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Introduction

graph G = (V, E) with N vertices

® graphical model: random vector: (X7, Xo,..., Xn)

(a) Markov chain  (b) Multiscale quadtree (c) Two-dimensional grid

@ useful in many statistical and computational fields:
» machine learning, artificial intelligence
» computational biology, bioinformatics
» statistical signal/image processing, spatial statistics
» statistical physics
» communication and information theory
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Graphs and factorization

Y7

1p456

@ clique C' is a fully connected subset of vertices
@ compatibility function ¢ defined on variables z¢ = {x5,s € C}

@ factorization over all cliques

s an) = % I1 velee).

cec
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Example: Optical digit/character recognition

@ Goal: correctly label digits/characters based on “noisy” versions

@ E.g., mail sorting; document scanning; handwriting recognition systems



Example: Optical digit/character recognition

@ Goal: correctly label digits/characters based on “noisy” versions

@ strong sequential dependencies captured by (hidden) Markov chain

@ “message-passing” spreads information along chain
(Baum & Petrie, 1966; Viterbi, 1967, and many others)



Example: Image processing and denoising

@ 8-bit digital image: matrix of intensity values {0,1,...255}
@ enormous redundancy in “typical” images (useful for denoising,
compression, etc.)



Example: Image processing and denoising

@ 8-bit digital image: matrix of intensity values {0,1,...255}

@ enormous redundancy in “typical” images (useful for denoising,
compression, etc.)

@ multiscale tree used to represent coefficients of a multiscale transform
(e.g., wavelets, Gabor filters etc.)

(e.g., Willsky, 2002)



Example: estimation in computer vision

Stereo pairs: two images taken from horizontally-offset cameras



Modeling depth with a graphical model

Introduce variable at pixel location (a,b):

Zap = Offset between images in position (a, b)

wab,cd(xaby xcd)

VYed(Tea) T\ i N Vab(Tab)
O O O @)

O—0O0——0
O—"0O—"0O—=0
Right image O O

Use message-passing algorithms to estimate most likely offset/depth map.
(Szeliski et al., 2005)



Many other examples
@ natural language processing (e.g., parsing, translation)

@ computational biology (gene sequences, protein folding, phylogenetic
reconstruction)

@ social network analysis (e.g., politics, Facebook, terrorism.)

@ communication theory and error-control decoding (e.g., turbo codes,
LDPC codes)

@ satisfiability problems (3-SAT, MAX-XORSAT, graph colouring)

@ robotics (path planning, tracking, navigation)

@ sensor network deployments (e.g., distributed detection, estimation, fault
monitoring)
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Core computational challenges

Given an undirected graphical model (Markov random field):

1
pla1, 2, ,28) = & I ¢e(zo)
cecC

How to efficiently compute?

® most probable configuration (MAP estimate):

Maximize : Z = arg max p(z1,...,xN) = arg max H Ye(ze).
xexN exl Sée

@ the data likelihood or normalization constant

Sum/integrate : Z = Z H Ye(ze)

zexN CeC

@ marginal distributions at single sites, or subsets:

Sum/integrate : p(Xs =x5) =

> 11 vet@e)

xt, t#£s CEC

N
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§1. Max-product message-passing on trees

Goal: Compute most probable configuration (MAP estimate) on a tree:

T = arg max Hexp H exp(Ost(zs, zt))
xe XN
seV (a t)eE
Mo Mo

—_— -
O O O

1 2 3

max p(x) = max [QXP(Qz(»Tz)) 11 {maxexpwm+92t(x2,xt>1}]

Z1,T2,T3 te1.3 Tt

Max-product strategy: “Divide and conquer”: break global maximization
into simpler sub-problems. (Lauritzen & Spiegelhalter, 1988)



Max-product on trees

Decompose: max  p(x) = max [exp(&l(xl)) [Tienz) ]th(xg)].

21,T2,3,T4,T5

4

M, D
- ~ St
O O
1 2 3 \M53

Update messages:

Mso(xo) = max exp(03(w3) + Oa3(22, 73) H ]\fm x3)
vEN (3)\



Putting together the pieces

Max-product is an exact algorithm for any tree.

Mg = message from node t to s
N(t) = neighbors of node ¢
Update: Mis(xs) «— max { exp [Hst (zs,77) + 0t(:v;)] II Mvt(xt)}
- TLEXL vEN(t)\s

Max-marginals:  ps(zs;0) o< exp{0s(2s)} [Lienr(s) Mes(@s).
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Summary: max-product on trees

@ converges in at most graph diameter # of iterations
@ updating a single message is an O(m?) operation

@ overall algorithm requires O(Nm?) operations

@ upon convergence, yields the exact maz-marginals:

ﬁs(xs)O(eXP{es(xS)} H Mt8($8)-
teN (s)

@ when argmaz, ps(z,) = {x*} for all s € V, then z* = (a%,...,2%) is the

unique MAP solution

@ otherwise, there are multiple MAP solutions and one can be obtained by
back-tracking
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§2. Max-product on graph with cycles?

message from node t to s
neighbors of node ¢

@ max-product can be applied to graphs with cycles (no longer exact)

@ empirical performance is often very good
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Partial guarantees for max-product

@ single-cycle graphs and Gaussian models
(Aji & McEliece, 1998; Horn, 1999; Weiss, 1998, Weiss & Freeman, 2001)

@ local optimality guarantees:

> “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)
» optimality on more general sub-graphs (Wainwright et al., 2003)
@ existence of fixed points for general graphs (Wainwright et al., 2003)

@ exactness for certain matching problems  (Bayati et al., 2005, 2008, Jebara &
Huang, 2007, Sanghavi, 2008)

@ no general optimality results
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Partial guarantees for max-product

@ single-cycle graphs and Gaussian models
(Aji & McEliece, 1998; Horn, 1999; Weiss, 1998, Weiss & Freeman, 2001)

@ local optimality guarantees:

> “tree-plus-loop” neighborhoods (Weiss & Freeman, 2001)
» optimality on more general sub-graphs (Wainwright et al., 2003)
@ existence of fixed points for general graphs (Wainwright et al., 2003)

@ exactness for certain matching problems  (Bayati et al., 2005, 2008, Jebara &
Huang, 2007, Sanghavi, 2008)

@ no general optimality results

Questions:

e Can max-product return an incorrect answer with high confidence?
e Any connection to classical approaches to integer programs?
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Standard analysis via computation tree

@ standard tool: computation tree of message-passing updates
(Gallager, 1963; Weiss, 2001; Richardson & Urbanke, 2001)

1

1
2 3 1
4 2 2 2 1 3 3 3 1
(a) Original graph (b) Computation tree (4 iterations)

@ level ¢ of tree: all nodes whose messages reach the root (node 1) after ¢
iterations of message-passing
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Example: Inexactness of standard max-product

(Wainwright et al., 2005)
Intuition:
@ max-product solves (exactly) a modified problem on computation tree

@ nodes not equally weighted in computation tree = max-product can output an
incorrect configuration

1
2 3 1
4 2 221 3 3 31
(a) Diamond graph Glia (b) Computation tree (4 iterations)

@ for example: asymptotic node fractions w in this computation tree:

[w(1) @) w@) w#)] = [0.2393 0.2607 0.2607 0.2393]
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A whole family of non-exact examples

1
«a 0, (zs) aTg %f s=lors=4
9 6 Brs ifs=2o0rs=3
ﬁ 3 — ifxs £ x
0st(1‘s,zt) = 7 # k
0 otherwise
4 «

@ for « sufficiently large, optimal solution is always either

14 = [1 1 1 1] or (—1)* = [(—1) (-1) (-1) (—1)]
o first-order LP relaxation always exact for this problem

@ max-product and LP relaxation give different decision boundaries:
14 if 0.25c¢ +0.255 > 0
(—=1)* otherwise

14 if 0.2393c + 0.26078 > 0
(—1)* otherwise

Optimal/LP boundary: X =

Max-product boundary: X = {
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§3. A more general class of algorithms

@ by introducing weights on edges, obtain a more general family of
reweighted mazx-product algorithms

@ with suitable edge weights, connected to linear programming relaxations

@ many variants of these algorithms:

> tree-reweighted max-product (W., Jaakkola & Willsky, 2002, 2005)
» sequential TRMP (Kolmogorov, 2005)
> convex message-passing (WEeiss et al., 2007)
> dual updating schemes (e.g., Globerson & Jaakkola, 2007)
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Tree-reweighted max-product algorithms

(Wainwright, Jaakkola & Willsky, 2002)

Message update from node ¢ to node s:

reweighted messages

—_—~—
, ) [Mut(xt)]pm
St\Lsy - U v N S
Ms(zs) <  max< exp [M + 9t(ac2)] SN .
TLEX, Pst []w t(wt)}(l—ﬂrs)
N e s
reweighted edge opposite message

Properties:

1. Modified updates remain distributed and purely local over the graph.
e Messages are reweighted with ps € [0, 1].

2. Key differences: e Potential on edge (s,t) is rescaled by ps € [0, 1].
e Update involves the reverse direction edge.

3. The choice ps: = 1 for all edges (s, t) recovers standard update.
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Edge appearance probabilities

Experiment: What is the probability p. that a given edge e € E belongs to a

tree T' drawn randomly under p?

f f f f
b b b b
(a) Original (b) p(T") = 3 (€) p(T?) = 3 () p(T?%) = 3
In this example: o =1; pe = 3; pr=1%

The vector pe = { p. | € € E } must belong to the spanning tree polytope.
(Edmonds, 1971)
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54. Reweighted max-product and linear
programming
@ MAP as integer program: f* = max { 3 Os(zs) + Y Ose(zs, @)}

xexN " ey (s,t)€E

@ define local marginal distributions (e.g., for m = 3 states):

15 (0) pst(0,0)  pse(0,1)  pse(0,2)
ps(zs) = |ps(l) pst(zs,xe) = |pse(1,0)  pse(1,1)  pse(1,2)
ps(2) Bst(2,0)  pst(2,1)  pse(2,2)



54. Reweighted max-product and linear
programming
@ MAP as integer program: f* = max { 3 Os(zs) + Y Ose(zs, @)}

xeXN SEV (s,t)€E

@ define local marginal distributions (e.g., for m = 3 states):

15 (0) pst(0,0)  pse(0,1)  pse(0,2)
ns(ws) = [ps(1) pst(@s,we) = | pst(1,0)  pse(1,1)  pse(1,2)
ps(2) Bst(2,0)  pst(2,1)  pse(2,2)

@ alternative formulation of MAP as linear program?
* " + E Osi(xg,
g (us,ust)eM(G) { Z ‘S )] (S%QE Hst,[ st( s t)]}

Local expectations: E,. [0s(zs)] = Zus(xs)G x




54. Reweighted max-product and linear
programming
@ MAP as integer program: f* = max { 3 Os(zs) + Y Ose(zs, @)}

xeXN SEV (s,t)€E

@ define local marginal distributions (e.g., for m = 3 states):

15 (0) pst(0,0)  pse(0,1)  pse(0,2)
ns(ws) = [ps(1) pst(@s,we) = | pst(1,0)  pse(1,1)  pse(1,2)
ps(2) Bst(2,0)  pst(2,1)  pse(2,2)

@ alternative formulation of MAP as linear program?
* " + E Osi(xg,
g (us,ust)eM(G) { Z ‘S )] (S%QE Hst,[ st( s t)]}

Local expectations: E,. [0s(zs)] = Zus(xs)G x

Key question: What constraints must local marginals {us, us } satisfy?



Marginal polytopes for general undirected models
@ M(G) = set of all globally realizable marginals {js, prst }:
{ﬁeRd‘us(ﬂfs) = Y pu), and peoem) = Y zmx)}
T, t#£s Lo, UFS,t

for some p,(-) over (X1,...,Xn) € {0,1,...,m — 1},

@ polytope in d = m|V| + m?|E| dimensions (m per vertex, m?> per edge)
o with m” vertices

@ number of facets?



Marginal polytope for trees

@ M(T') = special case of marginal polytope for tree T'
@ local marginal distributions on nodes/edges (e.g., m = 3)

/JS(O) Nst(07 0) Mst (07 1) P‘St(o» 2)
ps(zs) = |ps(1) wst(zs,zt) = |wst(1,0)  pse(1,1)  pse(1,2)
ps(2) Bst(2,0)  pst(2,1)  pse(2,2)

Deep fact about tree-structured models: If {y;, 15 } are non-negative
and locally consistent:

Normalization : Zus(xs) =1
T
Marginalization : Z,ust(xs,x;) = pus(xs),
Ty

then on any tree-structured graph T, they are globally consistent.

Follows from junction tree theorem (Lauritzen & Spiegelhalter, 1988).
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Max-product on trees: Linear program solver
@ MAP problem as a simple linear program:
f@) = arg max ¢ > B, [0z )]+ Y Ep,[0(rs 7))
RLeEM(T) o
s (s,t)eE
subject to [i in tree marginal polytope:

M(T) = A>0, Y pelws) =1, > palrs,7)) = ps(ws)

’
Ty

Max-product and LP solving:

@ on tree-structured graphs, max-product is a dual algorithm for
solving the tree LP. (Wai. & Jordan, 2003)

@ max-product message My;(xs) = Lagrange multiplier for enforcing
the constraint Za;; st (s, 1) = ps(Ts).
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Tree-based relaxation for graphs with cycles

Set of locally consistent pseudomarginals for general graph G:

L(G) = {Fe RY | 72> 0, ZTS(Z’S) =1, ZTSt(Is,x;) = Ts(l‘s)}.

Ts

Integral vertex

<

Fractional vertex

L(G)

Key: For a general graph, L(G) is an outer bound on M(G), and yields a
linear-programming relazation of the MAP problem:

f(@) = max 677 < max 77

RLEM(G) TeL(G)



Looseness of L.(G) with graphs with cycles
0.5
o3

[0.4 0.1

04 0.1
0.1 04

0.1 04
3

1
Locally consistent [ ]
(pseudo)marginals 0.5 0.4 0.1 0.5
0.5 0.5

Pseudomarginals satisfy the “obvious” local constraints:

Normalization: > Ts(@,) =1forallseV.

Marginalization: Zl, Ts(h, xr) = Te(a¢) for all edges (s,t).
Martin Wainwright (UC Berkeley) | Graphical models and message-passing September 2, 2012

27 / 35



TRW max-product and LP relaxation

First-order (tree-based) LP relaxation:

f(./f\) = Tgia(}é ZETS Ts ]+ Z E‘rst[est(xsvxt)]

(s,t)EE

Results: (Wainwright et al., 2005; Kolmogorov & Wainwright, 2005):

(a) Strong tree agreement Any TRW fixed-point that satisfies the strong
tree agreement condition specifies an optimal LP solution.

(b) LP solving: For any binary pairwise problem, TRW max-product solves
the first-order LP relaxation.

(c) Persistence for binary problems: Let S C V' be the subset of vertices
for which there exists a single point z¥ € argmax,_v?(xs). Then for any
optimal solution, it holds that ys = z%.
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On-going work on LPs and conic relaxations

@ tree-reweighted max-product solves first-order LP for any binary pairwise
problem (Kolmogorov & Wainwright, 2005)

@ convergent dual ascent scheme; LP-optimal for binary pairwise problems
(Globerson & Jaakkola, 2007)

@ convex free energies and zero-temperature limits
(Wainwright et al., 2005, Weiss et al., 2006; Johnson et al., 2007)

@ coding problems: adaptive cutting-plane methods  (Taghavi & Siegel, 2006;
Dimakis et al., 2006)

@ dual decomposition and sub-gradient methods: (Feldman et al., 2003;
Komodakis et al., 2007, Duchi et al., 2007)

@ solving higher-order relaxations; rounding schemes (e.g., Sontag et al., 2008;
Ravikumar et al., 2008)
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Hierarchies of conic programming relaxations

@ tree-based LP relaxation using L(G): first in a hierarchy of
hypertree-based relaxations (Wainwright & Jordan, 2004)

@ hierarchies of SDP relaxations for polynomial programming (Lasserre, 2001;
Parrilo, 2002)

@ intermediate between LP and SDP: second-order cone programming

(SOCP) relaxations (Ravikumar & Lafferty, 2006; Kumar et al., 2008)

@ all relaxations: particular outer bounds on the marginal polyope

Key questions:

@ when are particular relaxations tight?

@ when does more computation (e.g., LP — SOCP — SDP) yield
performance gains?

30 / 35
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Stereo computation: Middlebury stereo benchmark
set

o standard set of benchmarked examples for stereo algorithms (Scharstein &
Szeliski, 2002)

@ Tsukuba data set: Image sizes 384 x 288 x 16 (W x H x D)

LR

(a) Original image (b) Ground truth disparity
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Comparison of different methods

(b) Graph cuts

(¢) Ordinary belief propagation (d) Tree-reweighted max-product

(a), (b): Scharstein & Szeliski, 2002: (c): Sun et al., 2002 (d): Weiss, et al., 2005;



Ordinary belief propagation




Tree-reweighted max-product




Ground truth
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Graphs and factorization

Y7

v Y456

@ clique C' is a fully connected subset of vertices
@ compatibility function ¢ defined on variables z¢ = {x5,s € C}

@ factorization over all cliques

s an) = % I1 velee).

cec
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Core computational challenges

Given an undirected graphical model (Markov random field):

1
pla1, 2, ,28) = & I ¢e(zo)
cecC

How to efficiently compute?

® most probable configuration (MAP estimate):

Maximize : Z = arg max p(z1,...,xN) = arg max H Ye(ze).
xexN exl Sée

@ the data likelihood or normalization constant

Sum/integrate : Z = Z H Ye(ze)

zexN CeC

@ marginal distributions at single sites, or subsets:

Sum/integrate : p(Xs =x5) =

> 11 vet@e)

xt, t#£s CEC

N
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§1. Sum-product message-passing on trees

Goal: Compute marginal distribution at node u on a tree:

T = arg max {Hexp H exp(fs¢ Ie@t))}

seV (s,t)eE

My M3
— > -

O O O

1 2 3

Z p(x) = Z leXp(Hl(m)) H {Zexp[et(xt)+92t($2awt)]H

x1,T2,T3 o tel,3 T



Putting together the pieces

Sum-product is an exact algorithm for any tree.

Mg = message from node t to s
N(t) = neighbors of node ¢
Update: Mis(xs) «— > {exp [Hst (zs,77) + 0t(:v;)] II Mvt(xt)}

veEN(t)\s
Sum-marginals:  ps(zs;0) o< exp{0s(2s)} [Len(s) Mes(@s).
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Summary: sum-product on trees

@ converges in at most graph diameter # of iterations
@ updating a single message is an O(m?) operation

@ overall algorithm requires O(Nm?) operations

@ upon convergence, yields the exact node and edge marginals:

ps(Ts) ocee (@s) H Mys(xs)
u€EN(s)

pst(msvmt) X 69 (wa)+0t($t)+9“($37lt) H Mus xs H Mut mt
uEN(s) u€N(t)

@ messages can also be used to compute the partition function

7 = Z Heas(aﬁs) H elst(@ssmt)

T1,.., TN SEV (s,t)EE
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§2. Sum-product on graph with cycles

@ as with max-product, a widely used heuristic with a long history:
error-control coding: Gallager, 1963

artificial intelligence: Pearl, 1988

turbo decoding: Berroux et al., 1993

>
>
>
> etc..
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§2. Sum-product on graph with cycles

@ as with max-product, a widely used heuristic with a long history:

error-control coding: Gallager, 1963
artificial intelligence: Pearl, 1988
turbo decoding: Berroux et al., 1993
etc..

vvyVvVvyy

@ some concerns with sum-product with cycles:

» no convergence guarantees
» can have multiple fixed points
» final estimate of Z is not a lower/upper bound
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§2. Sum-product on graph with cycles

@ as with max-product, a widely used heuristic with a long history:

error-control coding: Gallager, 1963
artificial intelligence: Pearl, 1988
turbo decoding: Berroux et al., 1993
etc..

vvyVvVvyy

@ some concerns with sum-product with cycles:

» no convergence guarantees
» can have multiple fixed points
» final estimate of Z is not a lower/upper bound

@ as before, can consider a broader class of reweighted sum-product
algorithms
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Tree-reweighted sum-product algorithms
Message update from node ¢ to node s:

reweighted messages

H [Mvt(xt):lpvt
Mis(zs) «— kK Z {exp [7% Z”Tt) + Gt(xi)] UEN(f)\S T }
E-Xt _S,_/t []\/[bt(‘zt)}
reweighted edge opposite message

Properties:

1. Modified updates remain distributed and purely local over the graph.
e Messages are reweighted with ps: € [0, 1].

2. Key differences: e Potential on edge (s,t) is rescaled by ps € [0, 1].
e Update involves the reverse direction edge.

3. The choice ps: = 1 for all edges (s, t) recovers standard update.
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Bethe entropy approximation

@ define local marginal distributions (e.g., for m = 3 states):

N/S(O) l”‘St(Ov 0) st (07 1) ru‘St(Ov 2)
ps(xs) = |ps(1) pst(Ts,ze) = |pse(1,0)  pse(1,1)  pse(1,2)
ps(2) Bst(2,0)  pst(2,1)  pst(2,2)

@ define node-based entropy and edge-based mutual information:

Node-based entropy:Hs(us) = Zus (x5)log s (xs)

Zs

Mutual information: I (pst) = Z wst(xs, z¢) log M

Ts,Tt fs (s ) pue (24)

o p-reweighted Bethe entropy

HBethe(,Uf) = Z Hs(/ls) - Z Pst Ist(,ufst)a

seV (s,t)EE

Martin Wainwright (UC Berkeley)

Graphical models and message-passing
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Bethe entropy is exact for trees

@ exact for trees, using the factorization:

pxi0) = [[ualws) [ orlfer)

s€V (s,t)eE Ns(xs)ﬂt(xt)
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Reweighted sum-product and Bethe variational
principle

Define the local constraint set

L(G) = {TS,TSt | >0, ZTS(:US) =1, ert(xs,xt) = Ts(xs)}



Reweighted sum-product and Bethe variational
principle

Define the local constraint set

L(G) = {ra7at | 720, Y mo(ws) =1, Y 7alwe ) =7a(zs)}

Theorem
For any choice of positive edge weights pg > 0:

(a) Fized points of reweighted sum-product are stationary points of the
Lagrangian associated with

ABethe(a;p) ‘= Inax { Z<T87 05> aF Z <Tst7 03t> A HBethe(T;p)}-

L(G
TeL(G) seV (s,t)eE




Reweighted sum-product and Bethe variational
principle

Define the local constraint set

L(G) = {ra7at | 720, Y mo(ws) =1, Y 7alwe ) =7a(zs)}

Theorem
For any choice of positive edge weights pg > 0:

(a) Fized points of reweighted sum-product are stationary points of the
Lagrangian associated with

Apethe(9;p) 1= max {Zm, Os) + > (Tats 93t>+HBethe(T;p)}-
TeL(G) seV (s,t)eE

(b) For wvalid choices of edge weights {pst}, the fixed points are unique and
moreover log Z(0) < Apewme(0; p). In addition, reweighted sum-product
converges with appropriate scheduling.




Lagrangian derivation of ordinary sum-product
@ let’s try to solve this problem by a (partial) Lagrangian formulation

@ assign a Lagrange multiplier A\¢s(zs) for each constraint

Cis(xs) = 7s(x5) — Za, Tst(Ts,x¢) =0

@ will enforce the normalization (3_, 7s(zs) = 1) and non-negativity constraints
explicitly

@ the Lagrangian takes the form:

LX) =0, 7)+ Y Hirs)— > Talra)

sEV (s,H)EE(G)
Z Z)\st () Cst (4 +Z>\t.s (xs)Cis( xs)}
(s,t)eE ¢t
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Lagrangian derivation (part Il)

@ taking derivatives of the Lagrangian w.r.t 75 and 75 yields

oL
= Os(zs) — logts(zs) + Mes(zs) +C
St (2) 08Tz + 32 Mulr)
o B Tst(Ts, T) _ /
Growom) Ost(xs, ) — log P e P s Ats(s) — Ast(z) + C

@ setting these partial derivatives to zero and simplifying:
Ts(ms) o< exp {03(15)} H exp {)\ts(ifs)}
teN (s)
To(zs,xt) o exp {0s(ws) + Or(xe) + Ost(zs,2¢) } X

[T exp{usea)} ] exp{ru(en)}

ueN (s)\t vEN(t)\s

@ enforcing the constraint Cys(zs) = 0 on these representations yields the familiar
update rule for the messages Mis(zs) = exp(Aes(ws)):

Mis(zs)  — Y exp{e(xe) +Ose(xs, )} [[  Mus(ae)

Tt ueN (t)\s
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Convex combinations of trees

Idea: Upper bound A(f) :=log Z(6) with a convex combination of
tree-structured problems.

p(THOTY) — +  p(THO(T?)  +  p(THO(1?)
p(THAWG(TY)  +  p(THAOT?) +  p(THAO(T?)

=
2
Al

probability distribution over spanning trees
tree-structured parameter vector
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Finding the tightest upper bound

Observation: For each fixed distribution p over spanning trees, there are
many such upper bounds.

Goal: Find the tightest such upper bound over all trees.

Challenge: Number of spanning trees grows rapidly in graph size.

Martin Wainwright (UC Berkeley) | Graphical models and message-passing September 3, 2012 15 / 23



Finding the tightest upper bound

Observation: For each fixed distribution p over spanning trees, there are
many such upper bounds.

Goal: Find the tightest such upper bound over all trees.

Challenge: Number of spanning trees grows rapidly in graph size.

Example:
On the 2-D lattice:

Grid size | # trees

9 192

16 100352

36 3.26 x 1013
100 5.69 x 10*2
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Finding the tightest upper bound

Observation: For each fixed distribution p over spanning trees, there are
many such upper bounds.

Goal: Find the tightest such upper bound over all trees.

Challenge: Number of spanning trees grows rapidly in graph size.

By a suitable dual reformulation, problem can be avoided:

Key duality relation:

min T)AO(T)) = ma . 0) + Hpetho(1t; pst) 1.
ETp(T)G(T)=9p< JAB(T) ue]L(}((;){w ) Bethe (145 Pst) }
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Edge appearance probabilities

Experiment: What is the probability p. that a given edge e € E belongs to a
tree T' drawn randomly under p?

f f f f
b b b b
(a) Original (b) p(T") = 3 (©) p(T%) = 3 (@) p(T%) = 3
In this example: Py = 1; Pe = %; pr = %

The vector pe = { pe | € € E } must belong to the spanning tree polytope.
(Edmonds, 1971)

Martin Wainwright (UC Berkeley)
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Why does entropy arise in the duality?

Due to a deep correspondence between two problems:
Maximum entropy density estimation

Maximize entropy H(p) = — Zp(xl, c.xn)logp(xy, ..., zN)

X

subject to expectation constraints of the form

> p(x)6a(x) = fia-
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Why does entropy arise in the duality?

Due to a deep correspondence between two problems:
Maximum entropy density estimation

Maximize entropy H(p) = — Zp(xl, c.xn)logp(xy, ..., zN)

X

subject to expectation constraints of the form

> p(x)6a(x) = fia-

Maximum likelihood in exponential family

Maximize likelihood of parameterized densities

p(x1,...,xN;0) = exp { Zﬁaqﬁa(x) — A(H)}.
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Conjugate dual functions

@ conjugate duality is a fertile source of variational representations

@ any function f can be used to define another function f* as follows:

frw) = sup {{v,u) - f(u)}.

u€ER™

easy to show that f* is always a convex function
how about taking the “dual of the dual”? ILe., what is (f*)*?

when f is well-behaved (convex and lower semi-continuous), we have
(f*)* = f, or alternatively stated:

fw) = sup {{u, v) — f*(v)}

veER™



Geometric view: Supporting hyperplanes

Question: Given all hyperplanes in R™ x R with normal (v, —1), what is the

g

intercept of the one that supports epi(f)?

Epigraph of f:
epi(f) := {(u, B) € R* | f(u) < B}

Analytically, we require the smallest ¢ € R such that:
(vyu)y—c < f(u) for all uweR"”
By re-arranging, we find that this optimal ¢* is the dual value:

¢ = sup {{v,u) — f(u)}.

u€R™



Example: Single Bernoulli

Random variable X € {0,1} yields exponential family of the form:
p(x;0) o exp{fz} with A(f) = log [l + exp(6)].
Let’s compute the dual A*(p) := sup {u6 — log[1 + exp(6)]}.
6eR

(Possible) stationary point: n=-exp(0)/[1 + exp(h)].

0
</1’a 9> —cC
(a) Epigraph supported (b) Epigraph cannot be supported

plogp+ (1 —p)log(l —p) if p€[0,1]

We find that: A*(p) = T
+o0 otherwise.

Leads to the variational representation: A(0) = max,¢[o,1] {n-0—A*(n)}.
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Geometry of Bethe variational problem

A/ :u’int

‘\
Hfrac

L(@)

@ belief propagation uses a polyhedral outer approxzimation to M(G):
» for any graph, L(G) D M(G).
» equality holds <= G is a tree.

Natural question: Do BP fixed points ever fall outside of the marginal
polytope M(G)?
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lllustration: Globally inconsistent BP fixed points

Consider the following assignment of pseudomarginals 7, 7

Locally consistent
(pseudo)marginals

@ can verify that 7 € L(G), and that 7 is a fixed point of belief propagation
(with all constant messages)

@ however, 7 is globally inconsistent

Note: More generally: for any 7 in the interior of L(G), can construct a
distribution with 7 as a BP fixed point.
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High-level perspective: A broad class of methods

@ message-passing algorithms (e.g., mean field, belief propagation) are
solving approximate versions of exact variational principle in exponential
families

@ there are two distinct components to approximations:

(a) can use either inner or outer bounds to M
(b) various approximations to entropy function —A*(u)

Refining one or both components yields better approximations:

@ BP: polyhedral outer bound and non-convex Bethe approximation

@ Kikuchi and variants: tighter polyhedral outer bounds and better entropy
approximations (e.g.,Yedidia et al., 2002)

@ Expectation-propagation: better outer bounds and Bethe-like entropy
approximations (Minka, 2002)
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Graphical models and message-passing:
Part Ill: Learning graphs from data

Martin Wainwright

UC Berkeley
Departments of Statistics, and EECS
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Introduction

@ previous lectures on “forward problems”: given a graphical model,
perform some type of computation

» Part I: compute most probable (MAP) assignment
» Part II: compute marginals and likelihoods

@ inverse problems concern learning the parameters and structure of graphs
from data

@ many instances of such graph learning problems:

fitting graphs to politicians’ voting behavior
modeling diseases with epidemiological networks
traffic flow modeling

interactions between different genes

and so on....

vy vy vVvYVvYy
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Example: US Senate network (2004-2006 voting)

(Banerjee et al., 2008; Ravikumar, W. & Lafferty, 2010)



Example: Biological networks

femals mals

AN

15t instar lare

@ gene networks during Drosophila life cycle (Ahmed & Xing, PNAS, 2009)

@ many other examples:

» protein networks
» phylogenetic trees
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Learning for pairwise models

@ drawn n samples from

1
@(xla"'vxp;@) = Z(@) eXp{ Zasm§+ Z astmsxt}

seV (s,t)eE

@ graph G and matrix [O]s; = 04 of edge weights are unknown
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Learning for pairwise models

@ drawn n samples from

1
Q(xla"'vxp;@) = Z(@) eXp{Zasm§+ Z astmsxt}

seV (s,t)eE

@ graph G and matrix [O]s; = 04 of edge weights are unknown

@ data matrix:
» Ising model (binary variables): X7 € {0,1}"*?
» Gaussian model: X} € R"*?

@ estimator X} — )
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Learning for pairwise models

@ drawn n samples from

1
Q(xlw"vxp;@) = Z(@) eXp{Zasxi—’_ Z gstwsxt}

seV (s,t)EE

graph G and matrix [O]s; = 04 of edge weights are unknown

data matrix:
» Ising model (binary variables): X7 € {0,1}"*?
» Gaussian model: X} € R"*P

estimator X7 — &)

various loss functions are possible:

» graph selection: supp[@] = supp[O]?
» bounds on Kullback-Leibler divergence D(Qg || Qo)
» bounds on [|© — Oljop.
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Challenges in graph selection

For pairwise models, negative log-likelihood takes form:
0(O; X7 = —ka)g@ Tity - Tip; ©)

=log Z(0©) — Z Ostis — Z Ostlist

seV (s,t)



Challenges in graph selection

For pairwise models, negative log-likelihood takes form:
1 n
f@X" = 1 Gly ey i;@
(O:X1) = = D og Q... 6)

= log Z(@) - Z asﬁs - Z estﬁst

seV (s,t)

@ maximizing likelihood involves computing log Z(©) or its derivatives
(marginals)

o for Gaussian graphical models, this is a log-determinant program

@ for discrete graphical models, various work-arounds are possible:
» Markov chain Monte Carlo and stochastic gradient
» variational approximations to likelihood
» pseudo-likelihoods



Methods for graph selection

@ for Gaussian graphical models:

» (;-regularized neighborhood regression for Gaussian MRFs
(e.g., Meinshausen & Buhlmann, 2005; Wainwright, 2006, Zhao & Yu, 2006)

» (i-regularized log-determinant (e.g., Yuan & Lin, 2006; d’Asprémont et al.,
2007; Friedman, 2008; Rothman et al., 2008; Ravikumar et al., 2008)



Methods for graph selection

o for Gaussian graphical models:

» (;-regularized neighborhood regression for Gaussian MRFs
(e.g., Meinshausen & Buhlmann, 2005; Wainwright, 2006, Zhao & Yu, 2006)

» (i-regularized log-determinant (e.g., Yuan & Lin, 2006; d’Asprémont et al.,
2007; Friedman, 2008; Rothman et al., 2008; Ravikumar et al., 2008)

@ methods for discrete MRF's

» exact solution for trees (Chow & Liu, 1967)
» local testing (e.g., Spirtes et al, 2000; Kalisch & Buhlmann, 2008)

» various other methods

* distribution fits by KL-divergence (Abeel et al., 2005)

* (i-regularized log. regression (Ravikumar, W. & Lafferty et al., 2008, 2010)

* approximate max. entropy approach and thinned graphical models
(Johnson et al., 2007)

* neighborhood-based thresholding method (Bresler, Mossel & Sly, 2008)



Methods for graph selection

o for Gaussian graphical models:

» (;-regularized neighborhood regression for Gaussian MRFs
(e.g., Meinshausen & Buhlmann, 2005; Wainwright, 2006, Zhao & Yu, 2006)

» (i-regularized log-determinant (e.g., Yuan & Lin, 2006; d’Asprémont et al.,
2007; Friedman, 2008; Rothman et al., 2008; Ravikumar et al., 2008)

@ methods for discrete MRF's

» exact solution for trees (Chow & Liu, 1967)
» local testing (e.g., Spirtes et al, 2000; Kalisch & Buhlmann, 2008)

» various other methods

* distribution fits by KL-divergence (Abeel et al., 2005)

* (i-regularized log. regression (Ravikumar, W. & Lafferty et al., 2008, 2010)

* approximate max. entropy approach and thinned graphical models
(Johnson et al., 2007)

* neighborhood-based thresholding method (Bresler, Mossel & Sly, 2008)

@ information-theoretic analysis

» pseudolikelihood and BIC criterion (Csiszar & Talata, 2006)
» information-theoretic limitations (Santhanam & W., 2008, 2012)



Graphs and random variables

@ associate to each node s € V' a random variable X
@ for each subset A C V, random vector X 4 := {X,,s € A}.

Maximal cliques (123), (345), (456), (47) Vertex cutset S

@ a cliqgue C C V is a subset of vertices all joined by edges
9 a verter cutset is a subset S C V whose removal breaks the graph into two

or more pieces

8/ 24

Graphical models and message-passing
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Factorization and Markov properties

The graph G can be used to impose constraints on the random vector
X = Xy (or on the distribution Q) in different ways.

Markov property: X is Markov w.r.t G if X4 and Xpg are conditionally indpt.
given Xg whenever S separates A and B.

Factorization: The distribution Q factorizes according to G if it can be
expressed as a product over cliques:

1
Q(x17x27""‘rp) = E H?/}C(.’I?C)
~— cec v
Normalization compatibility function on clique C

Theorem: (Hammersley & Clifford, 1973) For strictly positive Q(+), the
Markov property and the Factorization property are equivalent.
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Markov property and neighborhood structure

@ Markov properties encode neighborhood structure:

d
(Xs | XV\S) = (Xs | XN(s))
— —
Condition on full graph Condition on Markov blanket

N(s) = {s,t,u,v,w}

@ basis of pseudolikelihood method (Besag, 1974)
@ basis of many graph learning algorithms (Friedman et al., 1999; Csiszar &
Talata, 2005; Abeel et al., 2006; Meinshausen & Buhlmann, 2006)
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Graph selection via neighborhood regression

-I Predict X, based on X\, := {Xj, t # s}.
X\s X



Graph selection via neighborhood regression

-I Predict X, based on X\, := {Xj, t # s}.
X\s X

© For each node s € V, compute (regularized) max. likelihood estimate:

~ 1<
fls] := arg min —— L(0; X; s + An ||€
s gaeRp-l{ R LX) || ||1}

local log. likelihood regularization



Graph selection via neighborhood regression

-I Predict X, based on X\, := {Xj, t # s}.
X\s X

© For each node s € V, compute (regularized) max. likelihood estimate:

~ 1 <&

0 = i —— L(0; X; s + An ||€

[s] argoé%pql{ n; (6; Xi, \s) | ||1}
local log. likelihood regularization

© Estimate the local neighborhood N (s) as support of regression vector
0[s] € RP~L.



High-dimensional analysis
@ classical analysis: graph size p fixed, sample size n — 400

@ high-dimensional analysis: allow both dimension p, sample size n, and
maximum degree d to increase at arbitrary rates

o take n ii.d. samples from MRF defined by G}, 4
@ study probability of success as a function of three parameters:
Success(n,p,d) = Q[Method recovers graph G, 4 from n samples]

@ theory is non-asymptotic: explicit probabilities for finite (n,p, d)



Prob. success

Empirical behavior: Unrescaled plots

o
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o
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Empirical behavior: Appropriately rescaled

Star graph; Linear fraction neighbors
1 ‘ DN
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o
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Prob. success

0.2p ——p= 64
—e—p =100
-*-p=225
0 .y | | T
0 0.5 1 1.5 2
Control parameter




Prob. success

Rescaled plots (2-D lattice graphs)

4-nearest neighbor grid (attractive)

1 .
0.8
0.6f
0.4f

0.2 ——p = 64

—e—p =100

-*-p=225

0 0.5 1 15 2 25 3
Control parameter



Sufficient conditions for consistent Ising selection
@ graph sequences G, 4 = (V, E) with p vertices, and maximum degree d.
@ edge weights |0s¢| > Omin for all (s,t) € E

@ draw n i.i.d, samples, and analyze prob. success indexed by (n,p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)
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@ graph sequences G, 4 = (V, E) with p vertices, and maximum degree d.
@ edge weights |0s¢| > Omin for all (s,t) € E

@ draw n i.i.d, samples, and analyze prob. success indexed by (n,p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Under incoherence conditions, for a rescaled sample

n
YLr(n,p,d) = m > Yerit

and regularization parameter \, > c1 lofip , then with probability greater than
1—2exp ( — 02/\%n) g

(a) Correct exclusion: The estimated sign neighborhood N (s) correctly
excludes all edges not in the true neighborhood.




Sufficient conditions for consistent Ising selection

@ graph sequences G, 4 = (V, E) with p vertices, and maximum degree d.
@ edge weights |0s¢| > Omin for all (s,t) € E

@ draw n i.i.d, samples, and analyze prob. success indexed by (n,p, d)

Theorem (Ravikumar, W. & Lafferty, 2006, 2010)

Under incoherence conditions, for a rescaled sample

n
YLr(n,p,d) = m > Yerit

and regularization parameter \, > c1 lofip , then with probability greater than

1—2exp ( — 02/\%n) g

(a) Correct exclusion: The estimated sign neighborhood N (s) correctly
excludes all edges not in the true neighborhood.

(b) Correct inclusion: For 0, > c3)\,, the method selects the correct
stgned neighborhood.




Some related work

@ thresholding estimator (poly-time for bounded degree) works with
n =~ 2% log p samples (Bresler et al., 2008)
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@ /1-based method: sharper achievable rates, also failure for 6 large enough
to violate incoherence (Bento & Montanari, 2009)



Some related work

thresholding estimator (poly-time for bounded degree) works with
n =~ 2% log p samples (Bresler et al., 2008)

information-theoretic lower bound over family G, 4: any method requires
at least n = Q(d?log p) samples (Santhanam & W., 2008)

¢1-based method: sharper achievable rates, also failure for 6 large enough
to violate incoherence (Bento & Montanari, 2009)

empirical study: ¢;-based method can succeed beyond phase transition on
Ising model (Aurell & Ekeberg, 2011)



§3. Info. theory: Graph selection as channel coding

@ graphical model selection is an unorthodox channel coding problem:
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§3. Info. theory: Graph selection as channel coding

@ graphical model selection is an unorthodox channel coding problem:

» codewords/codebook: graph G in some graph class G

» channel use: draw sample X; = (X1, ..., Xip from Markov random field
Qo(a)

» decoding problem: use n samples {X1,..., X} to correctly distinguish the
“codeword”

2
mg
5
29

QX | G) Xi,..., X,
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§3. Info. theory: Graph selection as channel coding

@ graphical model selection is an unorthodox channel coding problem:

» codewords/codebook: graph G in some graph class G

» channel use: draw sample X; = (X1, ..., Xip from Markov random field
Qo(a)

» decoding problem: use n samples {X1,..., X} to correctly distinguish the
“codeword”

QX | G) Xi,..., X,

TEE

Channel capacity for graph decoding determined by balance between

@ log number of models

@ relative distinguishability of different models
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Necessary conditions for G,

@ G € Gap: graphs with p nodes and max. degree d
@ Ising models with:
> Minimum edge weight: |0%5;] > Omin for all edges

> Maximum neighborhood weight: w(f) := max 0%,
g ev ()
s tEN(s
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Necessary conditions for G,

@ G € Gqp: graphs with p nodes and max. degree d
@ Ising models with:

> Minimum edge weight: |0%;] > Omin for all edges
> Mazimum neighborhood weight: w() := max > |0%]

tGN(s)
Theorem
If the sample size n is upper bounded by (Santhanam & W, 2008)
n < ma {d log 2 exp(“2) dfumin log(pd/8) log p }
X
8 s 8(17 128 exp( 30'%) ’ 2emin tanh(amin)

then the probability of error of any algorithm over Gq,, is at least 1/2.
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Necessary conditions for G,

@ G € Gqp: graphs with p nodes and max. degree d
@ Ising models with:

> Minimum edge weight: |0%5;] > Omin for all edges

> Mazimum neighborhood weight: w(6) = max > |0%]
tGN(s)

Theorem
If the sample size n is upper bounded by (Santhanam & W, 2008)

1 p pr( ( ) ) demm 1og(pd/8) Ing }
og

d
<
n max { 8d7 198 eXp(gg‘%) t 20 min tanh(Hmin)

8

then the probability of error of any algorithm over Gq,, is at least 1/2.

Interpretation:
@ Naive bulk effect: Arises from log cardinality log |G p|
@ d-clique effect: Difficulty of separating models that contain a near d-clique
@ Small weight effect: Difficult to detect edges with small weights.
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Some consequences

Corollary

For asymptotically reliable recovery over Gq,, any algorithm requires at least
n = Q(d?logp) samples.
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Some consequences

Corollary

For asymptotically reliable recovery over Gq,, any algorithm requires at least
n = Q(d?logp) samples.

@ note that maximum neighborhood weight w(6*) > d 6,;, = require

amin = O(]—/d)
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Some consequences

Corollary

For asymptotically reliable recovery over Gq,, any algorithm requires at least
n = Q(d?logp) samples.

@ note that maximum neighborhood weight w(6*) > d 6,;, = require

Omin = O(1/d)

o from small weight effect

log p logp
f— _— f— Q —
G tanh (o) ( 02 )
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Some consequences

Corollary

For asymptotically reliable recovery over Gq,, any algorithm requires at least
n = Q(d?logp) samples.

@ note that maximum neighborhood weight w(6*) > d 6,;, = require

Omin = O(1/d)

o from small weight effect

log p logp
f— _— f— Q —
G tanh (o) ( 02 )

@ conclude that ¢;-regularized logistic regression (LR) is optimal up to a
factor O(d) (Ravikumar., W. & Lafferty, 2010)
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Proof sketch: Main ideas for necessary conditions

@ based on assessing difficulty of graph selection over various sub-ensembles

g g gp,d

Martin Wainwright (UC Berkeley) Graphical models and message-passing



Proof sketch: Main ideas for necessary conditions

@ based on assessing difficulty of graph selection over various sub-ensembles

g g gp,d

@ choose G € G u.a.r., and consider multi-way hypothesis testing problem
based on the data X} = {X1,...,X,}
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Proof sketch: Main ideas for necessary conditions

@ based on assessing difficulty of graph selection over various sub-ensembles

g g gp,d

@ choose G € G u.a.r., and consider multi-way hypothesis testing problem
based on the data X} = {X1,...,X,}

o for any graph estimator ¢ : X" — G, Fano’s inequality implies that

Qux}) £ 6] > 1- T

where I(X7; G) is mutual information between observations X7 and
randomly chosen graph G
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Proof sketch: Main ideas for necessary conditions

@ based on assessing difficulty of graph selection over various sub-ensembles

g g gp,d

@ choose G € G u.a.r., and consider multi-way hypothesis testing problem
based on the data X} = {X1,...,X,}

o for any graph estimator ¢ : X" — G, Fano’s inequality implies that

Qux}) £ 6] > 1- T

where I(X7; G) is mutual information between observations X7 and
randomly chosen graph G
@ remaining steps:
@ Construct “difficult” sub-ensembles G C G, 4

© Compute or lower bound the log cardinality log |G].

© Upper bound the mutual information I(X7;G).
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Summary

@ simple ¢;-regularized neighborhood selection:

» polynomial-time method for learning neighborhood structure
» natural extensions (using block regularization) to higher order models

o information-theoretic limits of graph learning

Some papers:
@ Ravikumar, W. & Lafferty (2010). High-dimensional Ising model selection
using ¢1-regularized logistic regression. Annals of Statistics.
@ Santhanam & W (2012). Information-theoretic limits of selecting binary
graphical models in high dimensions, IEEE Transactions on Information
Theory.



Two straightforward ensembles



Two straightforward ensembles
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© Naive bulk ensemble: All graphs on p vertices with max. degree d (i.e.,
g = gp}d)

simple counting argument: log|G,.4| = © (pdlog(p/d))

trivial upper bound: I(X7;G) < H(XT) < np.

substituting into Fano yields necessary condition n = Q(dlog(p/d))

this bound independently derived by different approach by Bresler et al.

(2008)

v vy VvVy

© Small weight effect: Ensemble G consisting of graphs with a single edge
with weight 6 = O,

» simple counting: log|G| = log (%)
» upper bound on mutual information:
n 1 ij ke
I(XT;G) < 6] Y. DGET)6GE)).
2/ (i,5),(k,£)€E
» upper bound on symmetrized Kullback-Leibler divergences:

D(0(G)||0(G**)) + D(0(G*)[|0(G)) < 20min tanh(Oimin/2)

» substituting into Fano yields necessary condition n = Q(#M)



A harder d-clique ensemble

Constructive procedure:

© Divide the vertex set V' into | 2 |

© Form the base graph G by making a (d + 1)-clique within each group.
© Form graph G’ by deleting edge (u,v) from G.
© Form Markov random field Qgguvy by setting 6s; = Onin for all edges.

groups of size d + 1.

PP PP |
PG| | PP @%@%

(a) Base graph G (b) Graph G** c¢) Graph G*¢

@ For d < p/4, we can form

6= 120 ("5 1) =

such graphs.



