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Abstract

This paper presents an array of approaches to optimizing a quadrupedal gait for
forward speed. We implement, test, and compare different learning strategies including
uniform and Gaussian random hill climbing, policy gradient reinforcement learning[3],
Nelder-Mead simplex[d], new predictive methods based on linear and support vector
regression, and an evolved neural network (HyperNEAT)[2]. We compare results to a
baseline random search method. Many of the methods resulted in walks significantly
faster than previously hand-tuned gaits.
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1 Introduction

Applications of walking robots often call for the ability to walk as quickly, efficiently, or
with as little power as possible. Often these optimizations are done manually by an expert
who designs and tweaks a gait specifically for a given objective. Other groups have used
learning methods to generate gaits optimized for some metric. Approaches differ in their
starting assumptions, some essentially tweaking the parameters of a hand-tuned model [1],
others exploring a reasonably compact parameter space [3], and still others beginning with
few assumptions besides periodicity [6].

We aimed to strike a middle ground between these approaches. Our motion generator did
not rely on hand-tweaked gaits, but it did use parameterized gaits which, by their nature,
impose some assumptions on the answers produced. We then used machine learning to
design gaits for a quadruped robot with these models. This paper presents a comparison of
the different learning methods implemented. Most methods created walks that are several



times faster than the original hand-tuned gait. We invite readers with short attention spans
to view a video of some of our results online here:
http://www.youtube.com/watch?v=0D0i0j9DdGg

2 Problem definition

We are testing several different learning methods to design a parametrized gait for a
quadruped robot from the Cornell Computational Synthesis Lab.

The output each of the learning algorithms is a function of time, f(t), that outputs
a vector of commanded motor positions. This function is generated using a parametrized
motion model, described in Section Bl

The robot executes these commands and measures its change in location using the
tracking system described in Section[Bl The input to the learning algorithms is this measured
displacement, which the algorithms attempt to maximize. This displacement is measured
for each gait over a constant length run, usually 12 seconds.

A comparison and evaluation of the many different methods available for optimizing the
gait of legged robots will be useful for future work on this challenging multidimensional
control problem.

3 Method

We use several parameterized motion models that command motors to positions based on a
sine wave, creating a periodic pattern. While we investigated several models, for the bulk of
our experiments, we used a model whose five parameters are: amplitude, wavelength, scale
inner vs outer motors, scale left vs right motors, scale back vs front motors. Each strategy
below attempts to choose the best possible parameters for this motion model.

We implemented and tested 8 different learning strategies. All strategies except for the
HyperNEAT method[2] were constrained to pick parameters from within predetermined
ranges.

e Random: This method randomly generates parameter vectors in the allowable range.
This strategy is used only as baseline.

e Uniform random hill climbing: This method begins by selecting a single random pa-
rameter vector. Subsequent iterations generate a neighbor by randomly choosing one
parameter to adjust and replacing it with a new value chosen with uniform probability
in the allowable range for that parameter. The neighbor is evaluated by running the
robot with the newly chosen parameters. If this neighbor results in a longer distance
walked than the previous best gait, it is saved as the new best gait. The process is
then repeated, always starting with the best gait.


http://www.youtube.com/watch?v=ODoiOj9DdGg

e Gaussian random hill climbing: This method works similarly to Uniform random
hill climbing, except neighbors are generated by adding random Gaussian noise to
the current best gait. This results in all parameters being changed at once, but the
resulting vector is always fairly close to the previous best gait. We used independently
selected noise in each dimension, scaled such that the standard deviation of the noise
was 5% of the range of that dimension.

e N-dimensional policy gradient descent: As opposed to the previous methods, this
method explicitly estimates the gradient for the objective function. It does this by
first evaluating ¢ randomly generated parameter vectors near the initial vector, each
dimension of these vectors being perturbed by either —e, 0, or e. Then, for each
dimension, it groups vectors into three groups: —e, 0, and €. The gradient along this
dimension is then estimated as the average score for the e group minus the average
score for the —e group. Finally, the method creates a new vector by changing all
parameters by a fixed-size step in the direction of the gradient.

e Nelder-Mead simplex method[4]: The Nelder-Mead simplex method creates an initial
simplex with 6 vertices. The initial parameter vector is stored as the first vertex and
the other five vertices are created by adding to one dimension at a time one tenth of
the allowable range for that parameter. It then tests the fitness of each vertex and
based on these fitnesses, it reflects the worst point over the centroid in an attempt to
improve it. However, to prevent cycles and becoming stuck in local minima, several
other rules are used. In general, the worst vertex is reflected over the centroid. If the
reflected point is better than the second worst point and worse than the best point,
then the reflected point replaces the worst. If the reflected point is better than the
best point, the simplex is expanded in the direction of the reflected point. The better
of the reflected and the expanded point replaces the worst point. If the reflected
point is worse than the second worst point, then the simplex is contracted away from
the reflected point. If the contracted point is better than the reflected point, the
contracted point replaces the worst point. If the contracted point is worse than the
reflected point, the entire simplex is shrunk [4].

e Linear regression: To initialize, this method chooses and evaluates five random pa-
rameter vectors. It then fits a linear model from parameter vector to fitness. In a
loop, the method chooses and evaluates a new parameter vector generated by taking
a fixed-size step in the direction of the gradient for each parameter, and fits a new
linear model to all vectors evaluated so far, choosing the model to minimize the sum
of squared errors.

e SVM regression: Similarly to linear regression, this model starts with several random
vectors, but this time they are chosen in a small neighborhood about some initial ran-



dom vector. These vectors (generally 8) are evaluated, and a support vector regression
model is fit to the observed fitnesses. To choose the next vector for evaluation, we
randomly generate some number (typically 100) of vectors in the neighborhood of the
best observed gait, and select for evaluation the vector with the best predicted perfor-
mance. We suspected that if we always chose the best predicted point out of 100, we
may end up progressing along a narrow subspace, prohibiting learning of the true local
fitness function. Put another way, we would always choose exploitation of knowledge
vs. exploration of the space. To address this concern, we added a parameter dubbed
bumpBy that added noise to the final selected point before it was evaluated.

Such a method naturally has many tunable parameters, and we endeavored to select
these parameters by tuning the method in simulation. To estimate the performance of
the algorithm, we ran it against a simulation with a known optimum. The simulated
function was in the same five dimensional parameter space, and simply returned a
fitness determined as the height of a Gaussian with a random mean. The width of
the Gaussian in each dimension was 20% of the range of each dimension, and the
maximum value at the peak was 100. Figure [I] shows the learning results on this
simulated model using the ultimately selected SVM parameters. Interestingly, a non-
zero value of bumpBy resulted in better learning than noise free (exploration free)
learning.

Ultimately, however, the version of SVM tuned for simulation still did not show com-
petitive performance on the real robot. We tried tuning some parameters on the
real robot, but after some amount of tuning, the method still exhibited too little
exploration and easily became stuck in local minima.

e FEvolutionary Neural Network (HyperNEAT)[2]: Near the end of term, we hacked to-
gether an interface between HyperNEAT — an implementation of a method for evolving
neural networks — and the robot, requiring a slightly modified strategy interface. Pre-
liminary HyperNEAT runs were promising and resulted in several interesting gaits.
Unfortunately, the gaits generated by HyperNEAT also tended to stress the robot
more than typical gaits had before, and the servos would often overheat and malfunc-
tion, requiring restarts. We think these issues may be addressed by adding a small
layer between the HyperNEAT strategy and the robot that disallows quickly shifting
commanded positions, and we hope to be able to test these methods further once this
filter is in place.

4 Related work

Various maching learning techniques have proven to be useful in finding control policies for a
wide variety of robots. Kohl and Stone[3] presented a policy gradient reinforcement learning
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Figure 1: Results for the SVM regression strategy in simulation. This simulation was used
to tune the SVM strategy’s parameters before trying it on the physical robot. The strategy
quickly approaches the maximum simulated fitness of 100.

approach for generating a fast walk on legged robots. We experimented with this method
to create a walk for our robot (Policy Gradient Descent). Chernova and Velosa[l] took an
evolutionary approach to this problem which we did not implement. Zykov, Bongard, and
Lipson[6] describe the evolution of dynamic gaits on a physical robot requiring no prior
assumptions about the locomotion pattern beyond the fact that it should be rhythmic.

5 System Architecture and Implementation

The quadruped robot has an on-board computer running Linux. The lower level drivers

are in C and the system is implemented in Python. Feedback about distance travelled is

provided via an infrared LED mounted on the robot and a Wii remote fixed to the ceiling.
An overview of the code follows.

e Robot class: Class wrapper for commanding motion of the robot. The Robot class
takes care of the robot initialization, communication with the servos, and timing of the
runs. In addition, it prevents the servos from ever being commanded to a point outside
their normal range (0 - 1023) as well as beyond points where limbs would collide with
parts of the robot body. The main class function, run, accepts a motion model (any
function that takes a time argument and outputs a 9 dimensional position) and will



run the robot using this motion model, including, if desired, smooth interpolation
over time for the beginning and end of the run.

RunManager class: Deals with all the details of running the robot, including running
the robot multiple times, tracking distance walked via a WiiTrackClient member
object, and writing results to the log file. Also includes the explore dimensions
method to generate plots by varying each parameter independently.

Strategy class: The user has a choice between eight different learning strategies:

Random search, uniform random hill climbing, Gaussian random hill climbing, N-

dimensional policy gradient descent, Nelder-Mead simplex, linear regression /prediction,
SVM regression/prediction, and HyperNEAT evolution. Fach strategy must derive

from the base Strategy class and must implement two methods: getNext, for getting

the next parameter vector to try, and updateResults, for communicating results of
a run back to the strategy.

MotionModel class: We implemented several motion models, the main being the
SineModel5 class. All motion models take as input a parameter vector and produce
as output a motion model, which is simply a function mapping from time to nine
motor positions. The SineModel5 model commands positions based on a sine wave,
creating a periodic pattern. The parameters are: amplitude, wavelength, a multiplier
for the inner vs outer motors, multiplier for left vs right motors, and multiplier for
back vs front motors. Other similar models were tested, including a seven parameter
model which allowed sine waves shifted in time, but these were not used as extensively
in our experiments as SineModelb.

WiiTrackClient and WiiTrackServer classes and hardware: A Wii remote tracks
the location of the robot through an infrared LED mounted on top of the robot.
A WiiTrackServer is run on the robot and continuously tracks its position using
the CWiid library[5] to interface with the remote via bluetooth. The RunManager
then makes a WiiTrackClient, which connects via socket to the tracking server and
requests position updates periodically. RunManager currently gets the robot’s position
at the beginning of each run and then again at the end and uses this to calculate the
net change in position.

6 Experimental Evaluation

6.1 Methodology

The metric for evaluation of the designed gait is speed. We stop each run after plateauing
results (no improvement for one third of the policies seen so far). The standard length of



a run designates that it should be stopped after there is no improvement for one half of
the policies seen so far, but since all runs took place on the actual robot, without use of a
simulator, certain time limitations were imposed on the learning process.

We controlled our experiments from a computer that was connected via a wireless eth-
ernet to the robot. The robot collected data about distance walked automatically on its
own. If it walked outside of the Wii remote’s viewable area, it informed the user, so the
only human intervention required during an experiment was to move the robot back inside
the viewable area and to resume the run, which did not interrupt the learning process or
result in the loss of data.

We evaluated the efficacy of a set of parameters by sending these parameters to the
robot and instructing it to walk for a certain length of time. The robot always began from
the same position and returned to the starting position at the end of the run in order to
measure true displacement without giving credit for ending in a leaned position. More
efficient parameters resulted in a faster gait, which translated into a longer distance walked
and a better score. After completing an evaluation, the robot sent the resulting distance
walked back to the host computer and prepared itself for a new set of parameters to evaluate.

Each algorithm was run on 3 different initial parameter vectors on the physical robot.
We decided to evaluate all methods starting at the same three vector in order to allow for
the fair comparison of each algorithm. We evaluate each method based on the amount of
improvement seen from the initial parameter vectors, and on the fastest speeds achieved
during runs.

The resulting gaits from our algorithms quickly outperformed the original hand-coded
walk designed for this robot. The fastest walk, for example, was 4 times faster.

6.2 Results

We have done complete runs of 3 different initial parameter vectors for random search,
uniform random hill climbing, Gaussian random hill climbing, policy gradient descent,
Nelder-Mead simplex, and linear regression. We also evaluated the SVM regression and
HyperNEAT methods, but these methods were more experimental, and thus we do not yet
have the same volume of data for these runs. We developed several gaits that were about
4 times faster than the original hand-coded gait. Results are shown in Table [Tl

e For vector A, shown in Figure 2] linear regression worked significantly better than
the other algorithms, resulting in a gait (27.58 body lengths/minute) that walked
over twice as fast as the next best gait — uniform random hill climbing at 11.37 body
lengths/minute — and 5.3 times better than the previous hand-coded gait.

e Vector B, depicted in Figure Bl resulted in similarly performing gaits with all the
algorithms. The random method got lucky and produced the best gait (17.26 body
lengths/minute) and uniform random hill climbing produced the worst (9.44 body



‘ ‘ A ‘ B ‘ C H Average ‘
Previous hand-coded gait - - - 5.16
Random search | 6.04 | 17.26 | 4.90 9.40

Uniform Random Hill Climbing | 11.37 | 9.44 | 2.69 7.83
Gaussian Random Hill Climbing | 3.10 | 13.59 | 13.40 10.03
Policy Gradient Descent | 0.68 | 14.69 | 3.60 6.32
Nelder-Mead simplex | 8.51 | 13.62 | 14.83 12.32

Linear Regression | 27.58 | 12.51 | 1.95 14.01

Table 1: The best gaits found for each starting vector and algorithm, in body lengths per
minute.

lengths/minute). The remaining algorithms each produced a gait around 13 body
lengths/minute.

e For vector C, shown in Figure [, simplex and Gaussian random hill climbing each
produced a gait that substantially outperformed the other algorithms. Simplex re-
sulted in a gait of nearly 15 body lengths/minute and Gaussian random hill climbing
produced a gait of just over 13 body lengths/minute, whereas the other algorithms
returned gaits of less than 5 body lengths/minute.

Based on the three trials, as shown in Figure [ linear regression worked the best,
followed by simplex. Gaussian random hill climbing performed about as well as random,
but it is unclear whether Gaussian would continue to improve and become much better
than random search if allowed to run for more iterations. Uniform random hill climbing
and policy gradient descent performed similarly to each other on average, but differed
greatly on individual runs.

In addition to running strategies to optimize parameterized gaits, we also wanted to
investigate the space of possible gaits. To accomplish this, we selected a parameter vector
that resulted in motion, but not an exceptional gait, and plotted performance along each
dimension individually. In addition, we duplicated each measurement to be able to estimate
the measurement noise at each point. Results for this exploration are shown in Figure
through Figure [0l As is shown in the figures, some dimensions are smoother than others,
and some measurements are fairly noisy.

6.3 Discussion

Because only three trials were tested with each algorithm and no algorithm consistently
outperformed the others, there is a large standard error for each algorithm, as show in
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Figure 2: Results for runs beginning with vector A. Linear regression worked significantly
better than the other algorithms, resulting in a gait (27.58 body lengths/minute) that
walked over twice as fast as the next best gait — uniform random hill climbing at 11.37
body lengths/minute — and 5.3 times better than the previous hand-coded gait.
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Figure 3: Results for run starting with vector B. All algorithms performed similarly.
The random method actually got lucky this time and produced the best gait (17.26
body lengths/minute) and uniform random hill climbing produced the worst (9.44 body

lengths/minute). The remaining algorithms each produced a gait around 13 body

lengths/minute.
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Figure 4: Results for runs starting with vector C. Simplex and Gaussian random hill climb-
ing each produced a gait that substantially outperformed the other algorithms, with around
15 body lengths/minute and 13 body lengths/minute, respectively, whereas the other algo-
rithms returned gaits of less than 5 body lengths/minute.
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Figure 5: Average results for each method starting with parameter vectors A, B, and C.
FError bars are plotted showing the standard error. Linear regression outperformed other
methods, followed by simplex. Gaussian random hill climbing performed about as well
as random, but it is unclear whether Gaussian would continue to improve and become
much better than random search if allowed to run for more iterations. Uniform random
hill climbing and policy gradient descent performed similarly to each other on average, but
differed greatly on individual runs.
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Figure 6: Fitness mean and standard deviation vs. dimension 1. The circle is a common
point in Figure [ through Figure [I0

Varying param 2

Figure 7: Fitness mean and standard deviation vs. dimension 2. The circle is a common
point in Figure [6] through Figure
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varying param 3

Figure 8: Fitness mean and standard deviation vs. dimension 3. The circle is a common
point in Figure [ through Figure [I0

Varying param 4

Figure 9: Fitness mean and standard deviation vs. dimension 4. The circle is a common
point in Figure [6] through Figure
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varying param 5

Figure 10: Fitness mean and standard deviation vs. dimension 5. The circle is a common
point in Figure [6] through Figure

Figure Bl For this reason, it is unclear if any algorithm is superior to another in this
application. More trials with each algorithm would be necessary to reach a definitive ranking
of the performance of the algorithms.

However, each algorithm discovered at least one gait of over 10 body lengths/minute,
including random. For this reason, we speculate that the motion model is at least as critical
as the learning algorithm used.

7 Future work

There are several directions in which we could continue our work. First, the error margins for
our runs were large, so reducing them by running more trials would lead to more conclusive
data. It would also be insightful to run our algorithms on different motion models. We
suspect that our choice of motion model influenced the results greatly, as even random
choices in the space produced gaits that moved a significant fraction of the time (; 5%).
It would be interesting to see how learning methods would perform using a model that
included a much higher percentage of unproductive gaits. We also intend to experiment
further with SVM regression and evolutionary algorithms/HyperNEAT. Some parameter
vectors resulted in the robot turning, as opposed to it walking long distances. This could

15



be an interesting learning goal in future projects. To these ends, we propose the following
additions and enhancements:

e More runs and/or longer runs

e Different motion representations

Better tuning of SVM regression

Evolutionary algorithms/HyperNEAT 2]

Learning how to turn

8 Conclusion

We have presented an array of approaches to optimizing a quadrupedal gait for forward
speed. We have implemented and tested different learning strategies, including uniform
and Gaussian random hill climbing, policy gradient reinforcement learning, Nelder-Mead
simplex, several new predictive methods based on linear and support vector regression,
and an evolved neural network (HyperNEAT). We have also compared these approaches to
random search as a baseline. Many of the methods resulted in walks significantly faster
than previously hand-tuned gaits.

Because only three trials were tested with each algorithm and no algorithm consistently
outperformed the others, there was a large standard error for each method, as shown in Fig-
ureBll Thus it was unclear if any algorithm was superior to another in this application. More
trials with each algorithm would be necessary to reach a definitive ranking. Because each
algorithm discovered at least one gait of over 10 body lengths/minute, including random
search, we also conjectured that the motion representation for the robot is more integral
to forward speed than the learning algorithm. How to learn the motion representation, in
addition to its parameters, remains an open problem.
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11 Appendix

A brief description of the code uploaded to the CMS follows:

optimize.py: Main program, determines a strategy to try and runs the robot with
that strategy.

RunManager.py: Deals with all the details of running the robot, including choosing
an initial parameter, running the robot multiple times, tracking distance walked, and
writing to the log file. Also includes the explore dimensions method.

Strategy.py: Contains all the different possible strategies, which will be passed as
objects in optimize.py.

Robot.py: Implements the Robot class, described in Section [Bl

SineModel.py: Implements a sine based motion model, described in Section [l
Motion.py: Motion helper functions.

WiiTrackServer.py: Broadcasts the position of the infrared LED.

WiiTrackClient.py: Connects to the WiiTrackServer to get the current position
information.
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