, translation)

computational biology (gene sequences, protein folding, phylogenetic
reconstruction)

social network analysis (e.g., politics, Facebook, terrorism.)

communication theory and error-control decoding (e.g., turbo codes,
LDPC codes)

satisfiability problems (3-SAT, MAX-XORSAT, graph colouring)

robotics (path planning, tracking, navigation)

sensor network deployments (e.g., distributed detection, estimation, fault
monitoring)

. . .
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Core computational challenges

Given an undirected graphical model (Markov random field):

p(x1, x2, . . . , xN ) =
1

Z

∏

C∈C
ψC(xC)

How to efficiently compute?

most probable configuration (MAP estimate):

Maximize : x̂ = arg max
x∈XN

p(x1, . . . , xN ) = arg max
x∈XN

∏

C∈C
ψC(xC).

the data likelihood or normalization constant

Sum/integrate : Z =
∑

x∈XN

∏

C∈C
ψC(xC)

marginal distributions at single sites, or subsets:

Sum/integrate : p(Xs = xs) =
1

Z

∑

xt, t 6=s

∏

C∈C
ψC(xC)
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§1. Max-product message-passing on trees
Goal: Compute most probable configuration (MAP estimate) on a tree:

x̂ = arg max
x∈XN





∏

s∈V

exp(θs(xs)
∏

(s,t)∈E

exp(θst(xs, xt))



 .

M12 M32

1 2 3

max
x1,x2,x3

p(x) = max
x2

[
exp(θ2(x2))

∏

t∈1,3

{
max

xt

exp[θt(xt) + θ2t(x2, xt)]
}]

Max-product strategy: “Divide and conquer”: break global maximization
into simpler sub-problems. (Lauritzen & Spiegelhalter, 1988)



Max-product on trees

Decompose: max
x1,x2,x3,x4,x5

p(x) = max
x2

[
exp(θ1(x1))

∏
t∈N(2)Mt2(x2)

]
.

replacements

M12 M32

M53

M43

1 2 3

4

5

Update messages:

M32(x2) = max
x3


exp(θ3(x3) + θ23(x2, x3)

∏

v∈N(3)\2
Mv3(x3)






Putting together the pieces

Max-product is an exact algorithm for any tree.

Tu

Tv

Tw

w

u

v

s

t
Mut

Mwt

Mvt

Mts Mts ≡ message from node t to s
N (t) ≡ neighbors of node t

Update: Mts(xs) ← max
x′

t∈Xt

{
exp

[
θst(xs, x

′
t) + θt(x

′
t)
] ∏

v∈N (t)\s

Mvt(xt)
}

Max-marginals: p̃s(xs; θ) ∝ exp{θs(xs)}
∏

t∈N (s)Mts(xs).
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Summary: max-product on trees

converges in at most graph diameter # of iterations
updating a single message is an O(m2) operation
overall algorithm requires O(Nm2) operations

upon convergence, yields the exact max-marginals:

p̃s(xs) ∝ exp{θs(xs)}
∏

t∈N (s)

Mts(xs).

when argmaxxs
p̃s(xs) = {xs} for all s ∈ V , then x∗ = (x∗1, . . . , x

∗
N ) is the

unique MAP solution
otherwise, there are multiple MAP solutions and one can be obtained by
back-tracking
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§2. Max-product on graph with cycles?

Tu

Tv

Tw

w

u

v

s

t
Mut

Mwt

Mvt

Mts Mts ≡ message from node t to s
N (t) ≡ neighbors of node t

max-product can be applied to graphs with cycles (no longer exact)
empirical performance is often very good
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Partial guarantees for max-product

single-cycle graphs and Gaussian models
(Aji & McEliece, 1998; Horn, 1999; Weiss, 1998, Weiss & Freeman, 2001)

local optimality guarantees:
◮ “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)
◮ optimality on more general sub-graphs (Wainwright et al., 2003)

existence of fixed points for general graphs (Wainwright et al., 2003)

exactness for certain matching problems (Bayati et al., 2005, 2008, Jebara &

Huang, 2007, Sanghavi, 2008)

no general optimality results
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Partial guarantees for max-product

single-cycle graphs and Gaussian models
(Aji & McEliece, 1998; Horn, 1999; Weiss, 1998, Weiss & Freeman, 2001)

local optimality guarantees:
◮ “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)
◮ optimality on more general sub-graphs (Wainwright et al., 2003)

existence of fixed points for general graphs (Wainwright et al., 2003)

exactness for certain matching problems (Bayati et al., 2005, 2008, Jebara &

Huang, 2007, Sanghavi, 2008)

no general optimality results

Questions:

• Can max-product return an incorrect answer with high confidence?
• Any connection to classical approaches to integer programs?
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Standard analysis via computation tree

standard tool: computation tree of message-passing updates
(Gallager, 1963; Weiss, 2001; Richardson & Urbanke, 2001)
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(a) Original graph (b) Computation tree (4 iterations)

level t of tree: all nodes whose messages reach the root (node 1) after t
iterations of message-passing
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Example: Inexactness of standard max-product

(Wainwright et al., 2005)

Intuition:
max-product solves (exactly) a modified problem on computation tree

nodes not equally weighted in computation tree ⇒ max-product can output an
incorrect configuration

1
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11
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222
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44

4 4

(a) Diamond graph Gdia (b) Computation tree (4 iterations)

for example: asymptotic node fractions ω in this computation tree:
[
ω(1) ω(2) ω(3) ω(4)

]
=

[
0.2393 0.2607 0.2607 0.2393

]
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A whole family of non-exact examples

1

2 3

4

α

α

β

β

θs(xs)

{

αxs if s = 1 or s = 4

βxs if s = 2 or s = 3

θst(xs, xt) =

{

−γ if xs 6= xt

0 otherwise

for γ sufficiently large, optimal solution is always either
14 =

[
1 1 1 1

]
or (−1)4 =

[
(−1) (−1) (−1) (−1)

]

first-order LP relaxation always exact for this problem

max-product and LP relaxation give different decision boundaries:

Optimal/LP boundary: x̂ =

{
14 if 0.25α+ 0.25β ≥ 0
(−1)4 otherwise

Max-product boundary: x̂ =

{
14 if 0.2393α+ 0.2607β ≥ 0
(−1)4 otherwise
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§3. A more general class of algorithms

by introducing weights on edges, obtain a more general family of
reweighted max-product algorithms

with suitable edge weights, connected to linear programming relaxations

many variants of these algorithms:
◮ tree-reweighted max-product (W., Jaakkola & Willsky, 2002, 2005)

◮ sequential TRMP (Kolmogorov, 2005)

◮ convex message-passing (Weiss et al., 2007)

◮ dual updating schemes (e.g., Globerson & Jaakkola, 2007)
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Tree-reweighted max-product algorithms

(Wainwright, Jaakkola & Willsky, 2002)

Message update from node t to node s:

reweighted messages

Mts(xs) ← κ max
x′

t∈Xt

{
exp

[θst(xs, x
′
t)

ρst︸ ︷︷ ︸
+ θt(x

′
t)
]

∏
v∈N (t)\s

︷ ︸︸ ︷[
Mvt(xt)

]ρvt

[
Mst(xt)

](1−ρts)

︸ ︷︷ ︸

}
.

reweighted edge opposite message

Properties:
1. Modified updates remain distributed and purely local over the graph.

2. Key differences:
• Messages are reweighted with ρst ∈ [0, 1].
• Potential on edge (s, t) is rescaled by ρst ∈ [0, 1].
• Update involves the reverse direction edge.

3. The choice ρst = 1 for all edges (s, t) recovers standard update.
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Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E belongs to a
tree T drawn randomly under ρ?

e

b

f

e

b

f

e

b

f

e

b

f

(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe = 2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree polytope.
(Edmonds, 1971)
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§4. Reweighted max-product and linear
programming

MAP as integer program: f∗ = max
x∈XN

{ ∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

define local marginal distributions (e.g., for m = 3 states):

µs(xs) =





µs(0)
µs(1)
µs(2)



 µst(xs, xt) =





µst(0, 0) µst(0, 1) µst(0, 2)
µst(1, 0) µst(1, 1) µst(1, 2)
µst(2, 0) µst(2, 1) µst(2, 2)







§4. Reweighted max-product and linear
programming

MAP as integer program: f∗ = max
x∈XN

{ ∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

define local marginal distributions (e.g., for m = 3 states):

µs(xs) =





µs(0)
µs(1)
µs(2)



 µst(xs, xt) =





µst(0, 0) µst(0, 1) µst(0, 2)
µst(1, 0) µst(1, 1) µst(1, 2)
µst(2, 0) µst(2, 1) µst(2, 2)





alternative formulation of MAP as linear program?

g∗ = max
(µs,µst)∈M(G)

{ ∑

s∈V

Eµs
[θs(xs)] +

∑

(s,t)∈E

Eµst
[θst(xs, xt)]

}

Local expectations: Eµs
[θs(xs)] :=

∑

xs

µs(xs)θs(xs).



§4. Reweighted max-product and linear
programming

MAP as integer program: f∗ = max
x∈XN

{ ∑
s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

define local marginal distributions (e.g., for m = 3 states):

µs(xs) =





µs(0)
µs(1)
µs(2)



 µst(xs, xt) =





µst(0, 0) µst(0, 1) µst(0, 2)
µst(1, 0) µst(1, 1) µst(1, 2)
µst(2, 0) µst(2, 1) µst(2, 2)





alternative formulation of MAP as linear program?

g∗ = max
(µs,µst)∈M(G)

{ ∑

s∈V

Eµs
[θs(xs)] +

∑

(s,t)∈E

Eµst
[θst(xs, xt)]

}

Local expectations: Eµs
[θs(xs)] :=

∑

xs

µs(xs)θs(xs).

Key question: What constraints must local marginals {µs, µst} satisfy?



Marginal polytopes for general undirected models
M(G) ≡ set of all globally realizable marginals {µs, µst}:



~µ ∈ Rd

∣∣∣ µs(xs) =
∑

xt,t 6=s

pµ(x), and µst(xs, xt) =
∑

xu,u 6=s,t

pµ(x)





for some pµ(·) over (X1, . . . , XN ) ∈ {0, 1, . . . ,m− 1}N .

M(G)

aT
i ~µ ≤ bi

a

polytope in d = m|V |+m2|E| dimensions (m per vertex, m2 per edge)

with mN vertices

number of facets?



Marginal polytope for trees

M(T ) ≡ special case of marginal polytope for tree T
local marginal distributions on nodes/edges (e.g., m = 3)

µs(xs) =





µs(0)
µs(1)
µs(2)



 µst(xs, xt) =





µst(0, 0) µst(0, 1) µst(0, 2)
µst(1, 0) µst(1, 1) µst(1, 2)
µst(2, 0) µst(2, 1) µst(2, 2)





Deep fact about tree-structured models: If {µs, µst} are non-negative
and locally consistent:

Normalization :
∑

xs

µs(xs) = 1

Marginalization :
∑

x′
t

µst(xs, x
′
t) = µs(xs),

then on any tree-structured graph T , they are globally consistent.

Follows from junction tree theorem (Lauritzen & Spiegelhalter, 1988).
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Max-product on trees: Linear program solver

MAP problem as a simple linear program:

f(x̂) = arg max
~µ∈M(T )





∑

s∈V

Eµs
[θs(xs)] +

∑

(s,t)∈E

Eµst
[θst(xs, xt)]





subject to ~µ in tree marginal polytope:

M(T ) =



~µ ≥ 0,

∑

xs

µs(xs) = 1,
∑

x′
t

µst(xs, x
′
t) = µs(xs)



 .

Max-product and LP solving:

on tree-structured graphs, max-product is a dual algorithm for
solving the tree LP. (Wai. & Jordan, 2003)

max-product message Mts(xs) ≡ Lagrange multiplier for enforcing
the constraint

∑
x′

t
µst(xs, x

′
t) = µs(xs).
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Tree-based relaxation for graphs with cycles
Set of locally consistent pseudomarginals for general graph G:

L(G) =

{
~τ ∈ Rd | ~τ ≥ 0,

∑

xs

τs(xs) = 1,
∑

xt

τst(xs, x
′
t) = τs(xs)

}
.

Integral vertex

Fractional vertexM(G)

L(G)

Key: For a general graph, L(G) is an outer bound on M(G), and yields a
linear-programming relaxation of the MAP problem:

f(x̂) = max
~µ∈M(G)

θT ~µ ≤ max
~τ∈L(G)

θT~τ .



Looseness of L(G) with graphs with cycles

Locally consistent
(pseudo)marginals

3
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�

Pseudomarginals satisfy the “obvious” local constraints:

Normalization:
∑

x′
s
τs(x′s) = 1 for all s ∈ V .

Marginalization:
∑

x′
s
τs(x′s, xt) = τt(xt) for all edges (s, t).
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TRW max-product and LP relaxation

First-order (tree-based) LP relaxation:

f(x̂) ≤ max
~τ∈L(G)





∑

s∈V

Eτs
[θs(xs)] +

∑

(s,t)∈E

Eτst
[θst(xs, xt)]





Results: (Wainwright et al., 2005; Kolmogorov & Wainwright, 2005):
(a) Strong tree agreement Any TRW fixed-point that satisfies the strong

tree agreement condition specifies an optimal LP solution.
(b) LP solving: For any binary pairwise problem, TRW max-product solves

the first-order LP relaxation.
(c) Persistence for binary problems: Let S ⊆ V be the subset of vertices

for which there exists a single point x∗s ∈ arg maxxs
ν∗s (xs). Then for any

optimal solution, it holds that ys = x∗s.
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On-going work on LPs and conic relaxations

tree-reweighted max-product solves first-order LP for any binary pairwise
problem (Kolmogorov & Wainwright, 2005)

convergent dual ascent scheme; LP-optimal for binary pairwise problems
(Globerson & Jaakkola, 2007)

convex free energies and zero-temperature limits
(Wainwright et al., 2005, Weiss et al., 2006; Johnson et al., 2007)

coding problems: adaptive cutting-plane methods (Taghavi & Siegel, 2006;

Dimakis et al., 2006)

dual decomposition and sub-gradient methods: (Feldman et al., 2003;

Komodakis et al., 2007, Duchi et al., 2007)

solving higher-order relaxations; rounding schemes (e.g., Sontag et al., 2008;

Ravikumar et al., 2008)
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Hierarchies of conic programming relaxations

tree-based LP relaxation using L(G): first in a hierarchy of
hypertree-based relaxations (Wainwright & Jordan, 2004)

hierarchies of SDP relaxations for polynomial programming (Lasserre, 2001;

Parrilo, 2002)

intermediate between LP and SDP: second-order cone programming
(SOCP) relaxations (Ravikumar & Lafferty, 2006; Kumar et al., 2008)

all relaxations: particular outer bounds on the marginal polyope

Key questions:

when are particular relaxations tight?
when does more computation (e.g., LP → SOCP → SDP) yield
performance gains?
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Stereo computation: Middlebury stereo benchmark
set

standard set of benchmarked examples for stereo algorithms (Scharstein &

Szeliski, 2002)

Tsukuba data set: Image sizes 384× 288× 16 (W ×H ×D)

(a) Original image (b) Ground truth disparity
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Comparison of different methods

(a) Scanline dynamic programming (b) Graph cuts

(c) Ordinary belief propagation (d) Tree-reweighted max-product

(a), (b): Scharstein & Szeliski, 2002; (c): Sun et al., 2002 (d): Weiss, et al., 2005;



Ordinary belief propagation



Tree-reweighted max-product



Ground truth



Graphical models and message-passing
Part II: Marginals and likelihoods

Martin Wainwright

UC Berkeley
Departments of Statistics, and EECS

Tutorial materials (slides, monograph, lecture notes) available at:
www.eecs.berkeley.edu/˜wainwrig/kyoto12

September 3, 2012

Martin Wainwright (UC Berkeley) Graphical models and message-passing September 3, 2012 1 / 23



Graphs and factorization

v
1

2

3 4

5 6

7

ψ7

ψ456

ψ47

clique C is a fully connected subset of vertices
compatibility function ψC defined on variables xC = {xs, s ∈ C}
factorization over all cliques

p(x1, . . . , xN ) =
1
Z

∏

C∈C

ψC(xC).
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Core computational challenges

Given an undirected graphical model (Markov random field):

p(x1, x2, . . . , xN ) =
1

Z

∏

C∈C
ψC(xC)

How to efficiently compute?

most probable configuration (MAP estimate):

Maximize : x̂ = arg max
x∈XN

p(x1, . . . , xN ) = arg max
x∈XN

∏

C∈C
ψC(xC).

the data likelihood or normalization constant

Sum/integrate : Z =
∑

x∈XN

∏

C∈C
ψC(xC)

marginal distributions at single sites, or subsets:

Sum/integrate : p(Xs = xs) =
1

Z

∑

xt, t 6=s

∏

C∈C
ψC(xC)
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§1. Sum-product message-passing on trees
Goal: Compute marginal distribution at node u on a tree:

x̂ = arg max
x∈XN





∏

s∈V

exp(θs(xs)
∏

(s,t)∈E

exp(θst(xs, xt))



 .

M12 M32

1 2 3

∑

x1,x2,x3

p(x) =
∑

x2

[
exp(θ1(x1))

∏

t∈1,3

{∑

xt

exp[θt(xt) + θ2t(x2, xt)]

}]



Putting together the pieces

Sum-product is an exact algorithm for any tree.

Tu

Tv

Tw

w

u

v

s

t
Mut

Mwt

Mvt

Mts Mts ≡ message from node t to s
N (t) ≡ neighbors of node t

Update: Mts(xs) ←
∑

x′
t∈Xt

{
exp

[
θst(xs, x

′
t) + θt(x

′
t)
] ∏

v∈N (t)\s

Mvt(xt)
}

Sum-marginals: ps(xs; θ) ∝ exp{θs(xs)}
∏

t∈N (s)Mts(xs).
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Summary: sum-product on trees

converges in at most graph diameter # of iterations
updating a single message is an O(m2) operation
overall algorithm requires O(Nm2) operations

upon convergence, yields the exact node and edge marginals:

ps(xs) ∝ eθs(xs)
∏

u∈N (s)

Mus(xs)

pst(xs, xt) ∝ eθs(xs)+θt(xt)+θst(xs,xt)
∏

u∈N (s)

Mus(xs)
∏

u∈N (t)

Mut(xt)

messages can also be used to compute the partition function

Z =
∑

x1,...,xN

∏

s∈V

eθs(xs)
∏

(s,t)∈E

eθst(xs,xt).
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§2. Sum-product on graph with cycles

as with max-product, a widely used heuristic with a long history:
◮ error-control coding: Gallager, 1963
◮ artificial intelligence: Pearl, 1988
◮ turbo decoding: Berroux et al., 1993
◮ etc..
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◮ no convergence guarantees
◮ can have multiple fixed points
◮ final estimate of Z is not a lower/upper bound
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§2. Sum-product on graph with cycles

as with max-product, a widely used heuristic with a long history:
◮ error-control coding: Gallager, 1963
◮ artificial intelligence: Pearl, 1988
◮ turbo decoding: Berroux et al., 1993
◮ etc..

some concerns with sum-product with cycles:
◮ no convergence guarantees
◮ can have multiple fixed points
◮ final estimate of Z is not a lower/upper bound

as before, can consider a broader class of reweighted sum-product
algorithms
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Tree-reweighted sum-product algorithms

Message update from node t to node s:

reweighted messages

Mts(xs) ← κ
∑

x′
t∈Xt

{

exp
[θst(xs, x

′
t)

ρst︸ ︷︷ ︸
+ θt(x

′
t)
]

∏
v∈N (t)\s

︷ ︸︸ ︷[
Mvt(xt)

]ρvt

[
Mst(xt)

](1−ρts)

︸ ︷︷ ︸

}

.

reweighted edge opposite message

Properties:
1. Modified updates remain distributed and purely local over the graph.

2. Key differences:
• Messages are reweighted with ρst ∈ [0, 1].
• Potential on edge (s, t) is rescaled by ρst ∈ [0, 1].
• Update involves the reverse direction edge.

3. The choice ρst = 1 for all edges (s, t) recovers standard update.
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Bethe entropy approximation

define local marginal distributions (e.g., for m = 3 states):

µs(xs) =





µs(0)
µs(1)
µs(2)



 µst(xs, xt) =





µst(0, 0) µst(0, 1) µst(0, 2)
µst(1, 0) µst(1, 1) µst(1, 2)
µst(2, 0) µst(2, 1) µst(2, 2)





define node-based entropy and edge-based mutual information:

Node-based entropy:Hs(µs) = −
∑

xs

µs(xs) log µs(xs)

Mutual information:Ist(µst) =
∑

xs,xt

µst(xs, xt) log
µst(xs, xt)
µs(xs)µt(xt)

.

ρ-reweighted Bethe entropy

HBethe(µ) =
∑

s∈V

Hs(µs)−
∑

(s,t)∈E

ρst Ist(µst),
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Bethe entropy is exact for trees

exact for trees, using the factorization:

p(x; θ) =
∏

s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)
µs(xs)µt(xt)

Martin Wainwright (UC Berkeley) Graphical models and message-passing September 3, 2012 10 / 23



Reweighted sum-product and Bethe variational
principle

Define the local constraint set

L(G) =
{
τs, τst | τ ≥ 0,

∑

xs

τs(xs) = 1,
∑

xt

τst(xs, xt) = τs(xs)
}



Reweighted sum-product and Bethe variational
principle

Define the local constraint set

L(G) =
{
τs, τst | τ ≥ 0,

∑

xs

τs(xs) = 1,
∑

xt

τst(xs, xt) = τs(xs)
}

Theorem

For any choice of positive edge weights ρst > 0:
(a) Fixed points of reweighted sum-product are stationary points of the

Lagrangian associated with

ABethe(θ; ρ) := max
τ∈L(G)

{ ∑

s∈V

〈τs, θs〉+
∑

(s,t)∈E

〈τst, θst〉+HBethe(τ ; ρ)
}
.



Reweighted sum-product and Bethe variational
principle

Define the local constraint set

L(G) =
{
τs, τst | τ ≥ 0,

∑

xs

τs(xs) = 1,
∑

xt

τst(xs, xt) = τs(xs)
}

Theorem

For any choice of positive edge weights ρst > 0:
(a) Fixed points of reweighted sum-product are stationary points of the

Lagrangian associated with

ABethe(θ; ρ) := max
τ∈L(G)

{ ∑

s∈V

〈τs, θs〉+
∑

(s,t)∈E

〈τst, θst〉+HBethe(τ ; ρ)
}
.

(b) For valid choices of edge weights {ρst}, the fixed points are unique and
moreover logZ(θ) ≤ ABethe(θ; ρ). In addition, reweighted sum-product
converges with appropriate scheduling.



Lagrangian derivation of ordinary sum-product

let’s try to solve this problem by a (partial) Lagrangian formulation

assign a Lagrange multiplier λts(xs) for each constraint
Cts(xs) := τs(xs)−

∑
xt
τst(xs, xt) = 0

will enforce the normalization (
∑

xs
τs(xs) = 1) and non-negativity constraints

explicitly

the Lagrangian takes the form:

L(τ ;λ) = 〈θ, τ〉+
∑

s∈V

Hs(τs)−
∑

(s,t)∈E(G)

Ist(τst)

+
∑

(s,t)∈E

[∑

xt

λst(xt)Cst(xt) +
∑

xs

λts(xs)Cts(xs)
]
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Lagrangian derivation (part II)

taking derivatives of the Lagrangian w.r.t τs and τst yields

∂L
∂τs(xs)

= θs(xs)− log τs(xs) +
∑

t∈N (s)

λts(xs) + C

∂L
∂τst(xs, xt)

= θst(xs, xt)− log
τst(xs, xt)

τs(xs)τt(xt)
− λts(xs)− λst(xt) + C′

setting these partial derivatives to zero and simplifying:

τs(xs) ∝ exp
{

θs(xs)
}

∏

t∈N (s)

exp
{

λts(xs)
}

τs(xs, xt) ∝ exp
{

θs(xs) + θt(xt) + θst(xs, xt)
}

×
∏

u∈N (s)\t

exp
{

λus(xs)
}

∏

v∈N (t)\s

exp
{

λvt(xt)
}

enforcing the constraint Cts(xs) = 0 on these representations yields the familiar
update rule for the messages Mts(xs) = exp(λts(xs)):

Mts(xs) ←
∑

xt

exp
{

θt(xt) + θst(xs, xt)
}

∏

u∈N (t)\s

Mut(xt)
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Convex combinations of trees

Idea: Upper bound A(θ) := logZ(θ) with a convex combination of
tree-structured problems.

θ = ρ(T 1)θ(T 1) + ρ(T 2)θ(T 2) + ρ(T 3)θ(T 3)
A(θ) ≤ ρ(T 1)A(θ(T 1)) + ρ(T 2)A(θ(T 2)) + ρ(T 3)A(θ(T 3))

ρ = {ρ(T )} ≡ probability distribution over spanning trees
θ(T ) ≡ tree-structured parameter vector

Martin Wainwright (UC Berkeley) Graphical models and message-passing September 3, 2012 14 / 23



Finding the tightest upper bound

Observation: For each fixed distribution ρ over spanning trees, there are
many such upper bounds.

Goal: Find the tightest such upper bound over all trees.

Challenge: Number of spanning trees grows rapidly in graph size.
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Finding the tightest upper bound

Observation: For each fixed distribution ρ over spanning trees, there are
many such upper bounds.

Goal: Find the tightest such upper bound over all trees.

Challenge: Number of spanning trees grows rapidly in graph size.

Example:
On the 2-D lattice:

Grid size # trees
9 192
16 100352
36 3.26× 1013

100 5.69× 1042
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Finding the tightest upper bound

Observation: For each fixed distribution ρ over spanning trees, there are
many such upper bounds.

Goal: Find the tightest such upper bound over all trees.

Challenge: Number of spanning trees grows rapidly in graph size.

By a suitable dual reformulation, problem can be avoided:

Key duality relation:

min∑
T ρ(T )θ(T )=θ

ρ(T )A(θ(T )) = max
µ∈L(G)

{
〈µ, θ〉+HBethe(µ; ρst)

}
.
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Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E belongs to a
tree T drawn randomly under ρ?

e

b

f

e

b

f

e

b

f

e

b

f

(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe = 2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree polytope.
(Edmonds, 1971)
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Why does entropy arise in the duality?

Due to a deep correspondence between two problems:

Maximum entropy density estimation

Maximize entropy H(p) = −
∑

x

p(x1, . . . , xN ) log p(x1, . . . , xN )

subject to expectation constraints of the form
∑

x

p(x)φα(x) = µ̂α.
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Why does entropy arise in the duality?

Due to a deep correspondence between two problems:

Maximum entropy density estimation

Maximize entropy H(p) = −
∑

x

p(x1, . . . , xN ) log p(x1, . . . , xN )

subject to expectation constraints of the form
∑

x

p(x)φα(x) = µ̂α.

Maximum likelihood in exponential family

Maximize likelihood of parameterized densities

p(x1, . . . , xN ; θ) = exp
{ ∑

α

θαφα(x)−A(θ)
}
.
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Conjugate dual functions
conjugate duality is a fertile source of variational representations
any function f can be used to define another function f∗ as follows:

f∗(v) := sup
u∈Rn

{
〈v, u〉 − f(u)

}
.

easy to show that f∗ is always a convex function

how about taking the “dual of the dual”? I.e., what is (f∗)∗?

when f is well-behaved (convex and lower semi-continuous), we have
(f∗)∗ = f , or alternatively stated:

f(u) = sup
v∈Rn

{
〈u, v〉 − f∗(v)

}



Geometric view: Supporting hyperplanes
Question: Given all hyperplanes in Rn × R with normal (v,−1), what is the
intercept of the one that supports epi(f)?

Epigraph of f :
epi(f) := {(u, β) ∈ Rn+1 | f(u) ≤ β}.

f(u)

u
(v,−1)

β

−cb

−ca

〈v, u〉 − ca

〈v, u〉 − cb

Analytically, we require the smallest c ∈ R such that:

〈v, u〉 − c ≤ f(u) for all u ∈ Rn

By re-arranging, we find that this optimal c∗ is the dual value:

c∗ = sup
u∈Rn

{
〈v, u〉 − f(u)

}
.



Example: Single Bernoulli

Random variable X ∈ {0, 1} yields exponential family of the form:

p(x; θ) ∝ exp
{

θ x
}

with A(θ) = log
[

1 + exp(θ)
]

.

Let’s compute the dual A∗(µ) := sup
θ∈R

{

µθ − log[1 + exp(θ)]
}

.

(Possible) stationary point: µ = exp(θ)/[1 + exp(θ)].

A(θ)

θ

〈µ, θ〉 −A∗(µ)

A(θ)

θ
〈µ, θ〉 − c

(a) Epigraph supported (b) Epigraph cannot be supported

We find that: A∗(µ) =

{

µ log µ + (1− µ) log(1− µ) if µ ∈ [0, 1]

+∞ otherwise.
.

Leads to the variational representation: A(θ) = maxµ∈[0,1]

{

µ · θ −A∗(µ)
}

.
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Geometry of Bethe variational problem

µint

L(G)

M(G)
µfrac

belief propagation uses a polyhedral outer approximation to M(G):
◮ for any graph, L(G) ⊇ M(G).
◮ equality holds ⇐⇒ G is a tree.

Natural question: Do BP fixed points ever fall outside of the marginal
polytope M(G)?
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Illustration: Globally inconsistent BP fixed points

Consider the following assignment of pseudomarginals τs, τst:

Locally consistent
(pseudo)marginals

3

2

1
�

0:1 0:4

0:4 0:1

�

�

0:4 0:1

0:1 0:4

�

�

0:5

0:5

��

0:5

0:5

�

�

0:5

0:5

�

�

0:4 0:1

0:1 0:4

�

can verify that τ ∈ L(G), and that τ is a fixed point of belief propagation
(with all constant messages)
however, τ is globally inconsistent

Note: More generally: for any τ in the interior of L(G), can construct a
distribution with τ as a BP fixed point.
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High-level perspective: A broad class of methods

message-passing algorithms (e.g., mean field, belief propagation) are
solving approximate versions of exact variational principle in exponential
families
there are two distinct components to approximations:
(a) can use either inner or outer bounds to M
(b) various approximations to entropy function −A∗(µ)

Refining one or both components yields better approximations:

BP: polyhedral outer bound and non-convex Bethe approximation

Kikuchi and variants: tighter polyhedral outer bounds and better entropy
approximations (e.g.,Yedidia et al., 2002)

Expectation-propagation: better outer bounds and Bethe-like entropy
approximations (Minka, 2002)
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Graphical models and message-passing:
Part III: Learning graphs from data

Martin Wainwright

UC Berkeley
Departments of Statistics, and EECS
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Introduction

previous lectures on “forward problems”: given a graphical model,
perform some type of computation

◮ Part I: compute most probable (MAP) assignment
◮ Part II: compute marginals and likelihoods

inverse problems concern learning the parameters and structure of graphs
from data

many instances of such graph learning problems:
◮ fitting graphs to politicians’ voting behavior
◮ modeling diseases with epidemiological networks
◮ traffic flow modeling
◮ interactions between different genes
◮ and so on....
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Example: US Senate network (2004–2006 voting)

(Banerjee et al., 2008; Ravikumar, W. & Lafferty, 2010)



Example: Biological networks

gene networks during Drosophila life cycle (Ahmed & Xing, PNAS, 2009)

many other examples:
◮ protein networks
◮ phylogenetic trees
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Learning for pairwise models

drawn n samples from

Q(x1, . . . , xp; Θ) =
1

Z(Θ)
exp

{ ∑

s∈V

θsx
2
s +

∑

(s,t)∈E

θstxsxt

}

graph G and matrix [Θ]st = θst of edge weights are unknown
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Learning for pairwise models

drawn n samples from

Q(x1, . . . , xp; Θ) =
1

Z(Θ)
exp

{ ∑

s∈V

θsx
2
s +

∑

(s,t)∈E

θstxsxt

}

graph G and matrix [Θ]st = θst of edge weights are unknown

data matrix:
◮ Ising model (binary variables): Xn

1 ∈ {0, 1}n×p

◮ Gaussian model: Xn
1 ∈ Rn×p

estimator Xn
1 7→ Θ̂
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Learning for pairwise models

drawn n samples from

Q(x1, . . . , xp; Θ) =
1

Z(Θ)
exp

{ ∑

s∈V

θsx
2
s +

∑

(s,t)∈E

θstxsxt

}

graph G and matrix [Θ]st = θst of edge weights are unknown

data matrix:
◮ Ising model (binary variables): Xn

1 ∈ {0, 1}n×p

◮ Gaussian model: Xn
1 ∈ Rn×p

estimator Xn
1 7→ Θ̂

various loss functions are possible:
◮ graph selection: supp[Θ̂] = supp[Θ]?
◮ bounds on Kullback-Leibler divergence D(QΘ̂ ‖ QΘ)
◮ bounds on |||Θ̂−Θ|||op.
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Challenges in graph selection
For pairwise models, negative log-likelihood takes form:

ℓ(Θ;Xn
1 ) := − 1

n

n∑

i=1

log Q(xi1, . . . , xip; Θ)

= logZ(Θ)−
∑

s∈V

θsµ̂s −
∑

(s,t)

θstµ̂st



Challenges in graph selection
For pairwise models, negative log-likelihood takes form:

ℓ(Θ;Xn
1 ) := − 1

n

n∑

i=1

log Q(xi1, . . . , xip; Θ)

= logZ(Θ)−
∑

s∈V

θsµ̂s −
∑

(s,t)

θstµ̂st

maximizing likelihood involves computing logZ(Θ) or its derivatives
(marginals)

for Gaussian graphical models, this is a log-determinant program

for discrete graphical models, various work-arounds are possible:
◮ Markov chain Monte Carlo and stochastic gradient
◮ variational approximations to likelihood
◮ pseudo-likelihoods



Methods for graph selection
for Gaussian graphical models:

◮ ℓ1-regularized neighborhood regression for Gaussian MRFs
(e.g., Meinshausen & Buhlmann, 2005; Wainwright, 2006, Zhao & Yu, 2006)

◮ ℓ1-regularized log-determinant (e.g., Yuan & Lin, 2006; d’Asprémont et al.,

2007; Friedman, 2008; Rothman et al., 2008; Ravikumar et al., 2008)
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methods for discrete MRFs
◮ exact solution for trees (Chow & Liu, 1967)

◮ local testing (e.g., Spirtes et al, 2000; Kalisch & Buhlmann, 2008)

◮ various other methods

⋆ distribution fits by KL-divergence (Abeel et al., 2005)
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⋆ approximate max. entropy approach and thinned graphical models
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⋆ neighborhood-based thresholding method (Bresler, Mossel & Sly, 2008)



Methods for graph selection
for Gaussian graphical models:

◮ ℓ1-regularized neighborhood regression for Gaussian MRFs
(e.g., Meinshausen & Buhlmann, 2005; Wainwright, 2006, Zhao & Yu, 2006)

◮ ℓ1-regularized log-determinant (e.g., Yuan & Lin, 2006; d’Asprémont et al.,

2007; Friedman, 2008; Rothman et al., 2008; Ravikumar et al., 2008)

methods for discrete MRFs
◮ exact solution for trees (Chow & Liu, 1967)

◮ local testing (e.g., Spirtes et al, 2000; Kalisch & Buhlmann, 2008)

◮ various other methods

⋆ distribution fits by KL-divergence (Abeel et al., 2005)
⋆ ℓ1-regularized log. regression (Ravikumar, W. & Lafferty et al., 2008, 2010)
⋆ approximate max. entropy approach and thinned graphical models

(Johnson et al., 2007)
⋆ neighborhood-based thresholding method (Bresler, Mossel & Sly, 2008)

information-theoretic analysis
◮ pseudolikelihood and BIC criterion (Csiszar & Talata, 2006)
◮ information-theoretic limitations (Santhanam & W., 2008, 2012)



Graphs and random variables

associate to each node s ∈ V a random variable Xs

for each subset A ⊆ V , random vector XA := {Xs, s ∈ A}.

1

2

3 4

5 6

7

A

B

S

Maximal cliques (123), (345), (456), (47) Vertex cutset S

a clique C ⊆ V is a subset of vertices all joined by edges
a vertex cutset is a subset S ⊂ V whose removal breaks the graph into two
or more pieces
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Factorization and Markov properties

The graph G can be used to impose constraints on the random vector
X = XV (or on the distribution Q) in different ways.

Markov property: X is Markov w.r.t G if XA and XB are conditionally indpt.
given XS whenever S separates A and B.

Factorization: The distribution Q factorizes according to G if it can be
expressed as a product over cliques:

Q(x1, x2, . . . , xp) =
1
Z︸︷︷︸

∏

C∈C
ψC(xC)︸ ︷︷ ︸

Normalization compatibility function on clique C

Theorem: (Hammersley & Clifford, 1973) For strictly positive Q(·), the
Markov property and the Factorization property are equivalent.
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Markov property and neighborhood structure

Markov properties encode neighborhood structure:

(Xs | XV \s)︸ ︷︷ ︸
d= (Xs | XN(s))︸ ︷︷ ︸

Condition on full graph Condition on Markov blanket
N(s) = {s, t, u, v, w}

Xs

Xs
Xt

Xu

Xv

Xw

basis of pseudolikelihood method (Besag, 1974)

basis of many graph learning algorithms (Friedman et al., 1999; Csiszar &

Talata, 2005; Abeel et al., 2006; Meinshausen & Buhlmann, 2006)
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Graph selection via neighborhood regression
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1 For each node s ∈ V , compute (regularized) max. likelihood estimate:

θ̂[s] := arg min
θ∈Rp−1

{
− 1
n

n∑

i=1

L(θ;Xi, \s)︸ ︷︷ ︸
+ λn ‖θ‖1︸︷︷︸

}

local log. likelihood regularization



Graph selection via neighborhood regression
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0
0
0
0
1
1
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0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1

. . . . .
. . . . .

. . . . .

0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0

1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1

XsX\s

Predict Xs based on X\s := {Xs, t 6= s}.

1 For each node s ∈ V , compute (regularized) max. likelihood estimate:

θ̂[s] := arg min
θ∈Rp−1

{
− 1
n

n∑

i=1

L(θ;Xi, \s)︸ ︷︷ ︸
+ λn ‖θ‖1︸︷︷︸

}

local log. likelihood regularization

2 Estimate the local neighborhood N̂(s) as support of regression vector
θ̂[s] ∈ Rp−1.



High-dimensional analysis
classical analysis: graph size p fixed, sample size n → +∞
high-dimensional analysis: allow both dimension p, sample size n, and
maximum degree d to increase at arbitrary rates

take n i.i.d. samples from MRF defined by Gp,d

study probability of success as a function of three parameters:

Success(n, p, d) = Q[Method recovers graph Gp,d from n samples]

theory is non-asymptotic: explicit probabilities for finite (n, p, d)
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Empirical behavior: Appropriately rescaled
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Rescaled plots (2-D lattice graphs)
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Sufficient conditions for consistent Ising selection
graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)
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Under incoherence conditions, for a rescaled sample

γLR(n, p, d) :=
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d3 log p
> γcrit

and regularization parameter λn ≥ c1

√
log p

n , then with probability greater than
1− 2 exp
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:

(a) Correct exclusion: The estimated sign neighborhood N̂(s) correctly
excludes all edges not in the true neighborhood.



Sufficient conditions for consistent Ising selection
graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Under incoherence conditions, for a rescaled sample

γLR(n, p, d) :=
n

d3 log p
> γcrit

and regularization parameter λn ≥ c1

√
log p

n , then with probability greater than
1− 2 exp

(
− c2λ

2
nn

)
:

(a) Correct exclusion: The estimated sign neighborhood N̂(s) correctly
excludes all edges not in the true neighborhood.

(b) Correct inclusion: For θmin ≥ c3λn, the method selects the correct
signed neighborhood.
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Some related work
thresholding estimator (poly-time for bounded degree) works with
n % 2d log p samples (Bresler et al., 2008)

information-theoretic lower bound over family Gp,d: any method requires
at least n = Ω(d2 log p) samples (Santhanam & W., 2008)

ℓ1-based method: sharper achievable rates, also failure for θ large enough
to violate incoherence (Bento & Montanari, 2009)

empirical study: ℓ1-based method can succeed beyond phase transition on
Ising model (Aurell & Ekeberg, 2011)



§3. Info. theory: Graph selection as channel coding

graphical model selection is an unorthodox channel coding problem:
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◮ channel use: draw sample Xi = (Xi1, . . . , Xip from Markov random field

Qθ(G)
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“codeword”

X1, . . . , Xn
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§3. Info. theory: Graph selection as channel coding

graphical model selection is an unorthodox channel coding problem:
◮ codewords/codebook: graph G in some graph class G
◮ channel use: draw sample Xi = (Xi1, . . . , Xip from Markov random field

Qθ(G)

◮ decoding problem: use n samples {X1, . . . , Xn} to correctly distinguish the
“codeword”

X1, . . . , Xn
Q(X | G)G

Channel capacity for graph decoding determined by balance between
log number of models

relative distinguishability of different models
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Necessary conditions for Gd,p
G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:
◮ Minimum edge weight: |θ∗st| ≥ θmin for all edges
◮ Maximum neighborhood weight: ω(θ) := max

s∈V

∑
t∈N(s)

|θ∗st|
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◮ Minimum edge weight: |θ∗st| ≥ θmin for all edges
◮ Maximum neighborhood weight: ω(θ) := max

s∈V

∑
t∈N(s)

|θ∗st|

Theorem

If the sample size n is upper bounded by (Santhanam & W, 2008)

n < max
{d

8
log

p

8d
,

exp(ω(θ)
4 ) dθmin log(pd/8)
128 exp( 3θmin

2 )
,

log p
2θmin tanh(θmin)

}

then the probability of error of any algorithm over Gd,p is at least 1/2.
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Necessary conditions for Gd,p
G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:
◮ Minimum edge weight: |θ∗st| ≥ θmin for all edges
◮ Maximum neighborhood weight: ω(θ) := max

s∈V

∑
t∈N(s)

|θ∗st|

Theorem

If the sample size n is upper bounded by (Santhanam & W, 2008)

n < max
{d

8
log

p

8d
,

exp(ω(θ)
4 ) dθmin log(pd/8)
128 exp( 3θmin

2 )
,

log p
2θmin tanh(θmin)

}

then the probability of error of any algorithm over Gd,p is at least 1/2.

Interpretation:
Naive bulk effect: Arises from log cardinality log |Gd,p|
d-clique effect: Difficulty of separating models that contain a near d-clique
Small weight effect: Difficult to detect edges with small weights.
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Some consequences

Corollary

For asymptotically reliable recovery over Gd,p, any algorithm requires at least
n = Ω(d2 log p) samples.
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Some consequences

Corollary

For asymptotically reliable recovery over Gd,p, any algorithm requires at least
n = Ω(d2 log p) samples.

note that maximum neighborhood weight ω(θ∗) ≥ d θmin =⇒ require
θmin = O(1/d)

from small weight effect

n = Ω(
log p

θmin tanh(θmin)
) = Ω

( log p
θ2min

)

conclude that ℓ1-regularized logistic regression (LR) is optimal up to a
factor O(d) (Ravikumar., W. & Lafferty, 2010)
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Proof sketch: Main ideas for necessary conditions

based on assessing difficulty of graph selection over various sub-ensembles
G ⊆ Gp,d
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G ⊆ Gp,d

choose G ∈ G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xn

1 = {X1, . . . , Xn}

for any graph estimator ψ : Xn → G, Fano’s inequality implies that

Q[ψ(Xn
1 ) 6= G] ≥ 1− I(Xn

1 ;G) + log 2
log |G|

where I(Xn
1 ;G) is mutual information between observations Xn
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Proof sketch: Main ideas for necessary conditions

based on assessing difficulty of graph selection over various sub-ensembles
G ⊆ Gp,d

choose G ∈ G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xn

1 = {X1, . . . , Xn}

for any graph estimator ψ : Xn → G, Fano’s inequality implies that

Q[ψ(Xn
1 ) 6= G] ≥ 1− I(Xn

1 ;G) + log 2
log |G|

where I(Xn
1 ;G) is mutual information between observations Xn

1 and
randomly chosen graph G

remaining steps:

1 Construct “difficult” sub-ensembles G ⊆ Gp,d

2 Compute or lower bound the log cardinality log |G|.
3 Upper bound the mutual information I(Xn

1 ; G).
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Summary
simple ℓ1-regularized neighborhood selection:

◮ polynomial-time method for learning neighborhood structure
◮ natural extensions (using block regularization) to higher order models

information-theoretic limits of graph learning

Some papers:

Ravikumar, W. & Lafferty (2010). High-dimensional Ising model selection
using ℓ1-regularized logistic regression. Annals of Statistics.
Santhanam & W (2012). Information-theoretic limits of selecting binary
graphical models in high dimensions, IEEE Transactions on Information
Theory.
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pd log(p/d)
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◮ trivial upper bound: I(Xn
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◮ substituting into Fano yields necessary condition n = Ω(d log(p/d))
◮ this bound independently derived by different approach by Bresler et al.
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Two straightforward ensembles
1 Naive bulk ensemble: All graphs on p vertices with max. degree d (i.e.,
G = Gp,d)

◮ simple counting argument: log |Gp,d| = Θ
(
pd log(p/d)

)

◮ trivial upper bound: I(Xn
1 ; G) ≤ H(Xn

1 ) ≤ np.
◮ substituting into Fano yields necessary condition n = Ω(d log(p/d))
◮ this bound independently derived by different approach by Bresler et al.

(2008)

2 Small weight effect: Ensemble G consisting of graphs with a single edge
with weight θ = θmin

◮ simple counting: log |G| = log
(

p
2

)

◮ upper bound on mutual information:

I(Xn
1 ; G) ≤ 1(

p
2

)
∑

(i,j),(k,ℓ)∈E

D
(
θ(Gij)‖θ(Gkℓ)

)
.

◮ upper bound on symmetrized Kullback-Leibler divergences:

D
(
θ(Gij)‖θ(Gkℓ)

)
+ D

(
θ(Gkℓ)‖θ(Gij)

)
≤ 2θmin tanh(θmin/2)

◮ substituting into Fano yields necessary condition n = Ω
(

log p
θmin tanh(θmin/2)

)



A harder d-clique ensemble
Constructive procedure:

1 Divide the vertex set V into ⌊ p
d+1⌋ groups of size d+ 1.

2 Form the base graph G by making a (d+ 1)-clique within each group.
3 Form graph Guv by deleting edge (u, v) from G.
4 Form Markov random field Qθ(Guv) by setting θst = θmin for all edges.

(a) Base graph G (b) Graph Guv (c) Graph Gst

For d ≤ p/4, we can form

|G| ≥ ⌊ p

d+ 1
⌋
(
d+ 1

2

)
= Ω(dp)

such graphs.


